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Abstract
Influence estimation (IE) and influence maximization (IM) are among the most 
extensively studied problems in social network analysis. Assuming diffusion (i.e., 
the spread of diseases) within a social network, IE aims to estimate the influence 
(i.e., the number of infected nodes) for a given set of seeds; and IM aims to iden-
tify a given number of seed nodes that maximize the influence. For both IE and 
IM, widely-adopted strategies involve repeating Monte Carlo (MC) simulations of 
diffusion over and over for various seed sets, which is computationally expensive. 
In this work, we present Monte Carlo Simulator+ (MONSTOR+), an inductive ma-
chine learning method designed to estimate the influence of given seed-node sets in 
social networks under two diffusion models—the independent cascade (IC) model 
and the linear threshold (LT) model. Due to its inductive nature, MONSTOR+ is 
applicable to seed-node sets and social networks not included in the training data. 
MONSTOR+, with its ability to accurately estimate influence through a single for-
ward pass, can greatly accelerate existing IM algorithms by replacing repeated MC 
simulations. In our experiments, MONSTOR+ exhibits high IE accuracy, achieving 
0.955 or higher Pearson and Spearman correlation coefficients in unseen real-world 
social networks. Notably, MONSTOR+ is about 5 to 3000 times faster than re-
peated MC simulations with similar IE accuracy. For IM problems, IM algorithms 
equipped with MONSTOR+ are more accurate than state-of-the-art competitors in 
81.5 and 77.8% of IM use cases under the IC model and LT model, respectively.
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1 Introduction

Diffusion within social networks, including the spread of new technologies, dis-
eases, and news, is pervasive. In response, the influence estimation (IE) and influence 
maximization (IM) problems have received considerable attention, with applications 
ranging from viral marketing (Chen et al. 2010; Domingos and Richardson 2001), 
targeted advertisement (Li et al. 2015), and socio-political campaigns (Sankar and 
Kumar 2016). Assuming diffusion (i.e., the spread of diseases) within a social net-
work, IE aims to accurately estimate the influence (i.e., the number of infected nodes) 
for given seed nodes; and IM aims to find a certain number of seed nodes that maxi-
mize influence.

For IE, repeated Monte Carlo (MC) simulations of diffusion from the given seed 
set are widely used; and many IM algorithms (e.g., Greedy (Kempe et al. 2003), 
CELF (Goyal et al. 2011a), and UBLF (Zhou et al. 2013)) require repeated MC simu-
lations for a large number of seed sets. An MC simulation takes O(|E|) time, where 
|E| is the number of edges, and estimating the influence of a seed set via d simula-
tions takes O(d|E|) time, which is one of the main performance bottlenecks of IM 
algorithms. In (Kempe et al. 2003; Zhou et al. 2013), d is set to 10, 000.

In this work, we propose Monte Carlo Simulator+ (MONSTOR+), an inductive 
machine learning approach for estimating the influence of given seed nodes.1 MON-
STOR+ offers several advantages. First, MONSTOR+ operates effectively under both 
the independent cascade (IC) and linear threshold (LT) models, which are among 
the most widely-used diffusion models. Second, by leveraging an inductive machine 
learning model based on graph neural networks (GNNs) and features, MONSTOR+ 
is capable of producing inference for seed-node sets and social networks not encoun-
tered during training. Third, compared to its preliminary version named MONSTOR, 
MONSTOR+ incorporates auxiliary structural node features and an advanced pool-
ing function, resulting in improved estimation accuracy. Lastly, MONSTOR+ signifi-
cantly speeds up existing IM methods by replacing repeated MC simulations (Fig. 1).

For evaluation, we conduct experiments with three real-world social networks. 
One strong point in our experiments is that we use real activation probabilities of 
edges, which are calculated from retweet logs. That is, we weight each directed edge 
(u, v) with the real probability that user u influences v. Note that most previous stud-
ies on influence maximization simply used random, uniform, and degree-based prob-

1 This paper is an extended version of (Ko et al. 2020), where we introduced a preliminary version of 
MONSTOR+. The preliminary version, MONSTOR, is a pioneering inductive machine learning approach 
for estimating the influence of given seed sets under the IC model. In this extension, we present MON-
STOR+, which enhances MONSTOR by incorporating auxiliary structural node features and an advanced 
pooling function (Sect. 3.3). Both enhancements lead to improvements in accuracy (Sect. 4.4). Further-
more, while MONSTOR is tailored for the IC model, MONSTOR+ is not restricted to any specific diffu-
sion model. We enhance the comprehensiveness of our experiments by including an additional diffusion 
model (the LT model), four more competitors (Tang et al. 2014, 2015; Goyal et al. 2011b; Panagopoulos 
et al. 2023), an ablation study (Sect. 4.4), and numerical comparisons with MC simulations (Sect. 4.2.2). 
Although our main experiments focus on the IC and LT models, we further apply MONSTOR+ to the 
G-SIR model (Yi et al. 2022) (Appendix A.3). Additionally, to examine its scalability, we evaluate MON-
STOR+ on a large-scale dataset (Appendix A.4).
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abilities (Nguyen et al. 2016; Jung et al. 2012; Wang et al. 2012; Goyal et al. 2011a; 
Zhou et al. 2013), which are different from real ones.

