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ABSTRACT
The goal of directed network embedding is to represent the nodes in a
given directed network as embeddings that preserve the asymmetric
relationships between nodes. While a number of directed network
embedding methods have been proposed, we empirically show that
the existingmethods lack out-of-distribution generalization abilities
against degree-related distributional shifts. To mitigate this prob-
lem, we propose ODIN (Out-of-Distribution Generalized Directed
Network Embedding), a new directed NE method where we model
multiple factors in the formation of directed edges. Then, for each
node, ODIN learns multiple embeddings, each of which preserves
its corresponding factor, by disentangling interest factors and biases
related to in- and out-degrees of nodes. Our experiments on four
real-world directed networks demonstrate that disentangling mul-
tiple factors enables ODIN to yield out-of-distribution generalized
embeddings that are consistently effective under various degrees of
shifts in degree distributions. Specifically,ODIN universally outper-
forms 9 state-of-the-art competitors in 2 LP tasks on 4 real-world
datasets under both identical distribution (ID) and non-ID settings.
The code is available at https://github.com/hsyoo32/odin.
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1 INTRODUCTION
Background. Network embedding (NE) aims to represent nodes in
a given network as low-dimensional vectors (i.e., embeddings) that
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preserve the structural properties of the network [3–5, 27, 38]. The
learned embeddings can be used as informative features in various
applications, such as link prediction [10, 25] and recommenda-
tion [17, 26]. In recent studies, additional information (e.g., edge
directions [37, 42], edge signs [15, 22], and knowledge bases [21, 24])
has been incorporated to improve the accuracy of NE.

In this paper, we focus on NE that utilizes edge directions. On a
directed network, a directed edge from node 𝑣𝑖 to 𝑣 𝑗 expresses an
asymmetric relationship between the two nodes. For example, a
hyperlink from one web page to another does not necessarily imply
that a hyperlink in the opposite direction exists. In order to capture
such an asymmetric relationship, most directed network embedding
(DNE) methods distinguish the source node 𝑣𝑖 and the target node
𝑣 𝑗 according to their roles in the edge. Then, they learn the 𝑣𝑖 ’s
source embedding and the 𝑣 𝑗 ’s target embedding in such a way to
preserve their properties as a source and a target, respectively.
Challenges. The existing DNE methods lack out-of-distribution
(OOD) generalization abilities [9, 30, 40] against degree-related dis-
tributional shifts. Specifically, they are designed on the assumption
that the degree distributions of the training and test data for down-
stream tasks are identical. For example, for a link prediction task,
the edges in an input network are assumed to be split into training
and test data so that their in- and out-degree distribution becomes
almost identical to each other.

However, in real-world scenarios, degree-related distributional
shifts occur frequently for reasons such as the temporal/spatial
evolution of the network, ruining the identical distribution (ID)
assumption. During such an evolution, it is well-known as prefer-
ential attachment that the degrees of high-degree nodes tend to
increase faster than those of lower-degree nodes [1, 11–13]. Accord-
ing to [1, 6], however, it is also common that dominant hubs are
overtaken by “new kids on the block” with higher fitness (i.e., intrinsic
ability of a node to attract new edges). Therefore, it is important
for a DNE method to take OOD generalization into consideration
so that it can be robust to degree-related distributional shifts.

As yet, to the best of our knowledge, it has not been discussed
how degree-related distributional shifts affect the accuracy of DNE
methods on downstream tasks. In this work, we carefully examine
the link prediction accuracy of the existing methods in both ID and
non-ID settings. Specifically, we consider non-ID settings where
the in- and out-degree distributions of training and test data are
different (see Section 4 for details). As shown in Figure 1, the accu-
racies of all methods significantly degrade in the non-ID settings
compared to the ID settings. The results indicate that the existing
methods learn their embeddings that can hardly be generalized to
the test data with different degree distributions.
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Figure 1: The out-of-distribution (OOD) generalization problem in directed network embedding (DNE). The link-prediction
accuracies of state-of-the-art DNE methods significantly degrade when degree distributions in the training and test data are not
identical, indicating their lack of OOD generalization abilities. See Section 4 for detailed experimental settings.

Proposed Ideas. In this work, we propose a new DNEmethod, Out-
of-Distribution Generalized Directed Network Embedding (ODIN).
ODINmodels and exploits biases related to node degrees for robust-
ness against distributional shifts in in- and out-degree distributions
of the input network. By designing ODIN, we aim to answer these
relevant research questions: (1) How to model the formation of each
directed edge? (2) How to leverage such modeled factors for learning
OOD generalized embeddings?

Regarding the first question, we define six node factors that can
influence the formation of a directed edge from 𝑣𝑖 to 𝑣 𝑗 . The six
node factors are grouped into three: (a) the authority factors model
a bias related to the target’s in-degree, (b) the hub factors model a
bias related to the source’s out-degree, and (c) the interest factors
model 𝑣𝑖 ’s pure interest in forming an edge to 𝑣 𝑗 after removing
degree-related biases [14]. We leverage all the factors to separately
model biases and interests from interactions between nodes in a
directed network. By doing so, we can mitigate the biases above
when degree-related distributional shifts occur (e.g., biases in the
training data no longer significantly affect the edge formation).

Regarding the second question, we learn multiple factor em-
beddings, each of which captures the characteristics of its corre-
sponding factor. Specifically, ODIN represents a node as six factor
sub-embeddings that indicate the authority, hub, and interest fac-
tors as a source and a target. Then, ODIN learns the disentangled
source and target embeddings per node via the following three
objectives: (O1) to preserve asymmetric proximity between nodes
in an input network; (O2) to disentangle the hub factor from the
other two factors; (O3) to disentangle the authority factor from the
other two factors. It is worth noting that through (O2) and (O3), we
can naturally infer the interest factor from the other two factors,
thus disentangling all three factors.
Why doesODINwork? By pursuing these multiple objectives, the
final embeddings, where the six sub-embeddings are concatenated,
preserve structural proximity between nodes and at the same time
capture the characteristics of six node factors. That is, we jointly

learn (bias-aware) hub/authority and (bias-free) interest embed-
dings. If degree-related biases entirely disappear in test data, it
could be beneficial to use interest embeddings only. However, in
realistic scenarios, degree-related-biases remain but the degree of
them shifts over time. Also, it is not trivial to predict accurately
the degree of biases in the future. For this reason, we leverage
all-factor-embeddings jointly to achieve high accuracy in any sce-
nario. We confirm experimentally that ODIN mitigates the OOD
generalization problem against degree-related distributional shifts.
Contributions. Our contributions are summarized as follows:

• Observation. To the best of our knowledge, we are the first
who study the out-of-distribution generalization problem against
degree-related distributional shifts on DNE. We show empirically
that the accuracies of existing DNEmethods significantly degrade
under degree-related distributional shifts.

• Effective Algorithm. We propose ODIN, where we model mul-
tiple factors in the formation of directed edges. By learning dis-
entangled embeddings for each factor, it performs DNE with
an excellent out-of-distribution generalization ability against
degree-related distributional shifts.

• Extensive Experiments.We validate the effectiveness of ODIN
by comparing it with 9 competitors on four real-world datasets
under various degrees of shifts in degree distributions. The em-
beddings obtained by ODIN lead to up to 5.18% more accurate
link prediction compared to the best one among those obtained
by the state-of-the-art competitors.

The rest of this paper is organized as follows. In Section 2, we
review previous studies on NE and OOD generalization problems. In
Section 3, we present our proposedmethod in detail. In Section 4, we
validate the effectiveness of the proposed method through extensive
experiments. Finally, we conclude the paper in Section 5.

2 RELATEDWORKS

NE methods. The earliest NE methods, including DeepWalk [27]
and Node2Vec [5], train a shallow encoder, which is simply an
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Figure 2: Overview of ODIN, which consists of three stages: (1) factor modeling, (2) direction- and degree-based negative
sampling, and (3) disentangled embedding learning.

Table 1: Notations used in this paper.

