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Abstract

Relations among multiple entities are prevalent in many fields, and hypergraphs are widely used
to represent such group relations. Hence, machine learning on hypergraphs has received considerable
attention, and especially much effort has been made in neural network architectures for hypergraphs
(a.k.a., hypergraph neural networks). However, existing studies mostly focused on small datasets for
a few single-entity-level downstream tasks and overlooked scalability issues, although most real-world
group relations are large-scale. In this work, we propose new tasks, datasets, and scalable training
methods for addressing these limitations. First, we introduce two pair-level hypergraph-learning tasks
to formulate a wide range of real-world problems. Then, we build and publicly release two large-scale
hypergraph datasets with tens of millions of nodes, rich features, and labels. After that, we propose PCL,
a scalable learning method for hypergraph neural networks. To tackle scalability issues, PCL splits a
given hypergraph into partitions and trains a neural network via contrastive learning. Our extensive
experiments demonstrate that hypergraph neural networks can be trained for large-scale hypergraphs by
PCL while outperforming 16 baseline models. Specifically, the performance is comparable, or surprisingly
even better than that achieved by training hypergraph neural networks on the entire hypergraphs without
partitioning.

Keywords: Large-Scale Hypergraph Datasets, Scalable Hypergraph Learning, Hypergraph Neural Net-
works, Contrastive Learning, Partitioning

1 Introduction

Beyond pairwise relations among entities, understanding and modeling higher-order relations have received
considerable attention [1, 2, 3, 4, 5, 6, 7, 8]. A hypergraph, which generalizes a graph, is a data structure
that is commonly used to model such higher-order relations [9, 10, 11]. While an edge in a graph joins only
two entities, a hyperedge joins an arbitrary number of entities, which makes a hypergraph, which is a pair
of a node set and a hyperedge set, inherently capable of capturing high-order relations.

*Equal contribution.
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Due to the omnipresence of hypergraphs, a number of machine learning tasks, such as node classification
[12, 13, 14, 15] and hyperedge prediction [16, 17, 18], have been considered for hypergraph-structured data.
One possible approach to tackle such tasks is to transform hypergraphs into ordinary graphs and apply
existing graph representation models (e.g., graph neural networks) [19, 20, 21]. On the other hand, previous
studies have shown that this transition can result in the loss of significant higher-order information, causing
performance degradation in machine learning tasks [22, 23, 16, 18]. These studies highlight the need for
specialized representation models specifically designed for hypergraphs.

Numerous hypergraph neural network models (e.g., HGNN [23], NHP [16], UniGCNII [12], and AllSet [14])
have been developed in recent years. Despite these advancements, the evaluation of these models has been
limited to small datasets, usually consisting of tens of thousands of nodes and a few single-entity level
downstream tasks. Moreover, scalability for large-scale datasets has been overlooked in prior research, with
the majority of studies focusing on enhancing the expressive power of these networks.

However, many real-world applications require predicting properties beyond the single-entity level, such
as pairs or groups of entities. Examples include detecting collusion among users in peer review [24], rec-
ommending products to users [25], identifying the same users on online social networks [26], and predicting
pairwise differences for chemical discovery [27], to name a few. In addition, a massive number of group
relations can be found across various domains, including over 200 million co-authorship relations in research
papers [28], co-appearances of hashtags in over 500 million posts on social media [29], and over 10 million
group discussions on an online Q&A platform [1].

To bridge the apparent gap between previous studies and practical applications, we present new tasks,
datasets, and scalable training methods for large-scale hypergraph learning. Our contributions toward these
goals are summarized as follows:

• Novel Pair-level Tasks: We present two new pair-level prediction tasks, hyperedge disambiguation and
local clustering, and demonstrate that they can be used to address various real-world problems.

• Large-scale Datasets: We construct and publicly release two large-scale hypergraph-structured datasets:
AMiner and MAG, which contain 10 million nodes and 20 million nodes respectively. These datasets are
equipped with rich features and labels.

• Scalable Training Schemes: We propose PCL (Partitioning-based Contrastive Learning), a scalable
learning method for hypergraph neural networks (HNNs). In a nutshell, PCL partitions the input hy-
pergraph and trains HNNs via contrastive learning while loading only one partition into memory at a
time. PCL is also equipped with additional techniques to reduce information loss due to partitioning, and
as a result, HNNs trained by PCL show surprisingly good performance in our experiments. Specifically,
the performance is comparable to and often even better than that achieved by training HNNs on entire
hypergraphs without partitioning, which is not scalable to large-scale datasets.

The structure of this paper is as follows. In Section 2, we provide some preliminaries and related work.
In Section 3, we propose two pair-level prediction tasks with their mathematical formulation and real-world
applications. In Section 4, we describe the two large-scale hypergraph datasets that we build. In Section 5,
we present PCL, our scalable learning method for hypergraph neural networks. Using all the above, we
perform experiments and report the results in Section 6. In Section 7, we offer a conclusion of our work.

Code and Data Availability: The source code used in this paper and the large-scale hypergraph
datasets that we build are publicly available at https://github.com/kswoo97/pcl for reproducibility.
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2 Preliminaries and Related Work

2.1 Preliminaries

We first give some preliminaries on hypergraphs and hypergraph neural networks. See Table 1 for a list of
the frequently-used symbols.

2.1.1 Hypergraphs and Notations

A hypergraph generalizes a graph by allowing edges to join an arbitrary number of nodes. Consider a
hypergraph H = (V, E ,X) where V = {v1, v2, . . . , v|V|} is the set of nodes, E = {e1, e2, . . . , e|E|} is the set of
hyperedges, and X ∈ R|V|×F is the node feature matrix. Each hyperedge e ∈ E is a non-empty subset of
V (i.e., e ⊆ V and e ̸= ∅), and we use xi = X[i, :]T ∈ RF to denote the feature vector of the node vi. The
topological information in a hypergraph can also be represented in the form of a matrix called an incidence
matrix. In the incidence matrix H ∈ {0, 1}|V|×|E| of H, each (i, j)-th entry has a value of 1 if a node vi is
incident to a hyperedge ej (i.e., hij = 1 if vi ∈ ej), or has a value of zero (i.e., hij = 0) otherwise. That is,
H = (V, E ,X) can be denoted equivalently by H = (X,H).

2.1.2 Hypergraph Neural Networks (HNNs)

Hypergraph neural networks (HNNs) use the hypergraph structure H, node features X, and (optionally)
hyperedge features Y to learn representations of nodes P and/or of hyperedges Q. Most of the modern
HNNs [23, 13, 30, 22, 31, 14] follow a two-stage message aggregation strategy: node-to-hyperedge and
hyperedge-to-node message aggregation. They iteratively update (a) the representation of a hyperedge by
aggregating messages from its incident nodes and (b) the representation of a node by aggregating messages
from its incident hyperedges. Let P(k) ∈ R|V|×F ′

and Q(k) ∈ R|E|×F ′′
be the hidden representations of the

nodes and hyperedges at the k-th layer, respectively. Formally, the k-th layer of HNNs uses the following
update rules:
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where fV→E(·) and fE→V(·) are the message aggregation functions, and the initial node representation is
identical to the node feature vector (i.e., for a node vi, z

(0)
i = xi holds). Throughout this paper, we use

HGNN [23] whose message aggregation strategies are as follows:
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where (a) Θ(k) is a learnable weight matrix, (b) b(k) is a learnable bias, (c) di and δj are the degrees of each
node vi and hyperedge ej , respectively, and (d) wj is a positive weight assigned to each hyperedge ej ∈ E .
For each node vi ∈ V, its degree is defined as di =

∑|E|
j=1 wjhij , and for each hyperedge ej ∈ E , its degree

is defined as δj =
∑|V|

i=1 hij . In this work, wj is fixed to 1 for simplicity. In general, node and hyperedge
representations at the last K-th layer are considered as final representations used for downstream tasks.
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Table 1: Frequently used symbols.
Notation Definition
H = (V, E ,X) hypergraph with nodes V, hyperedges E , and node features X

H = (X,H) hypergraph with node features X and the incidence matrix H

vi ∈ V, ej ∈ E node and hyperedge
X ∈ R|V|×F node feature matrix
H ∈ {0, 1}|V|×|E| incidence matrix of H
Encθ(·) hypergraph encoder
Ck ⊆ V cluster of nodes
Pk = (PV

k ,PE
k ) partition with nodes PV

k and hyperedges PE
k

Pk = (PX
k ,PH

k ) partition with node features PX
k and the incidence matrix PH

k

|A| cardinality (i.e., number of elements) of a set A

2.2 Related Work

In this subsection, we review previous studies on hypergraph neural networks, scalable (hyper)graph learning,
contrastive learning, and (hyper)graph partitioning, all of which are closely related to our work.

2.2.1 Hypergraph Neural Networks

There has been intense attention on designing message aggregation rules of hypergraph neural networks
(HNN): fV→E(·) and fE→V(·) (see Eq (1)). Many recent studies have focused on extending the applicability
of graph neural networks (GNNs) to hypergraphs. Some approaches [23, 30, 16] replace each hyperedge by a
clique composed of its constituent nodes (i.e., clique-expansion) and employ GNN-based message passing on
the resulting graph, which is called the clique-expanded graph. While these models are simple and effective,
they suffer from undesired information loss due to structural distortion caused by clique expansion [32, 33, 22].
To mitigate such information loss, HNHN [22] utilizes an approach based on star-expansion, which does
not lead to any information loss, with two different weight matrices for node- and hyperedge-side message
aggregations. Several studies attempt to generalize the message-passing process in GNNs and HNNs in a
unified form [12, 34], and AllSet [14] generalizes message aggregation methods as multiset functions that are
learned by DeepSets [35] or SetTransformer [36].

While many HNN models have been developed, the evaluation of their performance in most studies has
primarily focused on single-entity-level prediction tasks, such as node classification [23, 12, 14, 15], hyperedge
classification [22], and hyperedge prediction [16, 17]. Although these tasks are commonly used as benchmarks
for machine-learning models, it is important to note that many real-world applications may not inherently
align with these tasks, as explained in greater detail in Section 3.3.