In our experiments, MONSTOR+ yielded accurate estimations of influence, 
exhibiting near-perfect correlation with ground-truth values. Additionally, it achieves 
significant time savings, performing 5 to 3000 times faster than repeated Monte Carlo 
simulations for similar IE accuracy. Regarding IM, simulation-based IM algorithms 
(Kempe et al. 2003; Goyal et al. 2011a; Zhou et al. 2013) equipped with MON-
STOR+ yielded influence maximization results nearly on par with those of the origi-
nal algorithms based on MC simulations, under both diffusion models. Moreover, it 
achieves higher influences than state-of-the-art non-simulation-based IM algorithms 
(Tang et al. 2014, 2015; Nguyen et al. 2016; Jung et al. 2012; Wang et al. 2012) in 
22 out of 27 cases under the IC model and in 7 out of 9 cases under the LT model.

In summary, MONSTOR+ exhibits the following strengths:

 ● Inductive: It is designed to be applicable to seed-node sets and social networks 
not encountered during training.

 ● Fast and accurate: Its estimates exhibit near-perfect correlation with ground-
truth influences. It achieves a speedup of 5 to 3000 times, compared to MC simu-
lations, while retaining similar estimation accuracy.

 ● Applicable to influence maximization: Integrated into IM methods, MONSTOR+ 
performed best in 81.5% and 77.8% of the cases considered under the IC model 
and the LT model, respectively, among the 10 compared methods.

For reproducibility, we make the source code and datasets used in this paper avail-
able at https://github.com/SojeongKim00/MONSTOR-plus.

Fig. 1 Comparison of influence maximization approaches: a MC simulation-based approaches, and b 
our approach equipped with the proposed Monte Carlo Simulator+ (MONSTOR+)
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The rest of this paper is organized as follows. In Sect. 2, we introduce some con-
cepts and notions related to our problem. In Sect. 3, we describe the overall workflow 
and the detailed design of MONSTOR+. In Sect. 4, we present experimental results. 
After reviewing related works in Sect. 5, we present conclusions in Sect. 6.

2 Concepts and problem definition

In this section, we introduce two diffusion models with related concepts, and we 
define two problems that are considered in this work. In both models, we assume a 
social network G = (V, E) with the node set V = {1, · · · , |V|} and the edge set E , 
and its adjacency matrix A ∈ {0, 1}|V|×|V| where Auv = 1 if and only if (u, v) ∈ E.

2.1 Independent cascade (IC) model

Model definition. Under the independent cascade (IC) model (Kempe et al. 2003), 
each infected node u attempts once to activate (i.e., directly infect) each neighbor v, 
and the probability of success is p(u,v), as defined below.

Definition 1 (Activation Probability) The activation probability p(u,v) from u to v 
is the success probability that the node u activates its neighbor v when u is infected.

The adjacency matrix when weighting each directional edge (u, v) by p(u,v) is called 
the activation probability matrix P ∈ [0, 1]|V|×|V|. That is, each (u, v)-th entry of P 
is p(u,v).

Given an activation probability matrix and a set of seed nodes (i.e., initially 
infected nodes), the IC model simulates the above activation process for each newly 
infected node until there are no newly infected nodes, and we define the infection 
probability of each node as follows:

Definition 2 (Infection Probability and Influence under the IC Model) Given an acti-
vation probability matrix P ∈ [0, 1]|V|×|V| of a social network G = (V, E) and a seed 
set S ⊆ V , the infection probability ρ(x; P, S) for each node x ∈ V  is defined as the 
probability that x is infected under the IC model when the seed set is S. The influ-
ence ϕ(S; P) of the seed set S is defined as the expected number of infected nodes, 
equivalent to the sum of the infection probabilities, i.e., ϕ(S; P) =

∑
x∈V ρ(x; P, S).

Throughout the paper, we omit P and S in ρ(x; P, S) and use ρ(x) when there is no 
ambiguity. Similarly, we use ϕ(S) when there is no ambiguity.

Inference of activation probabilities. As described above, the IC model requires 
activation probabilities as inputs, which are not directly observable. In this work, we 
infer activation probabilities from interaction logs (such as retweets) among users in 
a social network as follows: 
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1. Bernoulli Trial (BT): 

 
p(u,v) = |actions(u, ∗) ∩ actions(v, ∗)|

|actions(u, ∗)|
,

2. Jaccard Index (JI): 

 
p(u,v) = |actions(u, ∗) ∩ actions(∗, v)|

|actions(u, ∗) ∪ actions(∗, v)|
,

3. Linear Probability (LP): 

 
p(u,v) = |actions(u, ∗) ∩ actions(∗, v)|

|actions(∗, v)|
,

where actions(x, ∗) denotes the set of actions (e.g., retweets and replies) done by 
node x, and actions(∗, x) denotes the set of actions whose object (e.g., author of 
retweeted tweets and recipient of replies) is x. We consider all these probabilities, and 
thus we define three different activation probability matrices, PBT , PJI , and PLP , 
from a social network.    