Notation Description

G Input directed network
V , E Sets of nodes and edges
(𝑣𝑖 , 𝑣 𝑗 ) Directed edge from the node 𝑣𝑖 to the node 𝑣 𝑗
s𝑖 , t𝑖 Source and target embeddings of the node 𝑣𝑖

a𝑠𝑟𝑐
𝑖

, a𝑡𝑎𝑟
𝑖

Sub-embeddings of 𝑣𝑖 for the a-source and the a-target
h𝑠𝑟𝑐
𝑖

, h𝑡𝑎𝑟
𝑖

Sub-embeddings of 𝑣𝑖 for the h-source and the h-target
i𝑠𝑟𝑐
𝑖

, i𝑡𝑎𝑟
𝑖

Sub-embeddings of 𝑣𝑖 for the i-source and the i-target
𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗

, 𝑠ℎ𝑢𝑏
𝑖 𝑗

Authority-factor and hub-factor scores for (𝑣𝑖 ,𝑣 𝑗 )

𝑠𝑖𝑛𝑡
𝑖 𝑗

, 𝑠𝑒𝑑𝑔𝑒
𝑖 𝑗

Interest-factor and edge scores for (𝑣𝑖 ,𝑣 𝑗 )

A,H Sets of training instances for the factor disentanglement
L𝑒𝑑𝑔𝑒 (A ∪H) Objective to preserve asymmetric proximity between nodes

L𝑑𝑖𝑠𝐴 (A) Objective to disentangle the authority factor from others
L𝑑𝑖𝑠𝐻 (H) Objective to disentangle the hub factor from others

embedding-lookup table, to generate node embeddings. They aim
to maximize the proximities between nodes visited during each ran-
dom walk. Recently, many works employ advanced encoders, vary-
ing from basic graph convolution layers [7] to attention-based [33]
and GAN-based [35] layers, which map the input network and node
attributes to the embeddings of nodes. However, they focus on undi-
rected networks without taking edge directions into consideration.

To address this limitation, there has been a surge of research
efforts on the DNE problem. APP [41] and NERD [16] design dif-
ferent random walk strategies to sample node pairs to learn while
taking edge directions into consideration. ATP [31] factorizes an
asymmetric proximity matrix that captures the hierarchy and reach-
ability between nodes in the network. GVAE [29] extends the graph
variational autoencoder [18, 34] to directed networks. DGGAN [42]
adversarially trains a discriminator and two generators to jointly
learn source and target embeddings. DiGCN [32] and MagNet [39]
extend the graph convolutional network (GCN) [19, 20] to directed
networks by employing graph Laplacians that effectively encode the
directional information. However, we observed that the embeddings
obtained by the aforementioned methods suffer from considerable
degradation in performance on downstream tasks when degree-
related distributional shifts occur in the input network, due to a
lack of consideration of such possibilities.

OOD generalization on graphs. While graph out-of-distribution
generalization has been in the spotlight recently, most of them fo-
cus on graph-level representation learning for graph classification
tasks. They aim to accurately classify graphs in the test set, based
on their embeddings, even when their properties have different
distributions from those in the training set. They address various
types of distribution shifts, such as shifts on graph sizes [2, 23, 36],

node features [2, 23], and graph structures [23]. However, most ex-
isting works are not designed for node-level representation learning,
and/or they do not consider shifts on degree-related distribution
that we aim to address in this paper.

3 ODIN: THE PROPOSED METHOD
In this section, we propose ODIN, a novel DNE method based on
factor modeling in the formation of directed edges. ODIN learns
disentangled source and target embeddings of each node in the
training data that can be generalized to test data even under the
circumstance where degree distributions of training and test data
are non-identical. In Section 3.1, we first formulate the problem of
DNE and present an overview of ODIN. In Sections 3.2, 3.3, and 3.4,
we describe the three stages of ODIN in detail.

3.1 Overview
The DNE problem is formulated as follows: Let G = (V, E) be
a given directed network, where V = {𝑣1, 𝑣2, · · · , 𝑣𝑚} denotes
the set of 𝑚 nodes and E denotes the set of directed edges. Let
𝑒𝑖 𝑗 ∈ E be the directed edge from 𝑣𝑖 (i.e., source) to 𝑣 𝑗 (i.e., target).
DNE methods aim to learn source and target embedding functions
which map each node 𝑣𝑖 ∈ V to 𝑑-dimensional source and target
embeddings (s𝑖 and t𝑖 ) so that asymmetric proximities between
nodes in G are well preserved in them.

Now, we present an overview of ODIN. Table 1 provides a list of
notations used in this paper. As shown in Figure 2,ODIN consists of
three stages. In Stage 1, we model the formation of a directed edge
from 𝑣𝑖 to 𝑣 𝑗 by using six node factors, which are grouped as the
authority, hub, and interest factors. In Stage 2, for an edge from 𝑣𝑖 to
𝑣 𝑗 in the input network,ODIN obtains different types of training in-
stances by sampling negative source/target nodes while taking edge
directions and node degrees into consideration. In Stage 3, from
the sampled instances, ODIN learns the six factor sub-embeddings
of each node 𝑣𝑖 so that they are disentangled. Specifically, ODIN
uses not only an objective for preserving proximities between 𝑣𝑖
and 𝑣 𝑗 but also two extra objectives for disentangling the authority,
hub, and interest factors.

3.2 Factor Modeling
We first model the formation of each directed edge (𝑣𝑖 , 𝑣 𝑗 ) based on
the node factors of the source 𝑣𝑖 and the target 𝑣 𝑗 . Then, for each
node, we design six factor sub-embeddings, each of which aims to
preserve its characteristic for the corresponding factor. Based on
these embeddings, we also compute factor scores, which represent
how much the factor affects the edge formation.
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The formation of each directed edge (𝑣𝑖 , 𝑣 𝑗 ) can be modeled by
six node factors grouped as follows1:
• Authority Factors: The target 𝑣 𝑗 ’s authority status (a-target)
and the source 𝑣𝑖 ’s bias toward authorities (a-source) together
model a bias related to 𝑣 𝑗 ’s authority status (i.e., in-degree).

• Hub Factors: The source 𝑣𝑖 ’s hub status (h-source) and the
target 𝑣 𝑗 ’s bias toward hubs (h-target) together model a bias
related to 𝑣𝑖 ’s hub status (i.e., out-degree).

• Interest Factors: The source 𝑣𝑖 ’s intrinsic property as a source
(i-source) and the target 𝑣 𝑗 ’s intrinsic property as a target (i-
target) together model their pure interest in forming an edge
from 𝑣𝑖 to 𝑣 𝑗 after removing degree-related biases.
Note that the six node factors can also be grouped into: (a) those

as a source (i.e., a-source, h-source, i-source) and those as a target
(i.e., a-target, h-target, i-target).

We represent a node 𝑣𝑖 by six factor sub-embeddings (i.e., a𝑠𝑟𝑐
𝑖

,
h𝑠𝑟𝑐
𝑖

, i𝑠𝑟𝑐
𝑖

, a𝑡𝑎𝑟
𝑖

, h𝑡𝑎𝑟
𝑖

, and i𝑡𝑎𝑟
𝑖

) corresponding to its six node factors.
Then, we consider the concatenation (i.e., ⊕) of the three factor
sub-embeddings as a source as the overall source embedding s𝑖 ,
and those as a target as the overall target embedding t𝑖 , i.e.,

s𝑖 = a𝑠𝑟𝑐𝑖 ⊕ h𝑠𝑟𝑐𝑖 ⊕ i𝑠𝑟𝑐𝑖 , t𝑖 = a𝑡𝑎𝑟𝑖 ⊕ h𝑡𝑎𝑟𝑖 ⊕ i𝑡𝑎𝑟𝑖 . (1)

Based on the above six factor sub-embeddings for 𝑣𝑖 and 𝑣 𝑗 , we
quantify three factor scores, which represent how much (a) the
authority factor, (b) the hub factor, and (c) the interest factor, re-
spectively, affect the formation of the directed edge (𝑣𝑖 , 𝑣 𝑗 ). Here,
each factor score is calculated by the dot product between the cor-
responding sub-embedding of 𝑣𝑖 as a source and the corresponding
sub-embedding of 𝑣 𝑗 as a target, i.e.,