2.2.2 Scalable (Hyper)graph Learning

As real-world graphs grow larger, many studies have been conducted to scale graph neural networks (GNNs)
to large graphs through parallelism [37, 38, 39], graph sampling [20, 40, 41, 42, 43, 44], and pre-computed
convolutional filters [45, 46]. Here, we focus on sampling-based approaches. Graph sampling, which approx-
imates local graph structures by subsampled ones suitable for computation, has been demonstrated to be
effective for scalable graph learning. For instance, GraphSAGE [20] utilizes uniform sampling of a fixed-size
set of neighboring nodes to approximate local connectivity. Similarly, FastGCN [40] conducts node-level
sampling independently for each layer while incorporating importance sampling to reduce variance. Instead
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of node-wise sampling, some works build mini-batches by graph-level sampling. In ClusterGCN [43], non-
overlapping clusters are computed at the pre-processing phase and form mini-batches cluster by cluster.
Inter-cluster edges are simply disregarded, and this process enables ClusterGCN to avoid the “neighborhood
expansion” problem [43]. GraphSAINT [44] adopts a graph sampling approach, and specifically, it uses
sampling algorithms for variance reduction with an additional normalization technique for unbiasedness.

The representation learning method for large hypergraphs remains largely underexplored. HyperNetVec,
a scalable unsupervised hypergraph embedding method proposed by Maleki et al. [47] leverages multi-level
(hierarchical) embedding approaches that adopt existing graph embedding methods [48, 20] on a coarsened
hypergraph. While HyperNetVec can handle hypergraphs with millions of hyperedges, it is a transductive
embedding method. That is, it directly learns node embeddings and cannot be directly utilized for training
HNNs. To the best of our knowledge, our study is the first to propose a scalable training approach for HNNs
applicable to hypergraphs with millions of nodes and hyperedges. It should be noticed that our approach is
scalable enough to be used with hypergraphs with tens of millions of nodes and hyperedges.

2.2.3 Contrastive Learning (CL)

Due to its effectiveness and generality, contrastive learning (CL) has emerged as a novel solution for alleviating
the label-scarcity issue in representation learning in various domains, including computer vision [49, 50],
natural language processing [51], graph learning [21, 52, 53, 54, 55, 56], and hypergraph learning [57, 58,
59, 15]. The basic concept of CL is to (a) create two augmented views from the input data and (b) learn
an encoder to maximize the agreement between the two views. That is, CL approaches aim to minimize
(maximize) the distance between positive (negative) pairs. The learned representations can be utilized for
various downstream tasks, such as node classification [21, 53, 15] and recommendation [60, 61].

Among contrastive learning for hypergraphs [57, 58, 59, 15]. S2-HHGR [57] uses a coarse- and fine-grained
node dropout for hypergraph augmentation, and it remedies a data sparsity issue for group recommendation.
DHCN [58] employs session-level contrast for session recommendation. TriCL [15] uses a tri-directional
contrastive loss, which combines node-, group-, and membership-level contrastive losses, resulting in better
performance on several downstream tasks, compared to employing simply a node-level contrastive loss.

2.2.4 (Hyper)graph Partitioning

(Hyper)graph partitioning is a fundamental task where the objective is to divide nodes into multiple
groups [62, 63, 64] to minimize the connectivity between groups, and it has extensive applications, including
anomaly detection [65], molecular mining [66], and face analysis [67].

Especially for hypergraph partitioning, multi-level approaches have received intensive attention [63, 68,
69]. A multi-level hypergraph partitioning algorithm consists of three phases: coarsening, initial partitioning,
and uncoarsening. (a) Coarsening : A coarsened hypergraph H(c) is formed by merging pairs of nodes in
the input hypergraph H. This procedure is recursively applied to the coarsened hypergraph. The final
hypergraph is the coarsest one that meets predefined termination criteria. (b) Initial partitioning : The
coarsest hypergraph is partitioned using any partitioning rules. (c) Uncoarsening : Partitions found in the
second phase are successively projected back towards the original hypergraph H. In this paper, we adopt
PaToH [63] for hypergraph partitioning due to its high-scalability. However, other approaches [68, 69, 70, 71]
can be employed instead.

While the above hypergraph partitioning (clustering) studies make assumptions about static input hy-
pergraphs and disjoint partitions, there have been efforts to relax these assumptions in ordinary graphs.
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Refer to [72, 73] for surveys on this topic. Notably, such extensions include overlapping clustering, which
allows entities to belong to multiple clusters [74, 75], clustering in time-varying graphs [76], and overlap-
ping clustering in time-varying graphs [77]. Recently, overlapping clustering is addressed using graph neural
networks [75] and also considered in hypergraphs [78].

3 Proposed Hypergraph Learning Tasks

In this section, we propose two new hypergraph learning tasks: hyperedge disambiguation and local clustering.
For each task, we first provide its mathematical formulation and then discuss its application to real-world
problems. Lastly, we describe how our proposed tasks differ from commonly considered benchmark tasks,
with a focus on advantages in addressing potential issues in practice.

3.1 Hyperedge Disambiguation

3.1.1 Mathematical Description

Consider a hypergraph H = (V, E ,X) and a subset S ⊆ E of hyperedges. Every hyperedge ei ∈ S is split
(disjointly or with partial overlap) into two hyperedges ei1 and ei2 so that ei1∪ei2 = ei holds. The hyperedges
in S are replaced by these split hyperedges, which results in a new hypergraph H′ = (V, E ′) where

E ′ = (E \ S) ∪
⋃
ei∈S

{ei1, ei2}. (3)

Based on this setting, hyperedge disambiguation is defined as to predict whether a given pair of hyperedges
in the given hypergraph H′ = (V, E ′,X) are split hyperedges or not. Formally,

Y ({ei, ej}) =

1 ei ∪ ej ∈ S

0 otherwise
, (4)

where ei, ej ∈ E ′. The goal of this task is to learn a function f :
(E′

2

)
7→ R ∈ [0, 1] to approximate Y (·)

in Eq (4). In this paper, we consider this task in a semi-supervised setting where a small amount of the
ground-truth split pairs of hyperedges are given. However, this problem can also be considered in other
settings.1

3.1.2 Real-world Applications

The hyperedge disambiguation task can be applied to many real-world applications. Below, we introduce
two examples: researcher disambiguation and user identification.

Researcher disambiguation is a task to identify whether a given pair of researchers are in fact the
same researcher or not. Due to namesakes and other reasons, one researcher can be represented as multiple
individuals in a system, which complicates searching for experts, surveying related papers, and recommending
scholarly papers [79, 80, 81]. This problem can naturally be formulated as a hyperedge disambiguation
task on a publication-author hypergraph where nodes denote publications and each hyperedge represents a
(potentially partial) set of publications authored by one researcher. Then, predicting whether a given pair of

1For example, in an unsupervised setting without any given positive example pairs, one can additionally split edges in E ′ to
use them as positive example pairs for training.
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Figure 1: Example applications of the proposed tasks. (a) In a researcher disambiguation task, we aim to
predict whether a given pair of researchers (modeled as hyperedges) are identical or not. (b) In a household
matching task, we aim to predict whether a given pair of devices (modeled as nodes) are owned by people
in the same household or not.

hyperedges are split ones or not corresponds to predicting whether the two sets of publications are authored
in fact by the same researcher or not, as visually depicted in Figure 1(a).

The second task is user identification, which is to identify whether a given pair of electronic devices
(or accounts for a web service) are owned by the same user [82, 83]. If such a pair can be identified, the data
(e.g., behavior log) from both can be used together to improve the quality of services (e.g., personalization
and recommendation). To handle this problem, we can build a hypergraph where nodes denote devices
(or accounts) and each hyperedge represents the set of devices (or accounts) that each device (or account)
communicates with. Then, predicting whether a given pair of hyperedges are split ones or not corresponds
to predicting whether the two devices (or accounts) are owned by the same user or not.

3.2 Local Clustering

3.2.1 Mathematical Description

Consider a hypergraphH = (V, E ,X) and (disjoint or partially overlapping) clusters of nodes C = {C1, C2, · · · , C|C|}
where each cluster is a subset of nodes (i.e., Ck ⊆ V, ∀Ck ∈ C). Based on this setting, local clustering is
defined as to predict whether a given pair of nodes in a given hypergraph H belongs together to the same
cluster or not. Formally,

Y ({vi, vj}) =

1 ∃Ck ∈ C such that {vi, vj} ⊆ Ck

0 otherwise
, (5)

where vi, vj ∈ V. The goal of this task is to find a function f :
(V
2

)
7→ R ∈ [0, 1] to approximate Y (·) in Eq (5).

In this paper, we consider this task in a semi-supervised setting where the members of a few clusters are
given, while any information about the other clusters (e.g., the number of them) is not provided. However,
this problem can also be considered in other settings.2

3.2.2 Real-world Applications

The local clustering task can be used to formulate a wide range of real-world problems. Here, we provide
two examples: sub-field detection and household matching.

2For example, it can be considered in unsupervised settings especially when the clustering membership is strongly correlated
with node features and/or topological information.
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The first task is sub-field detection, which is to classify whether a given pair of publications belong
to the same sub-field or not. Note that the boundary of a sub-field is often unclear, and thus a single
publication may belong to multiple sub-fields. This problem is formulated as a local clustering task on
hypergraphs where a node denotes a publication, a hyperedge represents the set of publications that are
co-cited by one publication, and clusters indicate sub-fields.