2.2 Linear threshold (LT) model

Model definition
Under the linear threshold (LT) model (Kempe et al. 2003), each node v becomes 

infected when the ratio of its infected neighbors exceeds its threshold. The threshold 
of each node is an independent random variable uniformly distributed between 0 and 
1.

Given a social network and a set of seed nodes (i.e., initially infected nodes), the 
LT model proceeds until there are no newly infected nodes, and we define the infec-
tion probability of each node as follows:

Definition 3 (Infection Probability and Influence under the LT Model)

Given the adjacency matrix A ∈ {0, 1}|V|×|V| of a social network G = (V, E) 
and a seed set S ⊆ V , the infection probability ρ(x; A, S) for each node x ∈ V  is 
the probability that x is infected under the LT model when the seed set is S. As in 
the IC model, the influence ϕ(S; A) of the seed set S is defined as the expected 
number of infected nodes, equivalent to the sum of the infection probabilities, i.e., 
ϕ(S; A) =

∑
x∈V ρ(x; A, S).

Throughout the paper, we omit A and S in ρ(x; A, S) and use ρ(x) when there is no 
ambiguity. Similarly, we use ϕ(S) when there is no ambiguity.
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2.3 Problem definition

Here, we offer formal definitions of the two problems addressed in this work: influ-
ence estimation (IE) and influence maximization (IM).

Problem 1 (Influence Estimation (IE))

 ● Given: (1) an activation probability matrix P (under the IC model) or an adjacent 
matrix A (under the LT model), and (2) a seed set S,

 ● Estimate: (1) the infection probability ρ(x) of each node x ∈ V , and (2) the influ-
ence ϕ(S) of S.

Problem 2 (Influence Maximization (IM) (Kempe et al. 2003))

 ● Given: (1) an activation probability matrix P (under the IC model) or an adjacent 
matrix A (under the LT model), and (2) the target number k of seed nodes (i.e., 
k = |S|),

 ● Find the set S of k seed nodes
 ● to Maximize the influence ϕ(S) (i.e., the expected number of infected nodes).

3 Proposed framework

In this section, we propose MONSTOR+, an inductive machine learning model for 
estimating the infection probability ρ(x) of every node x ∈ V  in a social network 
G = (V, E) that is not necessarily included in training data. Note that we can answer 
the IE problem by summing up the estimates and answer the IM problem by replac-
ing MC simulations in simulation-based algorithms (e.g., (Kempe et al. 2003; Goyal 
et al. 2011a; Zhou et al. 2013)) with MONSTOR+.

Below, we introduce MONSTOR, a simplified version of MONSTOR+, and later 
extend it to MONSTOR+. For both methods, we begin by defining key concepts and 
outlining the overall workflow.

3.1 Key concepts and overall workflow

In this subsection, we outline the overall workflow in MONSTOR and MONSTOR+. 
To do so, we introduce key concepts used in both approaches.

Key concepts
We define a step of a diffusion model (the IC or LT model) as a one-hop cascade 

from newly infected nodes. Then, by definition, seed nodes are infected in the 0-th 
step, and those infected directly by seed nodes are infected in the 1-st step. Then, we 
let ρi(x) denote the probability of node x being infected during the first i steps; and 
we call πi := [ρi(1), · · · , ρi(|V|)] the infection probability vector within each i-th 
step. With these definitions, Proposition 1 follows.
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Proposition 1 The infection probability monotonically increases w.r.t. the step num-
ber i. That is, πi ≤ πi+1  for all i ≥ 0 , or equivalently ρi(x) ≤ ρi+1 (x) for all 
i ≥ 0  and x ∈ V .

Similarly, we define π = [ρ(1), · · · , ρ(|V|)] for the infection probabilities at the 
end of the diffusion model. Note that ρi(x) ≈ ρ(x) and πi ≈ π if i is sufficiently 
large; and ρi(x) = ρ(x) and πi = π if i is greater than or equal to the longest path 
length in the input network.

Overall workflow
The overall workflow in MONSTOR and MONSTOR+ is as follows: 

1. We collect one or more social networks {G1, G2, · · · }.
2. From each Gj , we collect the tuples {(πi, πi−1, · · · , πi−e, Pj) : i ≥ e} (in the 

case of the IC model) or {(πi, πi−1, · · · , πi−e, Aj) : i ≥ e} (in the case of the 
LT model), where e > 1 is a hyperparameter, after choosing a seed set S ̸= ∅ 
randomly. Pj  can be in BT, JI, or LP. We repeat this multiple times with different 
seed sets, as shown in Fig. 2. For detailed collection methods used in the experi-
ments and details specific to our experimental setup, refer to Sect. 4.1.