𝑠𝑎𝑢𝑡ℎ𝑖 𝑗 = a𝑠𝑟𝑐𝑖 · a𝑡𝑎𝑟𝑗 , 𝑠ℎ𝑢𝑏𝑖 𝑗 = h𝑠𝑟𝑐𝑖 · h𝑡𝑎𝑟𝑗 , 𝑠𝑖𝑛𝑡𝑖 𝑗 = i𝑠𝑟𝑐𝑖 · i𝑡𝑎𝑟𝑗 . (2)

Finally, we compute the overall edge score 𝑠𝑒𝑑𝑔𝑒
𝑖 𝑗

, which repre-
sents the likelihood of the formation of a directed edge (𝑣𝑖 , 𝑣 𝑗 ), by
adding the three factor scores, i.e.,

𝑠
𝑒𝑑𝑔𝑒

𝑖 𝑗
= 𝑠𝑎𝑢𝑡ℎ𝑖 𝑗 + 𝑠ℎ𝑢𝑏𝑖 𝑗 + 𝑠𝑖𝑛𝑡𝑖 𝑗 = s𝑖 · t𝑗 . (3)

To sum up, when inferring edge scores, we consider the different
influences modeled by the node factors.

3.3 Direction- and Degree-based Negative
Sampling

We sample different types of training instances for learning the
embeddings of nodes modeled in Section 3.2. Among the three
groups of node factors, the authority and hub factors reflect biases
related to in- and out-degrees, respectively, which are obtained from
the network topology. We thus sample the instances by taking edge
direction and node degree in the input network into consideration.

Regarding the authority factors, for an edge (𝑣𝑖 , 𝑣 𝑗 ), we sample
a set of 𝑛 negative targets among nodes whose in-degree is smaller
than the in-degree of the positive target 𝑣 𝑗 . Then, for such a negative
sample 𝑣 𝑗 ′ , we add (𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ′ ) to the setA> , which is initially empty.
As a result, the following inequality holds:

𝑑𝑖𝑛 (𝑣𝑗 ) > 𝑑𝑖𝑛 (𝑣𝑗 ′ ), ∀(𝑣𝑖 , 𝑣𝑗 , 𝑣𝑗 ′ ) ∈ A>, (4)
1We can easily identify those factors just by counting out-/in-degrees of nodes

without requiring significant times.

where 𝑑𝑖𝑛 (𝑣 𝑗 ) denotes the in-degree of 𝑣 𝑗 . We sample another set of
𝑛 negative targets 𝑣 𝑗 ′ whose in-degree is greater than 𝑣 𝑗 ’s in-degree,
and add (𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ′ ) to the set A< :

𝑑𝑖𝑛 (𝑣𝑗 ) < 𝑑𝑖𝑛 (𝑣𝑗 ′ ), ∀(𝑣𝑖 , 𝑣𝑗 , 𝑣𝑗 ′ ) ∈ A< . (5)

In a similar manner, regarding the hub factors, we constructH>

andH< satisfying the following conditions:

𝑑𝑜𝑢𝑡 (𝑣𝑖 ) > 𝑑𝑜𝑢𝑡 (𝑣𝑖′ ), ∀(𝑣𝑖 , 𝑣𝑗 , 𝑣𝑖′ ) ∈ H>, (6)
𝑑𝑜𝑢𝑡 (𝑣𝑖 ) < 𝑑𝑜𝑢𝑡 (𝑣𝑖′ ), ∀(𝑣𝑖 , 𝑣𝑗 , 𝑣𝑖′ ) ∈ H<, (7)

where 𝑑𝑜𝑢𝑡 (𝑣𝑖 ) represents the out-degree of 𝑣𝑖 . It should be noted
that A> ∩ A< = ∅ andH> ∩H< = ∅ hold.

We denote the union of A> and A< by a set A and denote the
union ofH> andH< by a setH . In the next subsection, we discuss
how to capture the influence of (1) biases related to 𝑣 𝑗 ’s in-degree
based on A, and (2) biases related to 𝑣𝑖 ’s out-degree based onH .

3.4 Disentangled Embedding Learning
We present the process of learning disentangled embeddings of
nodes based on the triplets sampled in Section 3.3. We learn the
source and target embeddings of nodes by using an objective for
preserving asymmetric proximities between nodes in an input net-
work. Furthermore, we learn six factor sub-embeddings of nodes by
using two extra objectives for disentangling the authority, hub, and
interest factors. Recall that the source and target embeddings of
nodes are composed of the three factor sub-embeddings as a source
and those as a target, respectively.

3.4.1 Preserving Asymmetric Proximities. For each triplet
(𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ′ ) ∈ A, the source and target embeddings are learned so
that the edge score (i.e., Eq. (3)) of the positive pair (𝑣𝑖 , 𝑣 𝑗 ) is higher
than that of the negative pair (𝑣𝑖 , 𝑣 𝑗 ′ ), i.e., 𝑠𝑒𝑑𝑔𝑒𝑖 𝑗

> 𝑠
𝑒𝑑𝑔𝑒

𝑖 𝑗 ′ . Similarly,
for each triplet (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖′ )∈ H , the source and target embeddings
are learned so that the edge score of the positive pair (𝑣𝑖 , 𝑣 𝑗 ) is
higher than that of the negative pair (𝑣𝑖′ , 𝑣 𝑗 ), i.e., 𝑠𝑒𝑑𝑔𝑒𝑖 𝑗

> 𝑠
𝑒𝑑𝑔𝑒

𝑖′ 𝑗 . To-
wards this goal, we use the edge loss based on Bayesian personalized
ranking (BPR) [28], defined as follows:

L𝑒𝑑𝑔𝑒 (A ∪ H) =∑︁
(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑗 ′ ) ∈A

BPR(𝑠𝑒𝑑𝑔𝑒
𝑖 𝑗

, 𝑠
𝑒𝑑𝑔𝑒

𝑖 𝑗 ′ ) +
∑︁

(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑖′ ) ∈H
BPR(𝑠𝑒𝑑𝑔𝑒

𝑖 𝑗
, 𝑠

𝑒𝑑𝑔𝑒

𝑖′ 𝑗 ), (8)

BPR(𝑠𝑒𝑑𝑔𝑒
𝑖 𝑗

, 𝑠
𝑒𝑑𝑔𝑒

𝑖 𝑗 ′ ) = −log(𝜎 (𝑠𝑒𝑑𝑔𝑒
𝑖 𝑗

− 𝑠
𝑒𝑑𝑔𝑒

𝑖 𝑗 ′ ) ), (9)

where 𝜎 indicates a sigmoid function.
Since L𝑒𝑑𝑔𝑒 (A ∪H) is for directly updating the overall source

and target embeddings of nodes, not considering each of their factor
sub-embeddings separately, this objective alone does not contribute
to preserving the desired factor in each factor sub-embedding. As
mentioned in Section 1, using this alone may cause embeddings
to lack an ODD generalization ability against degree-related distri-
butional shifts. To address this problem, we model two additional
objectives in the subsequent sections: (1) one for disentangling the
authority factor from the hub and interest factors; (2) the other
for disentangling the hub factor from the authority and interest
factors. Through them, we can naturally distinguish the interest
factor from the others, thereby disentangling all three factors.
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3.4.2 Disentangling the Authority Factor from the Others.
We use the triplets in A to disentangle the authority factor from
the remaining factors. We employ different learning strategies for
the triplets in A> and for those in A< .

First, we describe the learning strategy for the triplets in A> .
For a triplet (𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ′ ) in A> , 𝑑𝑖𝑛 (𝑣 𝑗 ) > 𝑑𝑖𝑛 (𝑣 𝑗 ′ ) holds. Thus, the
authority status of 𝑣 𝑗 , which we measure by the in-degree of 𝑣 𝑗 , is
higher than that of 𝑣 𝑗 ′ . If authority-factor scores capture the biases
towards authorities, as desired, the following inequality regarding
the authority factors should hold: ∀(𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ′ )∈ A> , 𝑠𝑎𝑢𝑡ℎ𝑖 𝑗

> 𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗 ′ .

Regarding the other factors, i.e., the hub and interest factors,
we cannot draw inequalities that should hold for every triplet in
A> . Based on these facts, in order to learn the sub-embeddings for
authority factors, we use the authority-loss function for A> , which
is defined as follows:

L𝑎𝑢𝑡ℎ (A> ) =
∑︁

(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑗 ′ ) ∈A>
BPR(𝑠𝑎𝑢𝑡ℎ𝑖 𝑗 , 𝑠𝑎𝑢𝑡ℎ

𝑖 𝑗 ′ ) . (10)

Intuitively, this loss is for learning the sub-embeddings for authority
factors of 𝑣𝑖 , 𝑣 𝑗 , and 𝑣 𝑗 ′ by maximizing the difference between 𝑠𝑎𝑢𝑡ℎ

𝑖 𝑗

and 𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗 ′ , i.e., achieving high 𝑠𝑎𝑢𝑡ℎ

𝑖 𝑗
for a positive pair (𝑣𝑖 , 𝑣 𝑗 ) and

low 𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗 ′ for a negative pair (𝑣𝑖 , 𝑣 𝑗 ′ ).

Now, we describe the learning strategy for the triplets in A< .
For a triplet (𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ′ ) in A< , 𝑑𝑖𝑛 (𝑣 𝑗 ) < 𝑑𝑖𝑛 (𝑣 𝑗 ′ ) holds. Thus, if
authority-factor scores capture the biases towards authorities, as
desired, the following inequality should hold: ∀(𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ′ )∈ A< ,
𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗

< 𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗 ′ . For this inequality to hold, we use the authority-loss

function for A< , which is defined as follows:
L𝑎𝑢𝑡ℎ (A< ) =

∑︁
(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑗 ′ ) ∈A<

−BPR(𝑠𝑎𝑢𝑡ℎ𝑖 𝑗 , 𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗 ′ ) . (11)

Intuitively, this loss is for achieving low 𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗

for a positive pair
(𝑣𝑖 , 𝑣 𝑗 ) and high 𝑠𝑎𝑢𝑡ℎ

𝑖 𝑗 ′ for a negative pair (𝑣𝑖 , 𝑣 𝑗 ′ ).
It should be noted that for each triplet (𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ′ )∈ A< , even if

𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗

< 𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗 ′ holds, the overall edge score 𝑠𝑒𝑑𝑔𝑒

𝑖 𝑗
(= 𝑠𝑎𝑢𝑡ℎ

𝑖 𝑗
+ 𝑠ℎ𝑢𝑏

𝑖 𝑗
+

𝑠𝑖𝑛𝑡
𝑖 𝑗

) between 𝑣𝑖 and 𝑣 𝑗 , which form an edge in the input network,

should be higher than 𝑠𝑒𝑑𝑔𝑒
𝑖 𝑗 ′ between 𝑣𝑖 and 𝑣 𝑗 ′ , which do not form

an edge. Thus, the following inequality regarding the remaining
factors, i.e., hub and interest factors, is implied: ∀(𝑣𝑖 , 𝑣 𝑗 , 𝑣 𝑗 ′ )∈ A< ,
𝑠ℎ𝑢𝑏
𝑖 𝑗

+ 𝑠𝑖𝑛𝑡
𝑖 𝑗

> 𝑠ℎ𝑢𝑏
𝑖 𝑗 ′ + 𝑠𝑖𝑛𝑡

𝑖 𝑗 ′ . Based on the above inequality, we addi-
tionally use the hub- and interest-loss function for A< , which is
defined as follows:

Lℎ𝑢𝑏+𝑖𝑛𝑡 (A< ) =
∑︁

(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑗 ′ ) ∈A<
BPR(𝑠ℎ𝑢𝑏𝑖 𝑗 + 𝑠𝑖𝑛𝑡𝑖 𝑗 , 𝑠ℎ𝑢𝑏

𝑖 𝑗 ′ + 𝑠𝑖𝑛𝑡
𝑖 𝑗 ′ ) . (12)

Intuitively, this loss is for having high (𝑠ℎ𝑢𝑏
𝑖 𝑗

+ 𝑠𝑖𝑛𝑡
𝑖 𝑗

) for a positive
pair (𝑣𝑖 , 𝑣 𝑗 ) and low (𝑠ℎ𝑢𝑏

𝑖 𝑗 ′ + 𝑠𝑖𝑛𝑡
𝑖 𝑗 ′ ) for a negative pair (𝑣𝑖 , 𝑣 𝑗 ′ ).

Finally, we define the disA loss as the sum of the aforementioned
losses, which together are for disentangling the authority factors
from the others, i.e.,

L𝑑𝑖𝑠𝐴 (A) = L𝑎𝑢𝑡ℎ (A> ) + L𝑎𝑢𝑡ℎ (A< ) + Lℎ𝑢𝑏+𝑖𝑛𝑡 (A< ) . (13)

3.4.3 Disentangling the Hub Factor from the Others. Next,
we use the triplets inH> andH> to disentangle the hub factor from
the remaining factors. Since the learning strategies are symmetric
to those for the triplets in A> and A< , we briefly introduce them
below. Details can be found in Appendix A.

For a triplet (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖′ ) inH> , we use the hub-loss function for
H> based on the inequality 𝑠ℎ𝑢𝑏

𝑖 𝑗
> 𝑠ℎ𝑢𝑏

𝑖′ 𝑗 , which is defined as fol-
lows:

Lℎ𝑢𝑏 (H> ) =
∑︁

(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑖′ ) ∈H>
BPR(𝑠ℎ𝑢𝑏𝑖 𝑗 , 𝑠ℎ𝑢𝑏

𝑖′ 𝑗 ) . (14)

For a triplet (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖′ ) in H< , on the other hand, we use the
hub-loss function forH< and the authority- and interest-loss function
for H< based on the inequalities 𝑠ℎ𝑢𝑏

𝑖 𝑗
< 𝑠ℎ𝑢𝑏

𝑖′ 𝑗 and 𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗

+ 𝑠𝑖𝑛𝑡
𝑖 𝑗

>

𝑠𝑎𝑢𝑡ℎ
𝑖′ 𝑗 + 𝑠𝑖𝑛𝑡

𝑖′ 𝑗 , respectively, which are defined as follows:

Lℎ𝑢𝑏 (H< ) =
∑︁

(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑖′ ) ∈H<
−BPR(𝑠ℎ𝑢𝑏𝑖 𝑗 , 𝑠ℎ𝑢𝑏

𝑖′ 𝑗 ),

L𝑎𝑢𝑡ℎ+𝑖𝑛𝑡 (H< ) =
∑︁

(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑖′ ) ∈H<
BPR(𝑠𝑎𝑢𝑡ℎ𝑖 𝑗 + 𝑠𝑖𝑛𝑡𝑖 𝑗 , 𝑠𝑎𝑢𝑡ℎ

𝑖′ 𝑗 + 𝑠𝑖𝑛𝑡
𝑖′ 𝑗 ) .

(15)

Finally, we define the disH loss as the sum of the aforementioned
losses, which together are for disentangling the hub factors from
the others, i.e.,

L𝑑𝑖𝑠𝐻 (H) = Lℎ𝑢𝑏 (H> ) + Lℎ𝑢𝑏 (H< ) + L𝑎𝑢𝑡ℎ+𝑖𝑛𝑡 (H< ) . (16)

3.4.4 Multi-Objective Learning. For multi-objective learning,
we use the three aforementioned losses, i.e.,L𝑒𝑑𝑔𝑒 (A∪H) (Eq. (8)),
L𝑑𝑖𝑠𝐴 (A) (Eq. (24)), and L𝑑𝑖𝑠𝐻 (H) (Eq. (16)), simultaneously. The
final loss L, which we use for ODIN, is defined as follows2:

L =L𝑒𝑑𝑔𝑒 (A ∪ H) + 𝛼 (L𝑑𝑖𝑠𝐴 (A) + L𝑑𝑖𝑠𝐻 (H) ), (17)

where 𝛼 is to control the weight of L𝑑𝑖𝑠𝐴 (A) and L𝑑𝑖𝑠𝐻 (H).
To sum up, using Eq. (17), we learn the six sub-embeddings of

each node for authority, hub, and interest factors as a source and a
target. Note that we disentangle the authority factor from the hub
and interest factors by using L𝑑𝑖𝑠𝐴 (A), and the hub factor from
the others by using L𝑑𝑖𝑠𝐻 (H). Furthermore, by jointly using
both losses, we naturally disentangle the interest factor from
the others as well. That is, we can disentangle all three factors,
thereby separately capturing each factor into corresponding two
(i.e., source and target) factor sub-embeddings.