The second task is household matching, a task to predict whether a given pair of electronic devices
are owned by people in the same household or not. By grouping devices from the same households, rec-
ommendations and advertisements can be better personalized. For example, consider a hypergraph where
nodes denote devices and each hyperedge indicates the set of devices access to the same IP within a specific
time interval (e.g., set of devices access to IP 123.456.789 between 9 AM and 10 AM on May 16, 2023). If
each cluster is formed by the devices from the same household, inferring whether two nodes belong to the
same cluster or not corresponds to inferring whether two devices are from the same household or not, as
visually depicted in Figure 1(b). Note that household matching is not formulated accurately as an entity
classification task, since (1) it is hard to know in advance the number of households, which is required and
fixed in entity classification tasks, and (2) the number of households changes over time.

3.3 Differences from Existing Tasks

In this subsection, we discuss some difficulties when formulating the aforementioned real-world applications
as commonly-used single-entity-level tasks (e.g. node classification). Note that our proposed pair-level tasks
mitigate such difficulties.

3.3.1 Entity Classification

One may suspect that the aforementioned applications can also be formulated as single-entity-level tasks.
However, formulating these applications as our tasks offer several advantages over formulating them as an
entity classification task: (1) our tasks do not require the number of labels. which is equivalent to the number
of split hyperedges and the number of clusters in our tasks, in advance, and (2) a model for our tasks does
not need to be retrained whenever the number of labels changes in time-evolving data.

For example, one may consider formulating the household matching problem as a node classification
problem where each class indicates a household. Here, it is important to note that the number of such
classes is typically impossible to know in advance, and it also changes ceaselessly over time. Moreover, no
example can be provided for some classes during training. However, in node-classification formulation, the
output dimension of classifiers should be predetermined by the number of classes, and they cannot output
classes that are not observed during training.

On the other hand, our formulation as the local clustering task is free from such unrealistic requirements.
That is, we do not require the number of households in advance and require only some pairs of devices from
some households. Moreover, machine learning models trained for the local clustering task can naturally be
generalized to households unseen during training.

Formulating the researcher disambiguation problem as a hyperedge classification task also encounters the
same issues above. The number of real identities, which change over time, is impossible to know in advance.
However, considering the researcher disambiguation problem as a hyperedge disambiguation task is free from
the above-mentioned issues.
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Figure 2: Examples for the construction process of the AMiner and MAG datasets. (Left) From raw
text data, we extract the (a) publication ID, (b) author IDs, (c) title, (d) keywords, and (e) venue ID
of each publication. (Middle) We obtain the 300-dimensional features for each publication by averaging
the embeddings of all words in its title and keywords. Each publication is labelled based on the sub-field
it belongs to. (Right) We create nodes corresponding to publications and hyperedges corresponding to
authors.

3.3.2 Overlapping Clustering

The proposed local clustering problem is also closely related to the overlapping clustering problem, whose
goal is to identify clusters where an object (e.g., a node) can belong to multiple clusters (see Section 2.2.4).
The problem has been considered mostly in ordinary graphs and more importantly in transductive settings.
That is, clusters are identified based on the current state of a graph, and once the graph changes, one needs to
re-run the entire clustering process from scratch. Thus, the task is not proper to be used for evaluating HNNs
(especially their generalization capabilities), which are particularly useful in inductive settings. Moreover, in
many cases, the number of ground truth clusters is required, while it is unavailable in many realistic settings.

4 Proposed Large-scale Hypergraph Datasets

In this section, we introduce two large-scale hypergraph-structured datasets. We build them by processing
raw data from AMiner [84] and Microsoft Academic Graph (MAG) [85]. First, we describe how the node
features and labels are obtained from the raw data, and then we present how the hypergraph topologies are
constructed. Figure 2 provides a visual description of the hypergraph construction process.

4.1 Extracting Basic Information

The source of the datasets is Open Academic Graph3 [28], and it provides two large academic bibliographic
datasets: AMiner and MAG. These bibliographic datasets consist of huge raw text data containing in-
formation about over 100 million authors and publications. From this raw data, we first extract the (a)
publication ID, (b) author IDs, (c) the title, (d) keywords, and (e) the venue ID of each publication.

3Available at https://www.aminer.cn/oag-2-1.
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Table 2: Statistics of five real-world hypergraph datasets. MAG has 158× more nodes and 129× more
hyperedges than Trivago, a commonly used hypergraph dataset.

Source Dataset |V | |E| # features # classes

Existing
DBLP 41,302 22,363 1,425 6

Trivago* 172,738 233,202 300 160

Transformed** OGBN-MAG 736,389 1,134,649 128 349

Proposal
AMiner 13,262,573 22,552,647 300 257

MAG 27,320,375 30,175,013 300 257

* In the Trivago dataset, we use the first 300 left singular vectors of the incidence matrix as the node
features.
** Transformed from a heterogeneous graph.

4.2 Building Node Features

We construct a 300-dimensional feature vector for each publication, which corresponds to a node. To this end,
we average the embeddings of all the words appearing in its title and keywords, where the word embeddings
are obtained by the pre-trained GloVe [86] model4. The node features are created separately for AMiner

and MAG.

4.3 Building Node Labels

We classify publications based on the academic fields they belong to. Since the original raw data does not
contain any information about the publications’ academic fields, we utilize the venue name (e.g., conference
and journal) of each publication to infer its field. Specifically, we use the category hierarchy provided by
Google Scholar5 for mapping venue names to academic fields. The hierarchy consists of three levels: fields,
sub-fields, and venues. For example, the journal Data Mining and Knowledge Discovery (DAMI) belongs to
the sub-field Data Mining & Analysis, which in turn belongs to the field Engineering & Computer Science.
We label each publication based on the sub-field (i.e., the middle level) it belongs to. Note that, in the
category that we use, each venue (node) is matched with exactly one sub-field (label).

4.4 Building Hypergraph Structures

The raw data are far from complete with many missing values (e.g., missing authors) and meaningless
information (e.g., incomprehensible words). For the quality of the created hypergraphs, we first filter out all
publications that satisfy at least one of the following three conditions:

• It does not have author information (i.e., names or IDs),

• Its title and keywords consist of less than three words,

• It is not matched with any academic field.

Then, we build hypergraphs using the remaining publications.
As mentioned in Section 4.2, publications and authors are represented by nodes and hyperedges, re-

spectively. To be specific, for each author ID, the publications that contain the ID as an author form a
4Available at https://github.com/UKPLab/sentence-transformers.
5Available at https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng. In this taxonomy, a single

venue is associated with a single sub-field.
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(b) Proposed methods: Basic PCL and PCL+PINS

Figure 3: Overview of Basic PCL and PCL+PINS, the proposed large-scale hypergraph learning methods.
We consider each partition (Pi and Pj in the example) as a mini-batch and perform contrastive learning on
each mini-batch. In Basic PCL, after a single contrastive learning iteration is done on a partition (Pi), it
moves to another partition (Pj) and starts the next iteration. In PCL+PINS, after a model is updated on
a partition (Pi), PCL+PINS extracts the node embeddings of Pi’s two views (Zi1 and Zi2 in our example)
and uses Zi1 and Zi2 to compute inter-partition CL loss in the next partition Pj .

hyperedge. In this way, we create two co-authorship hypergraphs, AMiner and MAG, which contain over 20
million hyperedges and 30 million hyperedges, respectively. Numerically, the MAG dataset contains 158×
more nodes and 129× more hyperedges than the Trivago dataset, one of the commonly used hypergraph
datasets. Table 2 compares the statistics of the proposed datasets and some existing datasets. Note that,
the AMiner and MAG datasets can be used not only for the proposed pair-level tasks but also for common
downstream tasks, such as node classification, hyperedge prediction, and clustering.

5 Proposed Scalable Hypergraph Learning Method

In this section, we introduce PCL (Partitioning-based Contrastive Learning), a scalable hypergraph learning
algorithm for pair-level tasks. We first provide an overview of PCL together with the rationale of its
components. Next, we describe the details of PCL. At last, we give the complexity analysis of PCL. A
pictorial description of PCL is provided in Figure 3.

5.1 Challenges and Main Ideas

We analyze two challenges encountered in training representation learning models for pair-level downstream
tasks on large-scale hypergraphs. Then, we present our proposed solutions for overcoming these problems.
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(b) An example of P-IOS.

Figure 4: (a): Assume the two nodes v1 and v5 belong to the same cluster, and the two hyperedges e1 and e2
are split from one original hyperedge. Note that v1 and v5 belong to different partitions, and e1 = {v2, v5}
does not even exist in any partitioned hypergraph since v2 ∈ PV

1 and v5 ∈ PV
2 . Thus, {v1, v5} and {e1, e2}

cannot be used as labeled pairs when one trains a model on partitioned hypergraphs in a supervised manner.
(b): In order to mitigate information loss caused by partitioning, P-IOS restores each hyperedge by adding
its missing nodes back to the hyperedge.

Challenge 1. Considerable Time and Space Cost: How can we train hypergraph neural network mod-
els on large-scale hypergraph datasets? The commonly-used full-batch training is typically not possible, since
such hypergraphs cannot be entirely loaded into GPU memory, and this causes the out-of-memory problem.
To mitigate this issue, a mini-batch training method [20] loads only the subgraph from which each node
aggregates messages into GPU memory at a time. Although it reduces memory requirements, it introduces
significant computational overhead to extract such subhypergraphs for each node and load them repeatedly
into GPU memory. Even worse, such subhypergraphs are often large since real-world hypergraphs tend to
have a small diameter [87, 3].

Solution 1: Our solution to the scalability issue in large-scale hypergraph representation learning is parti-
tioning (or equivalently node clustering). The process involves dividing the input hypergraph into smaller
partitions, treating each partition as a distinct mini-batch. Partitioning-based approaches have proved
efficient in training models (i.e., graph neural networks) for representation learning in ordinary graphs, mit-
igating the neighborhood expansion problem [43]. Despite their efficiency, partitioning-based approaches
have not been considered for training HNNs on large-scale hypergraphs. Motivated by this efficiency, we
split the entire hypergraph into K partitions. Here, we use a well-known hypergraph partitioning algorithm
PaToH6 [63], while any partitioning method can be used instead. We load a single partition into GPU mem-
ory at a time, which requires K times more processes of loading and unloading partitions into GPU memory.
Alternatively, one can put two different partitions into GPU memory, but it requires at most K(K − 1)/2

times more processes, which are computationally too costly for large K.