3. We train a graph neural network (GNN)-based model M with the training data. It 
has l GNN layers, and it estimates πi given πi−1, · · · , πi−e. That is, M is trained 
to estimate a single step of the considered diffusion model (IC or LT). We present 
in detail two alternative implementations of M in the following subsections.

4. In the testing phase, we stack the pre-trained model M s times in a feed-for-
ward manner to estimate πs from π0. The output of the stacked model (i.e., 
the estimated πs) serves as the final estimate of the infection probabilities π. 
For accurate estimation, the number of stacks s is carefully selected based on 
validation performance.2 Hereinafter, MONSTOR(+) means the stacked GNN-
based model, which is illustrated in Fig. 3, unless otherwise stated. In essence, 

2 Empirically, the selected s values are mostly small, reflecting the rapid convergence of diffusion models 
on real-world graphs due to structural properties, such as hubs, small diameters, sparse connectivity, etc.

Fig. 2 How to build training data. Given a social network G (whose activation probability matrix is P 
under the IC model and adjacency matrix is A under the LT model) and a seed set, we perform multiple 
simulations and collect infection probability vectors π0, · · · , πh, here h is either the convergence step 
(i.e., πh = πh+1) or the predefined maximum step, which is set to 100 in our experiments. Note that 
the inner product ⟨1, πh⟩ is the influence, i.e., the number of infected nodes. We repeat these steps with 
many different seed sets. For further details specific to our experiments, including the seed-set selection 
method, refer to Sect. 4.1
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MONSOR(+) estimates end-to-end multi-step simulations under the considered 
diffusion model (IC or LT) by stacking the GNN-based model.

5. For the IE problem, we estimate the influence by ⟨1, πs⟩ using the estimated πs. 
For the IM problem, we replace the MC simulation subroutine of existing IM 
algorithms (e.g., (Kempe et al. 2003; Goyal et al. 2011a; Zhou et al. 2013)) with 
MONSTOR(+).

Note that, in the training phase, we use MC simulations to obtain πi, πi−1, · · · , πi−e. 
In the test phase, MC simulations in (potentially unseen) target networks are not needed.

3.2 Detailed design of MONSTOR (Basic Ver.)

In this subsection, we describe a basic version of our GNN-based model M and the 
training method for it. This basic model is stacked to compose MONSTOR. As stated 
earlier, M estimates πi given πi−1, · · · , πi−e. Specifically, M initializes the feature vec-
tor of each node v as h0

v := (ρi−e+1(v) − ρi−e(v), · · · , ρi−1(v) − ρi−2(v), ρi−1(v)), 
and it repeatedly computes new feature vectors of each node as follows for 1 ≤ i ≤ l:

 ai
v := AGG({p(u,v)·(hi−1

u Wi
1 + bi

1 ) : u ∈ NEI(v)}), ∀v ∈ V ,  (1)

 hi
v := ReLU(CONCAT(hi−1

v , ai
v)Wi

2 + bi
2), ∀v ∈ V,  (2)

where hi
u ∈ Rdi  is the feature vector of the node u at the i-th layer; NEI(v) is the set 

of neighbors of v; AGG is MAX (i.e., the element-wise max) under the IC model or 
AVG (i.e., the element-wise average) under the LT model; CONCAT is the concate-
nation function; and Wi

1 ∈ Rdi−1×di−1 , Wi
2 ∈ R2di−1×di , bi

1 ∈ Rdi−1  and bi
2 ∈ Rdi  

Fig. 3 The overall workflow in our approach. We train a GNN-based model and stack it s times for 
testing. In this example, s is set to 3, and thus MONSTOR(+) estimates π3 from π0
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are learnable parameters. Under the LT model, pu,v  is not given, and thus we use 1 
instead.

The idea of multiplying p(u,v) and hi−1
u  is inspired by the fact that activation prob-

abilities in the IC model are multiplied following a cascade route. For instance, the 
probability that u1 activates u2 and u2 activates u3 is p(u1,u2) · p(u2,u3). The AVG 
aggregator (which involves division by the neighbor count) is used under the LT 
model where a node is activated when the ratio (which also involves division by the 
neighbor count) of its infected neighbors exceeds its threshold.

Instead of directly estimating the raw values in πi, our model M uses the follow-
ing more effective estimation method, which is inspired by the monotonicity (see 
Proposition 1)3:

 M(πi−1, · · · , πi−e, P (or A); θ) := πi−1 + hl,  (3)

where θ is the learnable parameters of M; and hl ∈ R|V| is the vector concatenating 
hl

v ∈ R (i.e., dl = 1) for all v ∈ V .
Of many possible loss functions, we train our model M using the following loss 

function:

 
L := 1

|T |
∑
t∈T

∥M(t; θ) − πi∥1

|V|
, (4)

where T is a training set; and t = (πi, πi−1, · · · , πi−e, P(or A)) ∈ T  is a training 
sample.