Now, we obtain the source and target embeddings s𝑖 and t𝑖 of 𝑣𝑖
by concatenating the three sub-embeddings as a source and a target,
respectively (see Eq. (1)). Then, we regard v𝑖 = s𝑖 ⊕ t𝑖 as 𝑣𝑖 ’s final
embedding. As the sub-embeddings capture degree-related biases
and pure interest separately, the final embeddings are expected
to be robust to the shifts in degree distributions, as demonstrated
experimentally in the following section.

4 EVALUATION
We designed our experiments, aiming at answering the following
key research questions (RQs):
• RQ1: DoesODIN outperform its competitors under distributional
shifts in degree distributions?

• RQ2: How robust is ODIN under various levels of distributional
shifts in degree distributions?

• RO3: Is factor disentanglement effective in ODIN?
• RQ4: How sensitive is ODIN to its hyperparameters?

4.1 Experimental Settings
Datasets. We used four real-word datasets of directed networks
from different domains: Gnutella (GNU), Wiki-Vote (Wiki), JUNG,

2We tried to add a decoupling regularizer [40] to further encourage disentangle-
ment, but the accuracy improvement was marginal.
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Table 2: Dataset statistics

Datasets GNU Wiki JUNG Ciao

Nodes 6,301 7,115 6,120 4,658
Edges 20,777 103,689 50,535 40,133

Reciprocity 0.00% 5.64% 0.90% 34.90%
Types P2P Election Software Trust

and CiaoDVD (Ciao). They are all publicly available.3 Table 2 pro-
vides some statistics of the four datasets.

• GNU is a peer-to-peer network for file sharing. A node represents
a host, and a directed edge from a host 𝑣𝑖 to a host 𝑣 𝑗 represents
that 𝑣𝑖 made a connection to 𝑣 𝑗 .

• Wiki is a voting network for electing managers in Wikipedia. A
node represents a user, and a directed edge from a user 𝑣𝑖 to a
user 𝑣 𝑗 represents that 𝑣𝑖 voted on 𝑣 𝑗 .

• JUNG is a software class dependency network of JUNG 2.0.1
libraries. A node represents a Java class, and a directed edge from
a class 𝑣𝑖 to a class 𝑣 𝑗 represents that 𝑣𝑖 is dependent on 𝑣 𝑗 .

• Ciao is a trust network on a DVD review site. A node represents
a user, and a directed edge from a user 𝑣𝑖 to a user 𝑣 𝑗 represents
that 𝑣𝑖 trusts 𝑣 𝑗 ’s reviews.

Competitors.We compareODINwith two baselines (DeepWalk [27]
andNode2Vec [5]), and seven state-of-the-art DNEmethods (APP [41],
GVAE [29], NERD [16], ATP [31], DiGCN [32], MagNet [39], and
DGGAN [42]). We carefully tuned the hyperparameters of the com-
petitors and ODIN. Note that the only learnable parameters of
ODIN are node embeddings. For the full reproducibility of our re-
search, we provide complete implementation details in Appendix B.

Non-ID Settings. To evaluate the out-of-distribution generaliza-
tion ability of ODIN and its competitors, we design non-ID settings
by splitting the edges in an input network into training and test sets
with different degree distributions, rather than randomly splitting
them: (1) Non-ID (in), where in-degree distributions are different
between training and test data; (2) Non-ID (out), where out-degree
distributions are different between training and test data.

For Non-ID (in), each edge (𝑣𝑖 , 𝑣 𝑗 ) is sampled into the test set
with acceptance probability 𝑝𝑖𝑛

𝑖 𝑗
∝ 𝑑𝑖𝑛 (𝑣 𝑗 )𝑘 , which is dependent

on the target 𝑣 𝑗 ’s in-degree 𝑑𝑖𝑛 (𝑣 𝑗 ). For Non-ID (out), each edge
(𝑣𝑖 , 𝑣 𝑗 ) is sampled into the test set with acceptance probability
𝑝𝑜𝑢𝑡
𝑖 𝑗

∝ 𝑑𝑜𝑢𝑡 (𝑣𝑖 )𝑘 , which is dependent on the source 𝑣𝑖 ’s out-degree
𝑑𝑜𝑢𝑡 (𝑣𝑖 ). The unsampled edges are used for training.

In the acceptance probabilities, 𝑘 is a parameter for controlling
the level of distributional shifts. Note that when 𝑘 = 0, test edges
are randomly sampled (among all edges), i.e., it is the setting where
training and test data are almost identically distributed (ID). When
𝑘 = −1, test edges are sampled inversely proportional to the out-
degree of the source nodes or in-degree of the target nodes. In this
work, 𝑘 is fixed to -1 for RQ1, RQ3, and RQ4. For RQ2, we carefully
examine how robust ODIN and the state-of-the-arts competitors
are in various non-ID settings by increasing the value of 𝑘 .

We admit that the above setting is not the only way how degree-
related distribution shifts occur in a directed network, and we leave
the exploration of other settings as future work. We would like to
emphasize that, to the best of our knowledge, we are the first to

3http://snap.stanford.edu/ | http://konect.cc/networks/

tackle degree-related distribution shifts in a directed network, and
no standard settings have been defined regarding such shifts.

Evaluation Tasks. To measure the effectiveness of ODIN and
the competitors, we employ link prediction (LP) tasks for directed
networks [16, 39, 41]. The goal of this task is to evaluate how
accurately we can predict the directed edges removed from the
input directed network by using each NE method.

We split the edges in the input network into training (80%) and
test (20%) sets, with the goal of making them non-identically dis-
tributed as described above. In each of the training/test sets, we
consider the existent edges as positive examples. Depending on
how we sample the negative examples, we divide the LP task into
two types: uniform LP (U-LP, in short) and biased LP (B-LP, in
short) [16, 39, 41]. For U-LP, we consider the same number of non-
existent edges sampled uniformly at random as negative examples.
For B-LP, we consider the edges with the opposite directions to
unidirectional positive examples as negative examples. That is, we
evaluate how accurately each NE method can predict the directions
of the edges. Finally, we classify whether each testing example is
positive or negative through logistic regression with the embed-
dings obtained by each NE method as the input. We use the area
under curve (AUC) [8], which has been widely used in many NE
methods as the performance measure. We build five different train-
ing/test splits by using the aforementioned acceptance probabilities
𝑝𝑖𝑛
𝑖 𝑗
, 𝑝𝑜𝑢𝑡

𝑖 𝑗
and report the performance averaged over the splits.

4.2 Results
Due to space limitation, we omit some experimental results, includ-
ing (1) comparison with DICE [40], (2) effect of using a single-factor-
embedding, and (3) scalability analysis for ODIN, in this paper. The
details for all experiments are available in Appendix C.

RQ1: Comparison with nine competitors. We conducted
comparative experiments for 2 LP tasks on 4 datasets in 2 types
of non-ID settings to demonstrate the superiority of ODIN over 9
competitors. In Table 3, the values in boldface and underlined indi-
cate the best AUC in each row and the AUC of the best ‘competitor’
in each row, respectively. Below, we summarize the results.

First, no single competitor consistently outperforms the other
competitors. That is, best competitors change depending on tasks,
datasets, and non-ID settings. Second, ODIN significantly and con-
sistently outperforms all competitors for all LP tasks on all datasets
in all non-ID settings. Specifically, in Non-ID (in), ODIN yields up
to 9.43%, 8.75%, and 5.18% higher AUC than the strongest competi-
tors ATP, MagNet, and DGGAN, respectively. Also, in Non-ID (out),
ODIN yields up to 5.64%, 7.75%, and 3.67% higher AUC than the
strongest competitors ATP, MagNet, and DGGAN, respectively.