Challenge 2. Information Loss Caused by Partitioning: Although the partitioning approach can mit-
igate the scalability issues, it has several limitations in handling pair-level downstream tasks presented in
Section 3.

• Some hyperedges do not exist in any partitioned hypergraph if their constituent nodes belong to different
partitions, and thus such hyperedges cannot be utilized in the training phase (see e1 of Figure 4 (a)).
6PaToH is a balanced partitioning method. It ensures that all generated partitions are of similar sizes [63], specifically

satisfying |PV
k | ≤ (1+ϵ)

|P|
∑|P|

i=1 |P
V
i |, ∀k = 1, · · · , |P|. As shown in Table 8 in Section 6.3.5, partitions obtained by PaToH from

real-world hypergraphs are well balanced. Specifically, the standard deviation of the number of nodes in each partition is less
than 0.5% of the average number of nodes per partition.
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• Certain node pairs and hyperedge pairs that are given as labeled pairs may be split into different partitions
(see {v1, v5} of Figure 4 (a)). In such scenarios, these divided pairs cannot be used as labeled pairs for
the partitioning-based approach to train HNNs.

• A single partition may not represent the entire hypergraph adequately since partitioning algorithms tend
to group similar nodes together in the same partition [43, 88]. In other words, each partition may exhibit
bias.

Solution 2: Our countermeasure for the second challenge is three-fold.

• The first one is to leverage a contrastive learning (CL) framework [49, 15] to train hypergraph encoders
(i.e., HNNs) on partitioned hypergraphs. The basic concept of CL is to train a hypergraph encoder by (a)
creating two augmented views from the input data and (b) letting the encoder maximize the agreement
between the two views. Note that CL does not require any label supervision, and this characteristic ensures
that the encoder is properly trained even in the case where labeled pairs are split or lost.

• The second one is PINS, which mitigates the bias problem caused by hypergraph partitioning. Since it
processes a single partition as a mini-batch, a hypergraph encoder has limited exposure to the differences
between nodes in different partitions. To enable the hypergraph encoder to incorporate information from
other partitions, PINS utilizes the node representations from the previous partition.

• The last one is P-IOS, restores each hyperedge by adding its missing nodes back to the hyperedge, to
alleviate information loss caused by partitioning.

5.2 Details of Proposed Methods

In this subsection, we explain the details of the three proposed solutions discussed in the previous subsection.
We first introduce Basic PCL, a contrastive learning (CL) framework with partitioned hypergraphs. Then,
we introduce PCL+PINS, a method that uses the embeddings of the previous partitions as negative
samples. In addition, we provide PCL+P-IOS, a method that augments each partition without additional
hyperedges. Lastly, we describe how a classifier of downstream tasks is trained with pre-trained hypergraph
encoders.

5.2.1 Basic PCL

Basic PCL (Partitioning-based Contrastive Learning) is a contrastive learning framework that trains HNNs
on partitioned hypergraphs. An example of Basic PCL is illustrated in Figure 3, and its pseudocode is
provided in Algorithm 1. We denote the set of all partitions as P = {P1, · · · ,PK}, where each partition
is defined as Pk = (PV

k ,PE
k ), where PV

k ⊆ V and PE
k = {e ∩ PV

k : e ∈ E , e ∩ PV
k ̸= ∅}. Here, K denotes

the number of partitions7. Note that Pk can also be expressed as (PX
k ,PH

k ), where PX
k denotes the node

features of PV
k , and PH

k denotes the incidence matrix of Pk.
In a nutshell, Basic PCL receives a set of partitions P as an input and treats each partition Pk ∈ P as a

mini-batch (line 3) for contrastive learning. It trains a hypergraph encoder (i.e., hypergraph neural network)
aiming to minimize a contrastive learning loss, which will be further elaborated. Details are as follows:

7One can set K based on the available amount of space (low K takes more memory consumption in general). Note that the
performance of the proposed method is not significantly affected by K, which will be demonstrated in Section 6.3.5.
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Algorithm 1 Basic PCL and PCL+PINS: Partitioned contrastive learning for hypergraph
Input: (1) Hypergraph encoder Encθ, projection head ProjΘ

(2) Partitioned hypergraph P = {P1, · · · ,PK}
(3) Feature augmentation prob. pv, hyperedge augmentation prob. pe
(4) Number of epochs EP , Optimizer Optim, Number of negative samples N
(5) PCL+PINS scalar λ (if λ = 0 ; then it is Basic PCL)

Output: Pretrained hypergraph encoder Encθ
1 for ep ← 1, · · · , EP do
2 Shuffle the order of partitions in P
3 foreach Pk ∈ P do
4 P ′

k1 ← Au(Pk, pv, pe); P ′
k2 ← Au(Pk, pv, pe) ▷ Augmentation

5 Pk1 ← Encθ(P ′
k1);Pk2 ← Encθ(P ′

k2) ▷ Node embedding
6 Zk1 ← ProjΘ(Pk1);Zk2 ← ProjΘ(Pk2) ▷ Projection
7 Loss← LCL,k (use Zk1, Zk2, and N) ▷ Contrastive loss in Eq (10)
8 if (λ > 0) ∧ (ep > 1) then
9 Loss← Loss+ λ

∑2,2
i=1,j=1 LI,k(i, j) ▷ Inter-partition loss in Eq (11)

(use Z′
1 and Z′

2 as node embeddings of two views of the previous partition)
10 Update Encθ and ProjΘ by Optim(Loss, θ,Θ) ▷ Back propagation
11 if λ > 0 then
12 Z′

1 ← ProjΘ(Encθ(P ′
k1)); Z

′
2 ← ProjΘ(Encθ(P ′

k2)) ▷ Only for PINS
13 return Encθ

First, Basic PCL creates two augmented views of an input partition Pk (line 4). It mainly utilizes a
masking-based augmentation strategy [15], which corrupts node features and membership (each group and
its members). For node feature augmentation, Basic PCL employs a single random binary mask, with each
entry sampled from a Bernoulli distribution B(1− pv). This mask is utilized to set certain columns of PX

k ,
which is a feature matrix of the current partition, to zero vectors. Similarly, for membership augmentation,
Basic PCL randomly removes nodes from the hyperedges that they belong to. Specifically, Basic PCL

generates a binary mask of size nnz(PH
k ) (i.e., the number of nonzero entries of an incidence matrix PH

k

of the current partition) with each entry sampled from a Bernoulli distribution B(1 − pe). This mask is
leveraged to remove certain node-hyperedge memberships. We use P ′

k1 and P ′
k2 to denote the two resulting

views created through this process, as in Eq (6):

P ′
k1 = (P ′X

k1 ,P ′H
k1 )← Au(Pk, pv, pe);P ′

k2 = (P ′X
k2 ,P ′H

k2 )← Au(Pk, pv, pe), (6)

where Au denotes the augmentation process described above.
Then, Basic PCL obtains node representations of the two views by sequentially passing the two views

through a hypergraph encoder Encθ (see Section 2.1.2 for details) and a projection head ProjΘ (line 5-6):

Zk1 = ProjΘ(Encθ(P ′
k1)));Zk2 = ProjΘ(Encθ(P ′

k2))), (7)

where ProjΘ is a one-layer MLP with the ReLU [89] activation function. Lastly, PCL employs the InfoNCE
loss [90] for parameter updates to make the representations of the corresponding nodes in the two views
similar and those of different nodes dissimilar8:

ℓ(zk1,i, zk2,i) = − log
exp (s(zk1,i, zk2,i)/τ)∑|PV
k |

t=1 exp (s(zk1,i, zk2,t)/τ)
, (8)

8Note that other self-supervised losses (e.g., [91]) can be used alternatively.
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where zka,i is a ith row vector of Zka, τ is a temperature parameter, and s is a similarity function. As
the similarity function s, we use the consine similarity, i.e., s(u,v) = (uTv)/(∥u∥ · ∥v∥)). As shown in
the denominator of Eq (8), for each node, its similarity with all other nodes of PV

k is computed. For
computational efficiency, instead of using the entire PV

k , we obtain a uniform sample P ′V
k ⊂ (PV

k \ {vi}),
where |P ′V

k | = min(|PV
k |, N) and N is a hyperparameter, and use it as negative samples. That is,

ℓ(zk1,i, zk2,i) = − log
exp (s(zk1,i, zk2,i)/τ)

exp (s(zk1,i, zk2,i)/τ) +
∑

vt∈P′V
k

exp (s(zk1,i, zk2,t)/τ)
. (9)

In practice, we symmetrize Eq (8) so that the final CL loss (line 7) becomes:

LCL,k =
1

2|PV
k |

|PV
k |∑

i=1

(ℓ(zk1,i, zk2,i) + ℓ(zk2,i, zk1,i)) . (10)

By using Eq (10), Basic PCL updates Encθ and ProjΘ via gradient descent.

5.2.2 PCL+PINS

PCL+PINS (Previous partItion’s Negative Samples) encourages a hypergraph encoder Encθ to learn dis-
similarity between nodes at different partitions (see Figure 3). A pseudocode of PCL+PINS is provided in
Algorithm 1. As Basic PCL does, PCL+PINS treats each partition as a mini-batch for contrastive learn-
ing. However, while Basic PCL only utilizes contrastive loss obtained within each partition, PCL+PINS

incorporates information from other partitions.
In PCL+PINS, before moving to the next partition (after updating the encoder in the current partition),

the encoder extracts node embeddings of two augmented views of the current partition Pk (denoted by Zk1

and Zk2) (line 12). For the next partition Pt, PCL+PINS uses not only the CL loss in Eq (10), which is
obtained within a partition Pt, but also an inter-partition CL loss to maximize the dissimilarity between the
node embeddings from a view of Pt and those from a view of Pk. Specifically, the inter-partition CL loss
between a view P ′

t1 of Pt and a view P ′
k1 of Pk is defined as:

LI,t(1, 1) =
1

|PV
t |

|PV
t |∑

i=1

log

 ∑
j∈PV

k,s

exp

(
s(zt1,i, zk1,j)

τ

), (11)

where PV
k,s ⊂ PV

k are sampled nodes from Pk for negative samples. We consider all possible pairs of a view
from Pt and a view from Pt, and based on them we define LI,t(1, 1), LI,t(1, 2), LI,t(2, 1), and LI,t(2, 2),
accordingly. Then, the final loss of PCL+PINS for each partition Pt is defined as:

L = LCL,t + λ (LI,t(1, 1) + LI,t(1, 2) + LI,t(2, 1) + LI,t(2, 2)) , (12)

where LCL,t is the loss within Pt in Eq (10), and λ is a hyperparameter that controls the strength of the
inter-partition CL loss.