3.3 Detailed design of MONSTOR+ (Advanced Ver.)

In this subsection, we present an advanced version of our GNN-based model M, 
which is stacked to compose MONSTOR+. This advanced version incorporates aux-
iliary structural node features and an advanced pooling function, as detailed below. 
Note that the overall workflow described in Sect. 3.1 and the training method in 
Sect. 3.2 remain the same as for MONSTOR.

3.3.1 Auxiliary node features: local cycle counts

Higher-order structures beyond edges are known to significantly affect diffusion 
results. Especially, Easley et al. (2010) shows a close theoretical connection between 
local triangle counts and diffusion outcomes. To enable M to capture such higher-
order structures, we introduce local cycle counts (You et al. 2021; Dwivedi et al. 
2021), which generalize local triangle counts, as auxiliary input features for M.

3 In the conference version of this paper (Ko et al. 2020), we introduced an additional step based on a theo-
retical upper bound. However, further study revealed that its contribution to the final estimation accuracy 
is marginal. Thus, we decided to remove the step in this paper.
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Given a social network G = (V, E), we define the local cycle cr(v) of length r of 
a node v ∈ V  as the number of cycles of length r that contain v. Computationally, it 
is equivalent to the v-th element of Diag(Ar), where A is the adjacency matrix of 
G, and the function Diag(·) extracts the vector of diagonal entries of a given matrix. 
Under the IC model, as P naturally acts as weighted A, we utilize Diag(Pr) instead 
of Diag(Ar), thereby making cr(v) the weighted count of the local cycles of length 
r containing v.

The advanced GNN-based model M in MONSTOR+ uses the count 
of local cycles of different lengths (up to a hyperparameter q) as addi-
tional node features. That is, the feature vector of each node v is 
h0

v := (ρi−e+1(v) − ρi−e(v), · · · , ρi−1(v) − ρi−2(v), ρi−1(v), c2(v), c3(v), · · · , cq(v)). 
As stated in Sect. 4.1, we set q to 11 in our experiments. The effectiveness of these 
auxiliary node features is empirically confirmed in Sect. 4.4.

Naively computing Diag(Ar) or Diag(Pr) requires O(|V|2) space, even when 
A or P is sparse; and this may limit scalability. Instead of computing Diag(Ar) or 
Diag(Pr) at once, we can divide it into sub-vectors and compute only one sub-vector 
at a time. For example, we can obtain Diag(Ar)[i : i + d] (i.e., the entries located 
between positions i and i + d) by computing

 Diag(
r−1︷ ︸︸ ︷

A(A(· · · (A(A[:, i : i + d]))), (5)

where A[:, i : i + d] denotes the columns of A located between positions i and i + d, 
and the parentheses denote the order of computation. If A is sparse enough so that 
||A||0 = O(|V|d), this computation requires only O(|V|d) space.4 Notably, this divi-
sion-based approach does not increase the asymptotic time complexity of computing 
Diag(Ar) or Diag(Pr) beyond O(r|V|3).

3.3.2 Advanced pooling

It is well known that the choice of a pooling function is crucial for the generalization 
ability of GNN-based models (Xu et al. 2020). While we carefully choose a pooling 
function in M (i.e., AGG in Eq. (1)) based on the characteristics of each diffusion 
model, our choices, which are limited to widely-used basic ones, may be sub-optimal, 
necessitating exploration of more expressive pooling functions.

Inspired by (Corso et al. 2020), in the GNN-based model M for MONSTOR+, we 
leverage an expressive pool ing function for AGG defined as:

 AGG(z) := CONCAT(SUM(z), MEAN(z), MAX(z), STD(z)), (6)

where SUM, MEAN, MAX, and STD are the element-wise sum, mean, max, and 
standard deviation functions, respectively. Note that, in the context of M, this pooling 
function generalizes SUM, MEAN, MAX, and STD as special cases. With this new 

4 Note that the dimensionality of ApA[:, i : i + d] is |V| × d for any integer 0 ≤ p ≤ r − 1.
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design of AGG, Wi
2 ∈ R5di−1×di  in Eq. (2). We set p(u,v) to 1/|NEI(v)| in Eq. (1) 

for the LT model, where p(u,v) is not given. The effectiveness of this advanced pool-
ing function is empirically confirmed in Sect. 4.4.

3.4 Time complexity analysis

Once the GNN-based model M in MONSTOR or MONSTOR+ is trained (poten-
tially using graphs smaller than a target graph G), estimating πi in a social network 
G = (V, E) for a seed set S takes O(lsd(|V| + |E|)) time, where s is the number of 
stacks, l is the number of GNN layers per stack, and d is the maximum dimension of 
(latent) feature vectors.

For MONSTOR+, as a preprocessing step, which is executed only once for all 
potential seed sets, the local cycles of lengths up to q need to be counted for each 
node to be used as auxiliary features. As discussed in Sect. 3.3.1, this requires com-
puting Pr or Ar for 2 ≤ r ≤ q, which takes O(q|V|3) time. Note that this cubic-time 
preprocessing limits the scalability of MONSTOR+ on large graphs, and exploring 
more scalable alternatives to local cycles is a promising direction for future work.