The results show that our ODIN is effective compared to all the
competitors in addressing the out-of-distribution generalization
problem against degree-related distributional shifts on DNE. Note
that most competitors represent each node as source and target
embeddings. On the other hand, ODIN models authority, hub, and
interest factors in the formation of directed edges, and leverages
them to learn six factor sub-embeddings, which separately preserve
different factors. Therefore, we attribute the superiority of ODIN
to its sophisticated factor modeling and learning.

http://snap.stanford.edu/
http://konect.cc/networks/
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Table 3: Link prediction accuracies (in terms of AUC) of nine competitors and ODIN. ODIN significantly and consistently
outperforms all competitors for both LP tasks on all datasets in both non-ID settings.

(a) Non-ID (in)

Datasets Tasks
Undirected NE Directed NE

ODIN

DeepWalk Node2Vec APP GVAE NERD ATP DiGCN MagNet DGGAN

GNU
U-LP 0.593±0.005 0.587±0.004 0.675±0.003 0.675±0.003 0.683±0.008 0.731±0.003 0.729±0.001 0.742±0.001 0.722±0.003 0.760±0.004
B-LP 0.648±0.006 0.621±0.010 0.700±0.006 0.748±0.013 0.838±0.004 0.910±0.002 0.878±0.003 0.900±0.004 0.901±0.003 0.924±0.001

Wiki
U-LP 0.806±0.001 0.804±0.002 0.795±0.001 0.820±0.005 0.828±0.001 0.827±0.002 0.729±0.002 0.865±0.001 0.890±0.001 0.905±0.001
B-LP 0.852±0.002 0.855±0.007 0.637±0.008 0.901±0.012 0.915±0.002 0.954±0.001 0.862±0.002 0.928±0.001 0.963±0.001 0.973±0.001

JUNG
U-LP 0.725±0.005 0.777±0.006 0.741±0.002 0.820±0.003 0.784±0.006 0.864±0.001 0.817±0.004 0.816±0.002 0.879±0.003 0.884±0.002
B-LP 0.810±0.005 0.861±0.005 0.772±0.005 0.902±0.006 0.883±0.005 0.961±0.001 0.926±0.001 0.891±0.003 0.964±0.002 0.969±0.001

Ciao
U-LP 0.776±0.004 0.778±0.002 0.846±0.001 0.841±0.002 0.857±0.002 0.846±0.002 0.641±0.004 0.847±0.001 0.886±0.001 0.892±0.001
B-LP 0.688±0.005 0.725±0.006 0.768±0.002 0.797±0.004 0.869±0.006 0.887±0.003 0.751±0.006 0.873±0.004 0.912±0.003 0.914±0.003

(b) Non-ID (out)

Datasets Tasks
Undirected NE Directed NE

ODIN

DeepWalk Node2Vec APP GVAE NERD ATP DiGCN MagNet DGGAN

GNU
U-LP 0.627±0.004 0.617±0.005 0.664±0.006 0.694±0.007 0.692±0.011 0.749±0.003 0.750±0.003 0.769±0.004 0.754±0.005 0.782±0.005
B-LP 0.650±0.007 0.574±0.005 0.692±0.005 0.787±0.005 0.831±0.001 0.916±0.005 0.906±0.001 0.917±0.003 0.919±0.002 0.927±0.003

Wiki
U-LP 0.811±0.002 0.804±0.003 0.816±0.001 0.827±0.003 0.845±0.001 0.852±0.001 0.831±0.001 0.857±0.001 0.889±0.001 0.900±0.001
B-LP 0.832±0.007 0.830±0.006 0.487±0.026 0.873±0.004 0.900±0.007 0.960±0.001 0.930±0.001 0.896±0.001 0.952±0.001 0.962±0.001

JUNG
U-LP 0.893±0.004 0.929±0.001 0.941±0.002 0.946±0.001 0.938±0.004 0.955±0.002 0.957±0.002 0.955±0.002 0.961±0.002 0.962±0.002
B-LP 0.959±0.003 0.984±0.001 0.985±0.001 0.989±0.001 0.987±0.002 0.994±0.001 0.994±0.001 0.991±0.001 0.995±0.001 0.995±0.001

Ciao
U-LP 0.765±0.003 0.767±0.003 0.798±0.002 0.809±0.001 0.813±0.007 0.840±0.002 0.733±0.004 0.819±0.004 0.871±0.002 0.883±0.003
B-LP 0.635±0.011 0.695±0.004 0.597±0.004 0.684±0.008 0.750±0.004 0.867±0.003 0.836±0.003 0.827±0.003 0.871±0.002 0.883±0.003
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Figure 3: The effect of 𝒌 on the link prediction performance. ODIN consistently achieves best AUCs in almost all cases. Notably,
as 𝒌 decreases, the accuracy gain of ODIN over the competitors increases.

RQ2: Effect of 𝒌 on the link prediction performance. We eval-
uate the link prediction performances of ODIN and the strongest
competitors (i.e., ATP, MagNet, and DGGAN) in various non-ID set-
tings. Specifically, we measure AUCs of each method by increasing
the value of 𝑘 from -1 to 0 (spec., -1, -0.8, -0.6, -0.4, -0.2, and 0). Note
that when 𝑘 = 0, it becomes the ID setting, which is employed by
all existing DNE methods; the smaller the value of 𝑘 is, the stronger
the degree of distributional shifts is.

Figure 3 shows that ODIN consistently outperforms all competi-
tors in almost all cases, regardless of the changes of 𝑘 . First, we note
that, in the ID setting (i.e., 𝑘 = 0), the AUCs of ODIN are comparable

to or even higher than that of the strongest competitors. Then, as
𝑘 decreases (i.e., as settings become more challenging), the AUCs
of all methods including ODIN tend to decrease for all tasks on all
datasets. However, among them,ODIN shows the smallest accuracy
degradation; accordingly, the accuracy gain of ODIN against com-
petitors steadily increases. This indicates that ODIN successfully
obtains out-of-distribution generalized embeddings that are robust
to distributional shifts in degree distributions.

RQ3: Effectiveness of the factor disentanglement.We model
the two objectives for disentangling each of the authority and hub
factors from the other two factors, in addition to the objective for
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Table 4: Ablation study on the factor disentanglement strategy in ODIN. Each of the two types of disentanglement losses is
effective in ODIN. Moreover, when they are jointly exploited, ODIN yields most-accurate embeddings in all datasets.

(a) Non-ID (in)

Datasets Tasks ODIN𝑨 ODIN𝒅𝒊𝒔𝑨 ODIN𝑯 ODIN𝒅𝒊𝒔𝑯 ODIN

GNU
U-LP 0.632±0.005 0.763±0.004 0.604±0.010 0.678±0.001 0.760±0.004
B-LP 0.704±0.010 0.927±0.001 0.669±0.015 0.820±0.010 0.924±0.001

Wiki
U-LP 0.842±0.002 0.896±0.001 0.793±0.007 0.898±0.001 0.905±0.001
B-LP 0.918±0.001 0.965±0.001 0.863±0.011 0.968±0.001 0.973±0.001

JUNG
U-LP 0.825±0.004 0.878±0.003 0.714±0.006 0.884±0.002 0.884±0.002
B-LP 0.929±0.003 0.966±0.002 0.830±0.004 0.970±0.001 0.969±0.001

Ciao
U-LP 0.820±0.003 0.890±0.001 0.853±0.001 0.886±0.001 0.892±0.001
B-LP 0.788±0.009 0.912±0.002 0.867±0.005 0.909±0.002 0.914±0.003

(b) Non-ID (out)

Datasets Tasks ODIN𝑨 ODIN𝒅𝒊𝒔𝑨 ODIN𝑯 ODIN𝒅𝒊𝒔𝑯 ODIN

GNU
U-LP 0.648±0.004 0.786±0.006 0.668±0.005 0.692±0.007 0.782±0.005
B-LP 0.718±0.005 0.934±0.003 0.770±0.010 0.835±0.008 0.927±0.003