In summary, PCL+PINS uses node embeddings from the previous partitions as negative samples for the
current partition. It is important to note that Zk1 and Zk2 are obtained from a partition already residing in
GPU memory, and does not require any additional data loading process. In addition, Zk1 and Zk2 are not
outdated since they are extracted after updating the encoder.
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5.2.3 PCL+P-IOS

PCL+P-IOS (Partitions with the Inclusion of Outsider Set) restores each hyperedge by adding its con-
stituent nodes missed during partitioning back to the hyperedge, to mitigate information loss caused by
partitioning. An example of P-IOS is illustrated in Figure 4(b).

Formally, for a given set of hypergraph partitions P , PCL+P-IOS builds a new hypergraph partition
set P̃ , which is defined as:

P̃ =
{
P̃k =

(
P̃V
k , P̃E

k

)
: k ∈ {1, · · · ,K}

}
, (13)

where P̃E
k = {e ∈ E : e∩Pk ̸= ∅}, and P̃V

k =
⋃

e∈P̃E
k
e. The training strategy of PCL+P-IOS is the same as

that of Basic PCL except that PCL+P-IOS uses P̃ , as input hypergraph partitions, instead of P .

5.2.4 Classifier for Pair-level Downstream Tasks

Note that the proposed methods (Basic PCL, PCL+PINS, and PCL+P-IOS) are for obtaining represen-
tations of nodes. Lastly, we present how PCL makes predictions for node-pair-level tasks and hyperedge-
pair-level tasks with acquired representations. We denote node representations obtained by a hypergraph
encoder (trained by one of the proposed methods) by Pv ∈ R|V|×F ′

. It should be noticed that the represen-
tations are the output of the hypergraph encoder Encθ not the projection head ProjΘ, which is used only
for contrastive learning.

For a node pair-level task, PCL directly uses Pv as node features. To make a prediction for a pair of
nodes {vi, vj}, PCL uses a classifier hv : (RF ′ × RF ′

) 7→ [0, 1]. Specifically, hv is structured as follows:

hv(pv,i,pv,j) = σ(W12(R(W11pv,i + b11)⊗R(W11pv,j + b11)) + b12), (14)

where ⊗ denotes the element-wise product; σ denotes the sigmoid function; R denotes the ReLU activation
function [89]; W11 and W12 are learnable weight matrices; and b11 and b12 are learnable bias matrices. All
parameters (i.e., W11, W12, b11, and b12) are updated using a classification loss. Note that in the proposed
local clustering task, this prediction is used to identify whether the pair of nodes {vi, vj} belong to the same
cluster or not.

For a hyperedge pair-level task, PCL first creates hyperedge features by aggregating node representations
that belong to the corresponding hyperedge. Formally, hyperedge features Pe ∈ R|E|×F ′

(or Pe ∈ R|E′|×F ′

in our hyperedge disambiguation task) are computed as follows:

pe,i =
∑
vk∈ei

pv,k, ∀ei ∈ E (or ∀ei ∈ E ′ in hyperedge disambiguation). (15)

Although we have adopted a summation for the aggregation function, other permutation invariant functions
(e.g., average and maximum) can also be utilized. To make a prediction for a pair of hyperedges {ei, ej},
PCL uses a classifier he : (RF ′ × RF ′

) 7→ [0, 1]. Specifically, he is structured as follows:

he(pe,i,pe,j) = σ(W22(R(W21pe,i + b21)⊗R(W21pe,j + b21)) + b22), (16)

where ⊗ denotes an element-wise product; σ denotes the sigmoid function; R denotes the ReLU activation
function [89], W21 and W22 are learnable weight matrices; and b21 and b22 are learnable bias matrices. All
parameters (W21, W22, b21, and b22) are updated using a classification loss. Note that in the proposed
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hyperedge disambiguation task, this prediction is used to identify whether a given pair of hyperedges {ei, ej}
are in fact split from one hyperedge.

When training the classifiers hv and he, we freeze the parameters of the hypergraph encoder Encθ, and
thus the node representations Pv and hyperedge representations Pe are also frozen. However, it is also
possible to fine-tune Encθ while training the hv and he for downstream tasks.

5.3 Complexity Analysis

We examine the time complexity and memory requirement of PCL, focusing on a forward pass of Basic
PCL. Note that obtaining node embeddings with a hypergraph neural network incurs time complexity of
O(|V|+

∑
ei∈E |ei|), as outlined in Eq (1) and (2).

We first present the time complexity of a forward pass of the HCL (hypergraph contrastive learning), a
contrastive learning framework based on the entire hypergraph dataset. As stated above, the time complexity
of obtaining node embeddings of two views using a hypergraph encoder is O(|V| +

∑
ei∈E |ei|). After this,

node embeddings of two views are fed into a projection head, which takes O(|V|) time. At last, it computes
the contrastive loss between each node and negative samples, whose time complexity is O(|V|N) where N is
the number of negative samples. The overall time complexity of a forward pass of HCL becomes

O

(
(|V|+

∑
ei∈E
|ei|) + |V|+ |V|N

)
= O

(
|V|+

∑
ei∈E
|ei|

)
. (17)

A forward pass of HCL requires O(|V| +
∑

ei∈E |ei|) (GPU) memory space for storing the entire input
hypergraph and (intermediate) embeddings.

Now, we elaborate on the complexity of our proposed method, Basic PCL. The time complexity in
Eq (17) is applied to each partition (instead of the entire hypergraph), and as a result, the overall time
complexity of a forward pass of Basic PCL becomes

O

 |K|∑
k=1

|PV
k |+

|K|∑
k=1

∑
e′i∈PE

k

|e′i|

 = O

(
|V|+

∑
ei∈E
|ei|

)
, (18)

which is equivalent to the time complexity of HCL.
The (GPU) memory requirement of Basic PCL differs from that of HCL. Since Basic PCL loads only

one partition into (GPU) memory at a time, the amount of (GPU) memory required becomes

O

max
Pk∈P

|PV
k |+

∑
e′i∈PE

k

|e′i|

 , (19)

which indicates that the (GPU) memory requirement of Basic PCL is less than or equal to that of the
HCL. This fact is also further supported by experiments, where HCL encounters out-of-memory issues
when dealing with large-scale datasets, whereas PCL is not susceptible to such problems (see Table 3 and
4). Regarding speed, empirical observations indicate that HCL is faster in certain real-world datasets. This
is because HCL requires less time to load datasets into (GPU) memory compared to PCL, which necessitates
additional time for loading and unloading each partition into (GPU) memory.
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6 Experiments

In this section, we review our experiments to answer the following questions:

• RQ1: How accurate is PCL for the proposed pair-level tasks?

• RQ2: How effective is PINS?

• RQ3: How much GPU memory is required by PCL with and without PINS?

• RQ4: How effective is P-IOS?

• RQ5: How does the performance of PCL (+ PINS) depend on the number (or size) of partitions?

We first describe the problem settings for the proposed pair-level prediction tasks. Then, we provide
details of experimental settings and datasets. Lastly, we provide answers to the above questions based on
our experimental results.

6.1 Problem Settings

In this subsection, we introduce how we compose train and test pairs for the two pair-level prediction tasks
described in Section 3.

6.1.1 Hyperedge Disambiguation (Task-I)

Given an original hypergraphH = (V, E ,X), we split hyperedges in a disjoint way. Let ES ⊆ E be the subset of
the original hyperedge set that consists of all hyperedges of sizes greater than 10 (i.e., ES = {e ∈ E : |e| > 10}).
We randomly split every hyperedge ei in ES into two sub-hyperedges {ei1, ei2}, under a constraint that the
size of both sub-hyperedges should be at least 5 (i.e., ei1 ∩ ei2 = ∅, ei1 ∪ ei2 = ei, and min(|ei1|, |ei2|) ≥ 5).
Then, we create a new hypergraph H′ whose hyperedge set E ′ is defined as:

H′ = (V, E ′), where E ′ = (E \ ES) ∪
⋃

ei∈ES

{ei1, ei2}. (20)

We denote the set of ground-truth split hyperedge pairs as GS = {{ei1, ei2} : ei ∈ ES}. We use a subset G′
S

of GS as a train positive pair set, and the others (i.e., GS \G′
S) as a test positive pair set.

For training and testing of classifiers of this task, we also create a negative-pair set. We constrain the size
of hyperedges in negative pairs since all positive pairs consist of hyperedges of size at least 5. Specifically,
we use the set E ′5 = {e ∈ E ′ : |e| ≥ 5} of hyperedges whose size is at least 5. We compose a negative pair set
with pairs of hyperedges in E ′5, ensuring that these negative pairs are not included in Gs. Specifically, the
train negative pair set is the set of pairs of hyperedges {ei, ej} that satisfy at least one of the two following
conditions:

• Condition 1:
(
ei, ej ∈

⋃
gs∈G′

S
gs

)
∧ ({ei, ej} /∈ G′

S),

• Condition 2:
(
ei ∈

⋃
gs∈G′

S
gs

)
∧
(
ej /∈

⋃
gs∈G′

S
gs

)
.