3.5 Extensions to other diffusion models

Although this paper focuses on the representative IC model (with three specific acti-
vation probability estimation methods) and the LT model, MONSTOR+ is not limited 
to these settings and can be extended to a broad range of diffusion models and acti-
vation probability estimation methods. In particular, thanks to its learnable nature, 
MONSTOR+ can be readily adapted to such models, provided that training data can 
be generated via simulation. As an example, in Appendix A.3, we additionally apply 
MONSTOR+ to the G-SIR (General markov chain Susceptible-Infected-Recovered) 
model (Yi et al. 2022) and demonstrate its effectiveness under the G-SIR model.

4 Experiments

In this section, we review our experiments for answering the following questions:

 ● Q1. Influence estimation: How accurately does MONSTOR+ estimate the influ-
ence of seed sets?

 ● Q2. Influence maximization: How accurate are simulation-based IM algorithms 
equipped with MONSTOR+ (instead of repeated MC simulations) compared to 
state-of-the-art competitors?

 ● Q3. Ablation study: How effective is each component of MONSTOR+?
 ● Q4. Scalability: How rapidly does the running time of MONSTOR+ increase as 

the size of the input graph grows?
 ● Q5. Submodularity: Is MONSTOR+ submodular as the ground-truth influence 

function?
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4.1 Experimental settings

Datasets We used three real-world social networks: Extended, WannaCry, and Celeb-
rity (Liu et al. 2019) (see Table 1 for their statistics). For Extended, we crawled more 
tweets and retweets in addition to those used in (Sabottke et al. 2015). In each data-
set, we used online postings (and their cascade logs) during the first 50% of time for 
training/validation and those during the remaining 50% for testing — two sets are 
disjoint. Specifically, we computed the activation probability matrices (PBT , PJI , 
PLP ), as described in Sect. 2.1, and the adjacency matrix (A) for each of the training/
validation and testing periods based on the logs. For each dataset, diffusion model, 
and activation probability matrix, we collected 3, 200 training tuples, 800 validation 
tuples, and 4, 000 testing tuples, as described in Sect. 3.1. For the tuples, we set seed 
sets as follows: (1) the cardinalities of the seed sets were uniformly sampled between 

1 and |V|
50 ; and (2) half of the tuples consisted of seed nodes selected uniformly at ran-

dom, while the other half consisted of nodes selected with probability proportional 
to their degrees. In all experiments, we evaluated MONSTOR+ (and its variants) in 
inductive settings, unless otherwise stated. Specifically, we trained it using two out 
of the three social networks (e.g., Extended and WannaCry) and tested it with the 
remaining one, as illustrated in Fig. 4. That is, when Celebrity was used for testing, 
we employed the model trained using Extended and WannaCry.

Table 1 Statistics of each social network
|V| |E|

∑
p(u,v)
|E|  in BT 

∑
p(u,v)
|E|  in JI 

∑
p(u,v)
|E|  in LP

Train Test Train Test Train Test
Extended 11,409 58,972 0.07974 0.09194 0.03345 0.04095 0.16138 0.18371
WannaCry 35,627 169,419 0.07255 0.09466 0.02977 0.04494 0.16297 0.19785
Celebrity 15,184 56,538 0.03206 0.02787 0.00163 0.00159 0.26142 0.256

Fig. 4 Example train-test split in our experiments. We test with tweets newly posted in the test period. 
Note that MONSTOR and MONSTOR+ are applied to unseen social networks (i.e., the test data high-
lighted in blue), while existing learning approaches (Yan et al. 2019; Li et al. 2019) cannot be applied
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Competitors We consider the following IM algorithms for comparisons: (1) 
Greedy (Kempe et al. 2003), UBLF (Zhou et al. 2013), and CELF (Goyal et al. 2011a) 
among simulation-based algorithms; (2) SSA (Nguyen et al. 2016), D-SSA (Nguyen 
et al. 2016), TIM (Tang et al. 2014), IMM (Tang et al. 2015), IRIE (Jung et al. 2012), 
PMIA (Wang et al. 2012), and SIMPATH (Goyal et al. 2011b) among non-simulation-
based algorithms;, (3) C-GLIE, which is CELF equipped with GLIE (Panagopoulos 
et al. 2023), an inductive learning method that replaces repeated Monte Carlo simu-
lations with a trained graph neural network, and (4) U-MON+ and C-MON+, which 
are UBLF and CELF equipped with MONSTOR+ replacing repeated MC simula-
tions. Note that IRIE, PMIA, and C-GLIE are only applicable to the IC model, and 
SIMPATH is only applicable to the LT model. Also note that the outputs of Greedy, 
UBLF, and CELF are the same. Among them, UBLF is the fastest, followed by 
CELF and Greedy. U-MON+ and C-MON+ also output the same seed users. UBLF 
and U-MON+ can be used only when activation probabilities satisfy a certain prop-
erty (Zhou et al. 2013). Due to this reason, for the IC model with LP and the LT 
model, only C-MON+ is applicable.