Wiki
U-LP 0.853±0.002 0.893±0.001 0.833±0.003 0.895±0.001 0.900±0.001
B-LP 0.918±0.001 0.956±0.001 0.894±0.004 0.959±0.001 0.962±0.001

JUNG
U-LP 0.957±0.003 0.961±0.002 0.890±0.007 0.963±0.002 0.962±0.002
B-LP 0.993±0.001 0.995±0.001 0.969±0.003 0.995±0.001 0.995±0.001

Ciao
U-LP 0.814±0.003 0.877±0.003 0.841±0.002 0.873±0.002 0.883±0.003
B-LP 0.764±0.007 0.875±0.002 0.816±0.006 0.867±0.003 0.883±0.003

GNU Wiki JUNG Ciao
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Figure 4: The effect of 𝜶 on the link prediction performance.
The disentanglement losses are effective, and their effective-
ness is not highly sensitive as long as 𝜶 is not too small.

preserving asymmetric proximities between nodes. By pursuing
such multiple objectives, we can disentangle the authority, hub, and
interest factors. To verify the effectiveness of this disentanglement,
we conduct experiments to answer the following two sub-questions:

• RQ3-1: Is each of two disentanglement losses effective in ODIN?
• RQ3-2: Is jointly using the both losses effective in ODIN?

For RQ3-1, to evaluate the effectiveness of the objective design
for disentangling the authority factor from the others, we first
compare the AUCs of two variants of ODIN: (1) ODIN𝐴 , which
uses only the edge loss based on A; (2) ODIN𝑑𝑖𝑠𝐴 , which uses the
disA loss (i.e., Eq. (24)) in addition to the edge loss based on A. To
evaluate the effectiveness of the objective design for disentangling
the hub factor from the others, we also compare these two variants
of ODIN: (1) ODIN𝐻 , which uses only the edge loss based on H ;
(2) ODIN𝑑𝑖𝑠𝐻 , which uses the disH loss (i.e., Eq. (16)) in addition to
the edge loss based onH . Tables 4-(a) and -(b) show that ODIN𝑑𝑖𝑠𝐴

consistently and significantly outperformsODIN𝐴 for both LP tasks
on all datasets in both non-ID settings. i.e., Non-ID (in) and Non-ID
(out). ODIN𝑑𝑖𝑠𝐻 also outperforms ODIN𝐻 in all cases. The results
indicate that the disentanglement losses are effective in obtaining
embeddings robust to distributional shifts in degree distributions.

For RQ3-2, to verify whether using both losess, thereby disentan-
gling all three factors, is effective in ODIN, we compare the AUCs
of ODIN𝑑𝑖𝑠𝐴 , ODIN𝑑𝑖𝑠𝐻 , and ODIN. Table 4 shows that ODIN
performs best or very close to the best one in all cases. Although
ODIN𝑑𝑖𝑠𝐴 or ODIN𝑑𝑖𝑠𝐵 is slightly more accurate than ODIN at
times, their accuracies are susceptible to datasets, which indicates
(hidden) beneficial factors could be different according to datasets.
However, ODIN yields robust embeddings to any dataset, being
able to selectively adopt beneficial factors for given datasets.

RQ4: Hyperparamter analysis for ODIN To understand the
learning stability of ODIN, we analyze how the parameter 𝛼 (i.e.,
the loss weight for the losses for disentangling the authority and
hub factors from the other factors) affects the link prediction perfor-
mance of ODIN. Figures 4-(a) and -(b) show how the performance
of ODIN changes in the four datasets depending on 𝛼 in Non-ID (in)
and Non-ID (out), respectively. We observe that the AUCs of ODIN
steadily increase until 𝛼 reaches 0.4 and then the AUCs converge.
The results indicate that ODIN is not highly sensitive to 𝛼 , and it
shows excellent out-of-distribution generalization ability as long
as 𝛼 is not too small.

5 CONCLUSIONS
In this work, we pointed out that the existing DNEmethods face dif-
ficulties in effectively addressing the OOD generalization problem.
We empirically demonstrated that their accuracies significantly
degrade under degree-related distributional shifts. To address this
limitation, we proposed a novel DNE method, named ODIN, which
models multiple factors in the formation of directed edges and
learns nodes’ multiple factor sub-embeddings. In ODIN, the node
embeddings are learned to jointly pursue the following three objec-
tives: (O1) to preserve asymmetric proximities between nodes; (O2)
to disentangle the authority factors from the others; (O3) to disen-
tangle the hub factors from the others. The embeddings, which cap-
ture degree-related biases and pure interest, are shown to be robust
to the shifts in degree distributions. We demonstrated that ODIN
universally outperforms 9 competitors on 4 real-world datasets
under various degrees of distributional shifts. Through extensive
ablation studies, we showed clearly the effectiveness of our strate-
gies for factor modeling and disentangled embedding learning.

To the best of our knowledge, we are the first to study the OOD
problem of degree-distributional-shift. As the first step, we started
exploring the most well-known degree-biases (i.e., hub and au-
thority) in graph-mining-research. Our discovery could encourage
follow-up studies to leverage other factors (e.g., sensitive attributes
of nodes) that influence edge formation.
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APPENDIX
A LOSS FOR DISENTANGLING THE HUB

FACTOR FROM THE AUTHORITY AND
INTEREST FACTORS

We use the triplets in H to disentangle the hub factor from the
remaining factors. We employ different learning strategies for the
triplets in H> and for those inH< .

First, we describe the learning strategy for the triplets in H> .
For a triplet (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖′ ) in H> , 𝑑𝑜𝑢𝑡 (𝑣𝑖 ) > 𝑑𝑜𝑢𝑡 (𝑣𝑖′ ) holds. Thus,
the hub status of 𝑣𝑖 , which we measure by the out-degree of 𝑣𝑖 ,
is higher than that of 𝑣𝑖′ . If hub-factor scores capture the biases
towards hubs, as desired, the following inequality regarding the
hub factors should hold: ∀(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖′ )∈ H> ,

𝑠ℎ𝑢𝑏𝑖 𝑗 > 𝑠ℎ𝑢𝑏𝑖′ 𝑗 . (18)

Regarding the other factors, i.e., the authority and interest factors,
we cannot draw inequalities that always hold for every triplet inH> .
Based on these observations, in order to learn the sub-embeddings
for hub factors, we use the hub-loss function forH> , which is defined
as follows:

Lℎ𝑢𝑏 (H>) =
∑︁

(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑖′ ) ∈H>

BPR(𝑠ℎ𝑢𝑏𝑖 𝑗 , 𝑠ℎ𝑢𝑏𝑖′ 𝑗 ) . (19)

Intuitively, this loss is for learning the sub-embeddings for hub
factors of 𝑣𝑖 , 𝑣 𝑗 , and 𝑣𝑖′ by maximizing the difference between 𝑠ℎ𝑢𝑏

𝑖 𝑗

and 𝑠ℎ𝑢𝑏
𝑖′ 𝑗 , i.e., achieving high 𝑠ℎ𝑢𝑏

𝑖 𝑗
for a positive pair (𝑣𝑖 , 𝑣 𝑗 ) and

low 𝑠ℎ𝑢𝑏
𝑖′ 𝑗 for a negative pair (𝑣𝑖′ , 𝑣 𝑗 ).