The test negative pair set is the set of pairs {ei, ej} of hyperedges from E ′5 that satisfy the following condition:ei, ej /∈
⋃

gs∈G′
S

gs

 ∧ ({ei, ej} /∈ Gs). (21)
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Since the number of possible negative pairs is vast, instead of considering them all, we sample some of them
so that (1) the number of train negative pairs matches that of train positive pairs, and (2) the number of
test negative pairs matches that of test positive pairs.

6.1.2 Local Clustering (Task-II)

In our setting, the clusters are formed in a disjoint way. From the entire set of clusters C = {C1, C2, · · · , C|C|},
a subset C′ ⊊ C is given for training. The train positive pair set is defined as the set of node pairs that
belong together to a known ground-truth cluster, formally,{

{vi, vj} ∈
(
V
2

)
: vi, vj ∈ C ′, C ′ ∈ C′

}
. (22)

The test positive pair set is defined as the set of node pairs that belong together to an unknown ground-truth
cluster, formally {

{vi, vj} ∈
(
V
2

)
: vi, vj ∈ C ′, C ′ ∈ (C \ C′)

}
. (23)

Instead of using all possible positive pairs within each cluster, we sample a certain portion of node pairs
from each cluster.

We define the train node set as VTR =
⋃

C′∈C′ C ′ and the test node set as VTE =
⋃

C′∈(C\C′) C
′. Then,

the train negative pair set is defined as the node pairs from VTR that are not included in the train positive
pair set. Similarly, we define the test negative pair set as the node pairs from VTE , except for the pairs
that belong to the test positive pairs. As in the previous task, instead of using all negative pairs, we sample
some of them so that (1) the number of train negative pairs matches that of train positive pairs, and (2)
the number of test negative pairs matches that of test positive pairs. Throughout the experiments, in each
dataset, we use the labels of nodes as the ground-truth clusters of the nodes.

6.2 Experimental Settings

In this section, we provide an overview of the experimental setup for our study.

6.2.1 Baseline Methods

We compare the proposed methods against 16 baseline methods in the two proposed tasks (Task-I and
Task-II), which include Multi-Layer Perceptron (MLP) [92], graph encoders trained via supervised learning
or self-supervised learning9, and hypergraph encoders trained via supervised learning and (full-batch) self-
supervised learning. These baseline methods serve as a means to assess the effectiveness of several ideas
behind the proposed methods for Task-I and Task-II: the ideas are (1) hypergraph data modeling (2) self-
supervised learning strategy, and (3) partitioning.

For graph encoders trained via supervised learning, we use GCN [19] and GAT [21], and for self-supervised
learning methods, we use GCN trained by BGRL [91] or GGD [93]. For hypergraph encoders trained via
supervised learning, we use HGNN [23], UniGCNII [12], and AllSet [14]. All the above methods are trained
and evaluated on both entire and partitioned (hyper)graphs. Lastly, we use HGNN trained via self-supervised
learning on the entire hypergraph, which we call Hypergraph Contrastive Learning (HCL), as an additional
baseline method.

9Since graph encoders require a graph topology as an input, we convert original hypergraphs into graphs by Clique Expansion,
described in Appendix A.2.
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6.2.2 Implementations

We implement our methods and HCL using PyTorch 1.11.0 [94] and PyTorch Geometric 2.0.4 [95], and for
all other baseline methods, we use their official code.

6.2.3 Machine Specification

All experiments are conducted on a machine with NVIDIA RTX 8000 D6 GPUs (48GB memory) and two
Intel Xeon Silver 4214R Processors.

6.2.4 Datasets

We conduct experiments on five real-world hypergraph datasets: two existing small-scale datasets (DBLP [96]
and Trivago [97]), one medium-scale hypergraph dataset transformed from a heterogeneous graph (OGBN-
MAG [98]), and the two proposed large-scale hypergraph datasets (AMiner and MAG). Some statistics of
these datasets are reported in Table 2. Details regarding nodes, hyperedges, and labels of these datasets are
described in Appendix A.1.

6.2.5 Experimental Set-ups

We use the average precision score (AP) and the area under the ROC curve score (AUROC) as two quan-
titative evaluation metrics since the proposed tasks are sort of binary classification tasks. For each dataset
and for each task, we evaluate each model using 10 data splits. Specifically, we measure average AP and
average AUROC together with their standard deviations over 10 splits.

For Task-I, we split the ground-truth hyperedge pairs into 10% and 90% and use them as the positive train
pairs and positive test pairs, respectively. In addition, we use half of the positive train pairs for validation
and use the remaining half for training. By following the procedures described in Section 6.1, we create the
same number of negative train/validation/test pairs.

Similarly for Task-II, we split the ground-truth clusters (i.e., classes) into 10% and 90% and use them
as known and unknown ground-truth clusters, respectively. Here also, we use half of the known clusters for
validation and use the remaining half for training. Since the DBLP dataset has only six clusters, we use
four of them (specifically, two for training and two for validation) as known ground-truth clusters, which
results in a 66%/34% split for Task-II. Based on the clusters, by following the procedures described in
Section 6.1, we create positive and negative train/validation/test pairs. Specifically, for each cluster, we
randomly sample the following number of positive pairs from all possible positive pairs that can be created
from the corresponding cluster (and use the same number of negative pairs) in each dataset: 10000 in DBLP
and Trivago and 50000 in OGBN-MAG, AMiner, and MAG.

For all partition-based methods, the number of partitions (i.e., |P |) is set to 4 for DBLP, 32 for Trivago,
128 for OGBN-MAG, and 256 for AMiner and MAG, unless otherwise stated. The effect of the number
of partitions is also explored in Section 6.3.5. For all cases, we utilize the Adam optimizer [99] with a fixed
weight decay scalar of 10−6. The learning rate for each case is tuned as a hyperparameter. The specific
hyperparameters for the proposed methods and all baseline methods are described in Appendix A.3. For
PCL, unless otherwise stated, PINS is used for Task-II but not for Task-I, and P-IOS is not used for both
tasks. This is because PINS does not lead to accuracy gains in most cases for Task-I, and P-IOS limits the
scalability of PCL. PINS, however, is helpful for prediction accuracy, as shown in Section 6.3.4.
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Table 3: Task-I: On the hyperedge disambiguation task, Basic PCL (proposed) is comparable to and often
better than several baseline methods, including those requiring the full data to be loaded in memory for
training. We report the average and standard deviation of each metric on 10 random data splits. The
best performance in each setting is highlighted in bold, and the second best performance is highlighted in
underline. OOM indicates “out of memory”.

DBLP Trivago OGBN-MAG AMiner MAG Avg
Data Type Methods AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC Rank

Only X MLP 65.2 ± 3.4 62.2 ± 3.4 60.2 ± 1.6 60.7 ± 2.5 73.1 ± 2.6 71.9 ± 2.8 91.7 ± 0.3 92.9 ± 0.3 91.2 ± 0.6 92.6 ± 0.6 9.8

Full
Graph

GCN 83.6 ± 1.2 84.6 ± 1.5 61.6 ± 0.8 58.1 ± 2.4 80.1 ± 1.7 79.8 ± 2.0 OOM OOM OOM OOM 9.7
GAT 83.5 ± 1.0 84.6 ± 1.0 61.6 ± 0.5 60.0 ± 2.7 76.5 ± 2.3 75.7 ± 3.0 OOM OOM OOM OOM 10.3

BGRL 84.5 ± 1.2 84.3 ± 1.7 72.0 ± 1.8 72.2 ± 2.2 83.1 ± 0.6 83.9 ± 0.5 OOM OOM OOM OOM 8
GGD 80.9 ± 1.6 80.6 ± 2.1 71.8 ± 0.9 72.5 ± 1.6 76.1 ± 1.1 76.1 ± 1.3 OOM OOM OOM OOM 9.7

Full
Hypergraph

HGNN 77.3 ± 2.5 80.0 ± 3.1 72.1 ± 5.1 76.6 ± 1.4 91.2 ± 0.7 92.9 ± 0.6 OOM OOM OOM OOM 7.7
UniGCNII 78.1 ± 3.4 77.1 ± 3.9 71.8 ± 1.5 75.6 ± 2.3 86.9 ± 5.6 88.3 ± 6.7 OOM OOM OOM OOM 8.7
ALLSET 53.1 ± 1.2 55.8 ± 2.2 53.7 ± 1.2 56.8 ± 2.2 65.3 ± 1.4 73.4 ± 1.6 OOM OOM OOM OOM 13.1

HCL 91.0 ± 1.7 92.6 ± 2.1 73.7 ± 0.7 78.8 ± 1.1 94.2 ± 0.4 95.5 ± 0.3 OOM OOM OOM OOM 4.5

Partitioned
Graph

GCN 84.5 ± 1.6 85.9 ± 1.6 65.9 ± 1.9 66.7 ± 2.0 82.3 ± 2.6 83.4 ± 2.8 81.2 ± 0.6 81.5 ± 0.6 OOM OOM 7.9
GAT 84.7 ± 1.3 86.4 ± 1.2 62.2 ± 3.1 62.5 ± 4.6 78.0 ± 1.8 79.6 ± 1.8 81.3 ± 0.5 81.0 ± 0.6 OOM OOM 8.2

BGRL 85.8 ± 1.7 85.6 ± 1.7 82.4 ± 2.2 83.5 ± 2.1 91.4 ± 0.5 92.8 ± 0.5 90.1 ± 0.8 90.9 ± 0.8 89.7 ± 0.7 90.8 ± 0.9 3.9
GGD 80.1 ± 2.4 80.8 ± 2.3 76.9 ± 1.6 78.3 ± 1.5 88.7 ± 1.0 90.2 ± 0.9 82.5 ± 1.2 83.6 ± 1.5 80.1 ± 1.3 81.2 ± 1.4 6.2

Partitioned
Hypergraph

HGNN 84.1 ± 2.0 86.2 ± 1.8 71.8 ± 0.8 75.8 ± 1.0 85.9 ± 1.1 88.1 ± 1.0 91.3 ± 0.3 92.5 ± 0.3 89.2 ± 0.7 91.6 ± 0.5 5.4
UniGCNII 79.9 ± 1.8 80.0 ± 1.8 71.5 ± 2.6 74.2 ± 3.5 77.4 ± 0.9 75.7 ± 1.2 91.8 ± 0.5 92.1 ± 0.5 90.4 ± 0.4 91.9 ± 0.1 7.9
ALLSET 54.2 ± 1.6 57.6 ± 2.7 53.6 ± 1.2 56.7 ± 2.0 59.3 ± 1.6 65.6 ± 2.4 61.5 ± 1.8 68.6 ± 2.5 OOM OOM 13.2

Partitioned
Hypergraph

Basic PCL
(proposed) 87.1 ± 1.9 88.3 ± 2.0 88.2 ± 0.9 88.9 ± 0.7 94.1 ± 0.4 95.1 ± 0.3 95.5 ± 0.7 96.0 ± 0.8 96.2 ± 0.3 96.9 ± 0.3 1.4

6.3 Experimental Results

6.3.1 RQ1. Overall Performance on Downstream Tasks

As shown in Table 3 and 4, PCL achieves overall the best AP and AUROC scores among all the considered
methods (i.e., best in terms of average rank) on both tasks. There are two notable observations, which we
describe below.