Hyperparameters
For MONSTOR+, we set e = 4, l = 3, q = 11, d1 = · · · = dl−1 = 16 after some 

preliminary studies. At each t-th epoch, we set the learning rate to 10−4 · t if t ≤ 10, 
and 10−2/t otherwise. We selected the s value that minimizes RMSE on the validation 
set among {2, · · · , 20}. For (D-)SSA, we set ϵ = 0.1 and δ = 1/|V| as in (Nguyen 
et al. 2016). For TIM (Tang et al. 2014) and IMM (Tang et al. 2015), we set ϵ = 0.1. 
For IRIE and PMIA, we followed the settings in (Jung et al. 2012; Wang et al. 2012). 
For SIMPATH, we set the cut-off threshold to 0.001 and the number of items for Look 
Ahead Optimization to 4, as in (Goyal et al. 2011b).

4.2 Q1. Influence estimation (IE)

In this section, we demonstrate that MONSTOR+ accurately estimates the influence 
for given seed sets for the influence estimation (IE) problem, which naturally leads 
to high-quality seed nodes for the IM problem. As obtaining exact ground-truth influ-
ence is intractable, we used the mean influence from 10,000 Monte Carlo (MC) simu-
lations as the ground truth.

4.2.1 Pearson and rank correlation coefficients

We begin by showing that MONSTOR+ produces estimates with near-perfect cor-
relation to the ground-truth influence, significantly outperforming GLIE (Panagop-
oulos et al. 2023), a graph neural network trained to estimate influence under the IC 
model. To this end, for each test seed set described in Sect. 4.1, we compared the 
estimated influences of MONSTOR+ and GLIE. To measure the similarity between 
ground-truth and estimated influences overall test seed sets, we used Pearson’s corre-
lation coefficients and Spearman’s Rank correlation coefficients. As seen in Table 2a, 
the ground-truth influences and the estimated influences of MONSTOR+ for test seed 
sets are highly correlated, and both correlation coefficients were close to 1.0. More-
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Fig. 5 Scatter plots showing ground-truth influence versus estimates from MONSTOR+ or GLIE on 
test datasets unseen during training. Red and blue dots represent estimates from MONSTOR+ and 
GLIE, respectively, while black lines indicate perfect estimation. GLIE is applicable only to the IC 
model. Note that estimates from MONSTOR+ lie closer to the perfect estimation line than those from 
GLIE. Refer to Appendix A.1 for the results under other diffusion models

 

Table 2 The accuracy (specifically, the correlation between estimated and ground-truth influence) of 
MONSTOR+ and GLIE on the influence estimation problem. GLIE is applicable only to the IC model. 
Note that MONSOTR+ consistently outperforms GLIE
(a) MONSTOR+

IC Model LT Model
Pearson Correlation Rank Correlation Pearson Rank

Dataset BT JI LP BT JI LP Correlation Correlation
Extended 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.989
WannaCry 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.955
Celebrity 0.995 1.000 1.000 0.998 1.000 0.999 1.000 0.995
(b) GLIE
Dataset IC Model

Pearson Correlation Rank Correlation
BT JI LP BT JI LP

Extended 0.997 0.992 0.998 0.996 0.986 0.993
WannaCry 0.999 0.989 0.997 0.998 0.983 0.994
Celebrity 0.872 0.745 0.989 0.884 0.767 0.937
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over, by comparing Table 2a and Table 2b, we see that MONSTOR+ consistently 
yielded more accurate influence estimates than GLIE.

We further illustrate this effectiveness in Fig. 5, which presents scatter plots com-
paring ground-truth and estimated influences on test datasets unseen during train-
ing (refer to Appendix A.1 for the results under more diffusion models). Note that 

Fig. 6 Root mean square error (RMSE) of the influences estimated by MONSTOR+ and repeated MC 
simulations (with varying numbers of repetitions) in test datasets unseen during training. The further 
toward the lower-left corner a method is positioned in the plot, the faster and more accurate it is.
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estimated influences from MONSTOR+ lie closer to the perfect estimation line than 
those from GLIE.