Now, we describe the learning strategy for the triplets in H< .
For a triplet (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖′ ) inH< , 𝑑𝑜𝑢𝑡 (𝑣𝑖 ) < 𝑑𝑜𝑢𝑡 (𝑣𝑖′ ) holds. Thus, if
hub-factor scores capture the biases towards hubs, as desired, the
following inequality should hold: ∀(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖′ )∈ H< ,

𝑠ℎ𝑢𝑏𝑖 𝑗 < 𝑠ℎ𝑢𝑏𝑖′ 𝑗 . (20)

For this inequality to hold, we use the hub-loss function for H< ,
which is defined as follows:

Lℎ𝑢𝑏 (H<) =
∑︁

(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑖′ ) ∈H<

−BPR(𝑠ℎ𝑢𝑏𝑖 𝑗 , 𝑠ℎ𝑢𝑏𝑖′ 𝑗 ). (21)

Intuitively, this loss is for achieving low 𝑠ℎ𝑢𝑏
𝑖 𝑗

for a positive pair
(𝑣𝑖 , 𝑣 𝑗 ) and high 𝑠ℎ𝑢𝑏

𝑖′ 𝑗 for a negative pair (𝑣 (𝑖′), 𝑣 𝑗 ).
It should be noted that Recall that, for each triplet (𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖′ )∈

H< , even if 𝑠ℎ𝑢𝑏
𝑖 𝑗

< 𝑠ℎ𝑢𝑏
𝑖′ 𝑗 holds, the overall edge score 𝑠

𝑒𝑑𝑔𝑒

𝑖 𝑗
(=

𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗

+ 𝑠ℎ𝑢𝑏
𝑖 𝑗

+ 𝑠𝑖𝑛𝑡
𝑖 𝑗

) between 𝑣𝑖 and 𝑣 𝑗 , which form an edge in

the input network, should be higher than 𝑠
𝑒𝑑𝑔𝑒

𝑖′ 𝑗 between 𝑣𝑖 and
𝑣 𝑗 ′ , which do not form an edge.. Thus, the following inequality
regarding the remaining factors, i.e., authority and interest factors,
is implied: ∀(𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖′ )∈ H< ,

𝑠𝑎𝑢𝑡ℎ𝑖 𝑗 + 𝑠𝑖𝑛𝑡𝑖 𝑗 > 𝑠𝑎𝑢𝑡ℎ𝑖′ 𝑗 + 𝑠𝑖𝑛𝑡𝑖′ 𝑗 . (22)

Based on the above inequality, we additionally use the authority-
and interest-loss function forH< , which is defined as follows:

L𝑎𝑢𝑡ℎ+𝑖𝑛𝑡 (H<) =
∑︁

(𝑣𝑖 ,𝑣𝑗 ,𝑣𝑖′ ) ∈H<

BPR(𝑠𝑎𝑢𝑡ℎ𝑖 𝑗 + 𝑠𝑖𝑛𝑡𝑖 𝑗 , 𝑠𝑎𝑢𝑡ℎ𝑖′ 𝑗 + 𝑠𝑖𝑛𝑡𝑖′ 𝑗 ) .
(23)

Intuitively, this loss is for having high (𝑠𝑎𝑢𝑡ℎ
𝑖 𝑗

+ 𝑠𝑖𝑛𝑡
𝑖 𝑗

) for a positive
pair (𝑣𝑖 , 𝑣 𝑗 ) and low (𝑠𝑎𝑢𝑡ℎ

𝑖′ 𝑗 + 𝑠𝑖𝑛𝑡
𝑖′ 𝑗 ) for a negative pair (𝑣𝑖′ , 𝑣 𝑗 ).

Finally, we define the disH loss as the sum of the aforementioned
losses, which together are for disentangling the hub factors from
the others, i.e.,

L𝑑𝑖𝑠𝐻 (H) = Lℎ𝑢𝑏 (H>) + Lℎ𝑢𝑏 (H<) + L𝑎𝑢𝑡ℎ+𝑖𝑛𝑡 (H<) . (24)

B IMPLEMENTATION DETAILS
For a fair comparison, we set the dimensionality of embeddings
to 120 in all NE methods including ODIN. To this end, for most
competitors, such as APP, NERD, ATP, and DGGAN, we set the
dimensionality of source and target embeddings to 60, respectively.
Other directed NE methods, such as GVAE, DiGCN, and MagNet,
output a single embedding of dimensionality 120 per node, with-
out dividing into source/target embeddings. For ODIN, we set the
dimensionality of each of six factor sub-embeddings to 20.

For hyperparameters of the competitors, we used the best set-
tings carefully found via grid search in the following ranges, which
are suggested in their respective papers:

• Number of walks ∈ {10, 20, 40, 80} (for DeepWalk, Node2Vec)
• Walk length ∈ {60, 80, 100} (for DeepWalk, Node2Vec)
• 𝛾 ∈ {5, 10, 15, 20} (for NERD)
• 𝜆 ∈ {0.005, 0.05, 1, 5, 10} (for GVAE)
• 𝛼 ∈ {0.05, 0.1, 0.15, 0.2} (for DiGCN)
• 𝑞 ∈ {0.05, 0.1, 0.15, 0.2, 0.25} (for MagNet)

For ODIN, we set 𝛼 = 0.5 and 𝑛 = 2 (i.e., the total number of
negative samples per edge is 8), which consistently shows the best
accuracy in all tasks, datasets, and degrees of distributional shifts.

C FURTHER RESULTS
We show some additional experimental results such as (1) compari-
son with DICE [40], (2) effect of using a single-factor-embedding,
and (3) scalability analysis for ODIN.

The results in Table I show thatODIN outperforms DICE on ALL
datasets (e.g., on Ciao in B-LP in Non-ID (in), 0.914 (ODIN) vs. 0.789
(DICE)). DICE’s intrinsic difficulty in addressing our problem lies in
its inability to consider asymmetric relationships between nodes: (1)
it cannot distinguish source and target roles in edge formation (not
using source and target embeddings); (2) it models edge formation
by using two-factors only (not six-factors).

From Table I, we can also see that using all factor-embeddings
(i.e., ODIN) leads to higher or comparable accuracy to using only
single factor-embedding (i.e., authority, hub, or interest factor). For
example, on Ciao in U-LP in Non-ID (in), the AUC of ODIN (0.892)
is greater than AUC when using only authority (0.859), hub (0.868),
or interest factor-embedding (0.819), respectively.

Lastly, we confirmed through additional experiments with Wiki-
Vote that ODIN has linear scalability in the number of edges (100K,
200K, 300K, and 400K edges). Note thatODIN performs only constant-
times slower than ODIN without disentanglement, which is our
key component.
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Table I: Comparison of DICE, ODIN𝒂𝒖𝒕𝒉 using only authority-factor-embeddings, ODIN𝒉𝒖𝒃 using only hub-factor-embeddings,
ODIN𝒊𝒏𝒕 using only interest-factor-embeddings, and ODIN using all factor-embeddings when 𝒌 = −1 (i.e., there exist degree-
related distributional shifts). The results show that ODIN outperforms DICE in all cases and achieves better or comparable
performance to using only single factor-embeddings.

(a) Non-ID (in)

Datasets Tasks DICE ODIN𝒂𝒖𝒕𝒉 ODIN𝒉𝒖𝒃 ODIN𝒊𝒏𝒕 ODIN

GNU
U-LP 0.742 0.777 0.596 0.557 0.760
B-LP 0.904 0.927 0.669 0.571 0.924

Wiki
U-LP 0.825 0.880 0.905 0.849 0.905
B-LP 0.843 0.958 0.973 0.919 0.973

JUNG
U-LP 0.724 0.874 0.869 0.700 0.884
B-LP 0.830 0.953 0.963 0.800 0.969

Ciao
U-LP 0.847 0.859 0.868 0.819 0.892
B-LP 0.789 0.879 0.891 0.794 0.914

(b) Non-ID (out)

Datasets Tasks DICE ODIN𝒂𝒖𝒕𝒉 ODIN𝒉𝒖𝒃 ODIN𝒊𝒏𝒕 ODIN

GNU
U-LP 0.770 0.808 0.627 0.629 0.782
B-LP 0.912 0.940 0.701 0.685 0.927

Wiki
U-LP 0.862 0.884 0.878 0.825 0.900
B-LP 0.901 0.953 0.949 0.849 0.962

JUNG
U-LP 0.932 0.962 0.953 0.866 0.962
B-LP 0.987 0.995 0.993 0.951 0.995

Ciao
U-LP 0.836 0.876 0.838 0.811 0.883
B-LP 0.811 0.879 0.817 0.768 0.883
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