First, in the two proposed large-scale hypergraphs AMiner and MAG, PCL shows the best performance
with a significant gap from the second best model (spec., 3.7% higher AP on Task-I and 9.7% higher AP
on Task-II in AMiner dataset). This result demonstrates the effectiveness of PCL in pair-level tasks on
large-scale hypergraph datasets. Note that the graph representation methods operating on clique-expanded
graphs show poor performance on both tasks in large-scale datasets. This result highlights the effectiveness
of the hypergraph modeling of large-scale group interactions when tackling pair-level tasks.

Second, although PCL is trained on partitioned hypergraphs, surprisingly, it shows performance compa-
rable to or even better than that of HCL, which uses entire hypergraphs, without partitioning, for contrastive
learning. That is, the topological information loss due to partitioning is not severe enough to harm the over-
all performance of models, and sometimes it is even helpful. We suspect that partitioning may increase
the hardness of negative samples that are used during contrastive learning, which may lead to performance
improvement. Specifically, when selecting negative samples for contrastive learning, there is inherent ran-
domness in the choice of which negative samples. If we choose negative samples from the entire hypergraph
(as in HCL), it is likely that distant nodes are chosen. In this case, representations of different nodes can
easily be dissimilar, since it is likely that distant nodes have different neighbors. However, if we select nega-
tive samples within a partition (as in PCL), it is relatively more likely that nodes sharing many neighbors
are chosen10, and this makes the encoder hard to maximize the dissimilarity between representations of such

10This is because partitioning algorithms generally assign such nodes in the same partition.
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Table 4: Task-II: On the local clustering task, PCL+PINS (proposed) is comparable to and often better
than several baseline methods, including those requiring the full data to be loaded in memory for training.
We report the average and standard deviation of each metric on 10 random data splits. The best performance
in each setting is highlighted in bold, and the second best performance is highlighted in underline. OOM
indicates “out of memory”.

DBLP Trivago OGBN-MAG AMiner MAG Avg.
Data Type Methods AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC Rank

Only X MLP 52.2 ± 2.3 51.3 ± 3.5 50.6 ± 0.4 50.9 ± 0.7 72.1 ± 1.0 73.9 ± 0.8 70.5 ± 0.9 72.9 ± 0.8 76.2 ± 1.3 79.4 ± 0.9 7.1

Full
Graph

GCN 54.6 ± 4.0 54.1 ± 4.7 50.1 ± 0.2 50.2 ± 0.1 53.5 ± 0.3 53.8 ± 0.4 OOM OOM OOM OOM 11.1
GAT 55.1 ± 4.2 55.3 ± 5.9 50.1 ± 0.0 50.0 ± 0.0 OOM OOM OOM OOM OOM OOM 11.6

BGRL 55.1 ± 5.8 52.9 ± 3.1 50.3 ± 0.2 50.4 ± 0.2 53.2 ± 0.3 53.3 ± 0.3 OOM OOM OOM OOM 10.9
GGD 58.6 ± 9.5 56.0 ± 8.6 50.3 ± 0.2 50.3 ± 0.2 53.0 ± 0.3 53.1 ± 0.3 OOM OOM OOM OOM 10.1

Full
Hypergraph

HGNN 56.9 ± 5.3 54.9 ± 6.3 54.8 ± 3.7 54.8 ± 3.6 78.2 ± 1.0 80.1 ± 0.7 OOM OOM OOM OOM 6.3
UniGCNII 55.2 ± 4.6 52.9 ± 4.5 51.6 ± 1.0 51.1 ± 0.9 76.7 ± 1.2 79.0 ± 1.1 OOM OOM OOM OOM 7.8
ALLSET 54.2 ± 4.1 56.1 ± 5.4 51.0 ± 0.7 51.7 ± 0.7 60.0 ± 2.2 61.8 ± 2.5 OOM OOM OOM OOM 8.6

HCL 63.6 ± 6.9 61.4 ± 7.9 58.6 ± 2.6 58.8 ± 4.2 78.5 ± 1.0 80.9 ± 0.7 OOM OOM OOM OOM 4.8

Partitioned
Graph

GCN 51.9 ± 0.4 52.2 ± 0.4 50.1 ± 0.0 50.1 ± 0.0 51.6 ± 0.4 51.7 ± 0.4 54.9 ± 0.7 54.3 ± 0.7 OOM OOM 12.7
GAT 52.4 ± 0.6 53.1 ± 0.6 50.4 ± 0.7 50.5 ± 1.0 54.1 ± 0.7 54.3 ± 0.8 55.2 ± 0.4 54.6 ± 0.4 OOM OOM 10.3

BGRL 58.8 ± 7.7 56.8 ± 5.6 61.2 ± 3.9 61.4 ± 3.9 65.6 ± 1.0 66.4 ± 0.8 65.8 ± 0.5 67.1 ± 0.6 71.0 ± 1.0 72.7 ± 0.9 3.6
GGD 67.7 ± 12.7 67.2 ± 13.3 59.4 ± 3.8 59.4 ± 3.5 64.8 ± 1.0 65.5 ± 0.6 62.8 ± 0.8 64.3 ± 0.8 68.5 ± 0.9 70.5 ± 0.9 3.8

Partitioned
Hypergraph

HGNN 55.2 ± 6.5 55.2 ± 7.3 52.0 ± 1.0 52.4 ± 2.0 68.8 ± 1.3 69.9 ± 1.6 57.6 ± 1.6 57.5 ± 2.1 62.8 ± 3.0 62.5 ± 3.6 6.6
UniGCNII 52.6 ± 1.7 52.3 ± 0.9 50.4 ± 0.3 50.1 ± 0.2 54.9 ± 0.6 54.6 ± 0.5 59.9 ± 1.2 59.6 ± 1.3 65.9 ± 2.2 66.0 ± 2.2 9.8
ALLSET 53.2 ± 1.6 54.6 ± 2.1 51.5 ± 0.3 52.5 ± 0.5 57.5 ± 1.9 59.2 ± 2.8 58.1 ± 1.1 60.9 ± 1.4 OOM OOM 8.2

Partitioned
Hypergraph

PCL+PINS
(proposed) 63.2 ± 10.6 64.0 ± 11.5 58.6 ± 1.0 59.2 ± 1.3 77.6 ± 0.8 79.8 ± 0.6 80.2 ± 1.7 81.6 ± 0.8 83.1 ± 1.4 86.1 ± 1.5 2.1

Table 5: Effectiveness of PINS on Task-II. PCL+PINS outperforms PCL w/o PINS in most datasets.
Data Metric PCL w/o PINS PCL+PINS

DBLP AP 62.4 ± 11.5 63.2 ± 10.6
AUROC 61.1 ± 9.9 64.0 ± 11.5

Trivago AP 58.6 ± 1.0 58.6 ± 1.0
AUROC 58.7 ± 1.0 59.2 ± 1.3

OGBN-MAG AP 77.3 ± 0.7 77.6 ± 0.8
AUROC 79.6 ± 0.3 79.8 ± 0.6

AMiner AP 78.6 ± 1.3 80.2 ± 1.7
AUROC 81.3 ± 1.2 81.6 ± 0.8

MAG AP 83.3 ± 1.1 83.1 ± 1.4
AUROC 86.3 ± 0.7 86.1 ± 1.5

nodes. As a result, the hardness of negative samples increases in PCL, and learning to distinguish hard
negative samples from positive samples potentially enhances the quality of the trained encoder’s output
representation [100, 55].

6.3.2 RQ2. Effectiveness of PINS

We demonstrate the effectiveness of PINS on Task-II by comparing the performances of PCL w/o PINS

(Basic PCL) and PCL+PINS. As shown in Table 5, PCL+PINS outperforms PCL w/o PINS in four out
of five datasets. The performance gain by PINS is up to +2.9% (AUROC on DBLP), while the performance
degradation is up to -0.2% (AUROC on MAG). Thus, we conclude that PINS is effective on Task-II. However,
in our preliminary study, PINS does not increase the performance on Task-I.

6.3.3 RQ3. Efficiency of PINS

Despite the effectiveness of PINS on Task-II, one may concern with additional computational and mem-
ory costs caused by PINS. Regarding the concern, we compare the average running time per epoch of
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Table 6: Effectiveness of P-IOS. PCL+P-IOS outperforms PCL w/o P-IOS in all cases.
Task Data Metric PCL w/o P-IOS PCL+P-IOS

Task-I

DBLP
AP 87.1 ± 1.9 90.8 ± 1.8

AUROC 88.3 ± 2.0 92.9 ± 1.2

Trivago
AP 88.2 ± 0.9 89.4 ± 1.2

AUROC 88.9 ± 0.7 89.5 ± 0.9

OGBN-MAG
AP 94.1 ± 0.4 94.8 ± 0.4

AUROC 95.1 ± 0.2 96.2 ± 0.2

Task-II

DBLP
AP 62.4 ± 11.5 64.7 ± 11.5

AUROC 61.1 ± 9.9 62.3 ± 12.3

Trivago
AP 58.6 ± 1.0 59.2 ± 1.0

AUROC 58.7 ± 1.0 59.3 ± 1.0

OGBN-MAG
AP 77.3 ± 0.7 78.8 ± 0.9

AUROC 79.6 ± 0.3 80.9 ± 0.7

Table 7: Cost of PINS. The additional cost due to PINS is not large in terms of time and marginal in terms
of memory requirements.

Method OGBN-MAG AMiner MAG

Average Running Time Per Epoch PCL w/o PINS 20.102 89.505 103.450
(Sec) PCL+PINS 24.025 118.338 133.739

Average GPU Memory Usage PCL w/o PINS 2.344 10.573 23.942
(GB) PCL+PINS 2.347 10.575 23.945

PCL+PINS and PCL w/o PINS (Basic PCL), and we also measure their average GPU memory usage
during the contrastive learning process11.

As reported in Table 7, the average running time of PCL+PINS is 20%, 32%, and 23% longer than that
of PCL w/o PINS on OGBN-MAG, AMiner, and MAG, respectively12. Moreover, it uses 0.1%, 0.01%, and
0.01% more average GPU memory, compared to PCL w/o PINS, for the above three datasets. Therefore,
the additional cost due to PINS is not substantial.

6.3.4 RQ4. Effectiveness of P-IOS

To demonstrate the effectiveness of P-IOS, we compare PCL w/o P-IOS (Basic PCL) with PCL+P-IOS

on both Task-I and Task-II in the DBLP, Trivago, and OGBN-MAG datasets. As shown in Table 6, the
prediction performance is improved with P-IOS in all the settings. This result is intuitive since P-IOS

mitigates information loss caused by partitioning via restoring each hyperedge. However, PCL+P-IOS is
not applicable to large-scale hypergraphs since with P-IOS, resulting partitions are too large, causing an
out-of-memory error.

6.3.5 RQ5. Tendency of PCL+PINS with Respect to the Number (or Size) of Partitions

At last, we investigate how the performance of PCL+PINS changes with respect to the number (or size) of
partitions on both tasks. Note that the number of partitions and the size of each partition (i.e., number of

11At each mini-batch (partition) of contrastive learning, we record the GPU memory usage after completing
the gradient computation (spec., execute loss.backward() and check the current GPU memory allocation using
torch.cuda.memory_allocated(device)). After training an encoder in every mini-batch, we calculate the average GPU memory
usage for the current epoch by averaging the usage across all partitions. Finally, we compute the average GPU memory usage
across all epochs.

12The total contrastive training epochs are 50.

23



Table 8: Detailed statistics regarding partitions. |P | indicates the number of partitions, |PV
i | indicates the

average number of nodes in each partition, |PE
i | indicates the average number of hyperedges in each parti-

tion, and sd(|PV
i |) and sd(|PE

i |) indicate the standard deviations of the numbers of nodes and hyperedges,
respectively, in each partition.

OGBN-MAG AMiner MAG

Large Medium Small Large Medium Small Large Medium Small

|P | 32 64 128 256 512 1024 256 512 1024
|PV

i | 23012.2 11506.1 5753.0 51806.9 25903.5 12951.7 106720.2 53360.1 26680.1
|PE

i | 45454.3 24265.5 12659.5 122358.5 62491.5 31772.9 205835.5 108065.1 56134.2
sd(|PV

i |) 72.8 25.7 20.1 190.9 78.3 41.0 334.4 174.3 51.6
sd(|PE

i |) 15408.3 7765.6 5984.1 45433.8 25306.5 11955.4 37684.6 21684.5 12252.0

Large (L) Medium (M) Small (S)
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Figure 5: Performance tendency of PCL+PINS with respect to the size of partitions. The boxplot describes
the test AP score distribution over 10 data splits. For each dataset, boxplots are arranged in order of Large,
Medium, and Small sizes. No clear tendency exists between the number/size of the partition and the
performance of PCL+PINS.

nodes and number of hyperedges) is in inverse proportion (see Table 8). To this end, for each partition size,
we show the AP score distribution of PCL+PINS over 10 data splits of each dataset. As shown in Figure 5,
there is no clear tendency between the number of partitions (or the size of partitions) and the performance
of PCL+PINS, and especially in AMiner, there is no clear difference in the distributions depending on
the size of partitions.

7 Conclusion

In this work, in order to bridge the gap between previous studies and real-world applications of hypergraph
learning, we make three contributions that are summarized as follows:

• In terms of tasks, we provide two novel pair-level hypergraph-learning tasks (hyperedge disambiguation
and local clustering) that can be used for formulating various real-world problems.

• In terms of datasets, we propose two large-scale hypergraph datasets (AMiner and MAG) that enable
the evaluation of hypergraph neural networks at scale.

• In terms of training methods, we suggest PCL, a scalable hypergraph learning method. PCL is
based on hypergraph partitioning and contrastive learning, equipped with two additional techniques
(PINS and P-IOS) for reducing information loss caused by partitioning. We experimentally verify
the superiority of PCL over 16 baseline methods on the proposed pairwise prediction tasks and the
effectiveness of PCL+PINS and PCL+P-IOS.
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For reproducibility, we make the source code and datasets used in the paper available at https://github.
com/kswoo97/pcl.
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Algorithm 2 Clique expansion with sampling
Input: Hyperedge set E , sampling threshold k
Output: Clique-expansion graph E

1 E ← ∅
2 foreach e ∈ E do
3 if |e| ≤ k then
4 E ← E ∪

(
e
2

)
5 else
6 foreach v ∈ e do
7 V ′ ← uniformly sample k number of nodes from e \ v
8 E ← E ∪ {{v, v′} : v′ ∈ V ′}
9 return E

A Appendix: Additional Experimental Settings

A.1 Details of Datasets

DBLP is a co-authorship hypergraph where nodes and hyperedges correspond to publications and authors,
respectively. Each publication’s class is labeled according to its field of study. Trivago is a hotel-web
search hypergraph where each node indicates each hotel and each hyperedge corresponds to a user. If a
user (hyperedge) has visited the website of a particular hotel (node), the corresponding node is added to
the respective user hyperedge. Furthermore, each hotel’s class is labeled based on the country in which it is
located. OGBN-MAG is originally a heterogeneous graph that contains comprehensive academic information
including venue, author, publication, and affiliation information. We transform this heterogeneous graph
into a hypergraph as described in Section 4, while a label of each node (publication) indicates a published
venue of the corresponding publication.

A.2 Details of Graph-based Baseline Methods

Since graph representation models [19, 21] require ordinary graph structure as an input, we transform original
hypergraph datasets into ordinary graph datasets by using clique expansion, where each hyperedge is replaced
with a clique in the resulting graph. Formally, the clique expansion is a transformation of a given hyperedge
set E to a clique expanded edge set EG =

⋃
e∈E

(
e
2

)
.

Specifically, for full-graph datasets of DBLP and Trivago, we directly obtain EG from E , the entire
hyperedge set. For full-graph datasets of OGBN-MAG, the size of the resulting clique expanded edges is too
large to be loaded into the main memory. To reduce its scale, we additionally employ sampling, as described
in Algorithm 2. Specifically, for each hyperedge e′ whose size is greater than k and for each constituent
node v ∈ e′, we uniformly sample k other nodes from e′ (line 7) and create k edges joining v and each of the
k sampled nodes. Here, we set k = 10 for the OGBN-MAG dataset. We fail to create full-graph datasets
of AMiner and MAG since clique expansion runs out of memory even with small k around 3, and thus we
cannot perform experiments on them.

For partitioned-graph datasets of DBLP, Trivago, and OGBN-MAG, we apply clique expansion to the
hyperedge set in each partition and use the resulting clique-expanded edge set as that of the corresponding
partition. For partitioned-graph datasets of AMiner and MAG, due to the scalability issue, we apply the
sampling strategy described in Algorithm 2 to each partition Pi of P (i.e., the input is PE

i instead of E) and
treat the resulting edge set as the edge set of the corresponding partition. Here, we set k to 10.
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A.3 Details of Hyperaprameter Settings

We now provide detailed hyperparameter settings of representation models and training methods. The
number of layers and hidden dimension of all representation models are fixed to 2 and 128, respectively.

For representation models that are trained via supervised learning methods, we train each model for 100
epochs. We tune a learning rate of each model within {0.01, 0.001, 0.0001}. For every 10 epochs, we measure
the validation AP score and save the model parameters. Then, we designate the checkpoint with the highest
validation AP score as the final model parameters.

For representation models that are trained via all versions of PCL, we tune the number of self-supervised
learning epochs within {25, 50}, while we set a broader search space, specifically {20, 40, 60, 80, 100}, for that
of other self-supervised learning methods. We tune the learning rate of the self-supervised learning within
{0.001, 0.0001} for all self-supervised learning methods. In addition, for methods that require augmentation
steps, we tune the extent of node feature augmentation pv within {0.3, 0.4}, and the extent of topological
augmentation pe within {0.3, 0.4}. Furthermore, for methods that require negative samples for contrastive
learning, we tune the number of negative samples N within {1, 2}. The temperature parameter τ for all self-
supervised learning methods, and the scalar λ that controls the strength of inter-partition loss in PCL+PINS

are both fixed to 0.5. Lastly, we train downstream task classifiers of all self-supervised learning methods
with a learning rate of 0.001. We train the classifiers for 100 epochs, and for every 10 epochs, we measure the
validation AP score and save the classifier parameters. Then, we designate the checkpoint with the highest
validation AP score as the final classifier parameters.
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