Fig. 7 Root mean square error (RMSE) of the infection probabilities estimated by MONSTOR+ and 
repeated MC simulations (with varying numbers of repetitions) in test datasets unseen during training. 
The closer a method is to the lower-left corner, the faster and more accurate it is.
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(a) Extended
k = 10 50 100 Av-

er-
age 
rank

Target 
Influence

480.8 ± 29.7 968.3 ± 28.8 1219.9 ± 28.3 –

U-MON+ 
(Proposed)

481.1 ± 31.1 968.5 ± 28.6 1223.2 ± 28.8 1

D-SSA 468.3 ± 30.9 960.3 ± 29.4 1203.9 ± 29.0 5.33
SSA 466.7 ± 31.3 939.9 ± 28.4 1167.8 ± 

28.87
7

TIM 481.1 ± 31.1 968.5 ± 28.6 1223.2 ± 28.5 1
IMM 481.1 ± 31.1 968.2 ± 29.0 1221.3 ± 28.7 2.67
IRIE 479.6 ± 30.6 966.0 ± 28.9 1221.7 ± 29.4 3.67
PMIA 473.3 ± 30.3 960.1 ± 27.5 1199.4 ± 26.9 5.67
C-GLIE 423.0 ± 29.4 811.9 ± 26.0 994.6 ± 25.3 8
(b) WannaCry

k = 10 50 100 Av-
er-
age 
rank

Target 
Influence

990.4 ± 67.5 2124.5 ± 59.2 2747.8 ± 55.7 –

U-MON+ 
(Proposed)

991.1 ± 68.0 2123.7 ± 59.1 2753.3 ± 55.7 1

D-SSA 986.2 ± 67.5 2108.1 ± 59.9 2733.7 ± 56.3 5.67
SSA 983.9 ± 67.8 2093.5 ± 65.6 2666.1 ± 57.4 7
TIM 991.1 ± 68.0 2123.7 ± 59.1 2753.3 ± 55.7 1
IMM 989.0 ± 71.6 2122.0 ± 59.2 2752.4 ± 55.8 3.33
IRIE 986.6 ± 63.8 2118.5 ± 59.8 2751.6 ± 56.8 4.33
PMIA 989.3 ± 59.6 2106.9 ± 55.3 2739.8 ± 52.6 3.67
C-GLIE 825.0 ± 73.0 1394.9 ± 68.8 2181.2 ± 55.3 8
(c) Celebrity

k = 10 50 100 Av-
er-
age 
rank

Target 
Influence

51.0 ± 6.6 104.0 ± 6.5 154.0 ± 6.6 –

U-MON+ 
(Proposed)

52.8 ± 6.9 105.1 ± 6.6 155.0 ± 6.6 1.33

D-SSA 50.8 ± 7.1 102.4 ± 6.7 152.2 ± 6.7 5.67
SSA 50.9 ± 7.1 101.6 ± 6.7 152.1 ± 6.7 6
TIM 52.9 ± 6.8 105.0 ± 6.8 154.9 ± 6.6 1.67
IMM 52.8 ± 6.8 104.6 ± 6.6 154.7 ± 6.6 2.67
IRIE 51.7 ± 6.7 103.0 ± 6.6 153.0 ± 6.6 4
PMIA 51.7 ± 6.7 100.0 ± 6.6 152.1 ± 6.6 5.67
C-GLIE 31.5 ± 6.1 88.6 ± 7.9 142.0 ± 6.6 8

Table 3 The performance (i.e., 
the influence of output seeds) of 
IM methods under the IC model 
with BT. We mark the best 
performances in bold
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4.2.2 Comparison with Monte Carlo (MC) simulations

We present a numerical comparison between MONSTOR+ and repeated MC simula-
tions, which are widely used for influence estimation. To this end, we measure the 
root mean square error (RMSE) of the influence (ϕ in Problem 1) and the infection 
probability of each node (π in Problem 1) estimated by MONSTOR+ and MC simu-
lations with different numbers of repetitions (specifically, 10, 100, 1,000, 10,000 for 
the LT model; and 1, 10, 100, 1,000 for the IC model).

As seen in Figs. 6 and 7, in most cases, MONSTOR+ was significantly faster, 
typically between 5 to 3000 times, compared to MC simulations, for similar levels of 
estimation error. Similar findings were observed when evaluating the mean absolute 
percentage error (MAPE), as detailed in Appendix A.1. These results demonstrate 
the capability of MONSTOR+ to successfully replace MC simulations, offering a 
substantial speed-up.

4.3 Q2. Influence maximization (IM)

We demonstrate the effectiveness of MONSTOR+ for the influence maximization 
(IM) problem (Problem 2). To this end, we measured the performance (i.e., the influ-
ence of output seeds) of various IM methods (see Sect. 4.1) under both the IC and 
LT models. Recall that U-MON+ and C-MON+ are UBLF and CELF equipped with 
MONSTOR+, which replaces their repeated MC simulations. Between them, we 
employed U-MON+ whenever applicable and used C-MON+ otherwise (see Sect. 4.1 
for details). The results can be found in Tables 4-6, where the target influences refer 
to those obtained by the greedy algorithm with repeated MC simulations (10, 000 in 
our experiments), which MONSTOR+ and many baselines aim to approximate using 
machine learning, sketching, and other techniques. Even though we used CELF++ 
(Goyal et al. 2011a), which is a more efficient variant of the greedy algorithm that 
produces identical output, for obtaining the target influences, it still required at least 
two orders of magnitude more time than the compared methods.

As seen in Table 4, under the IC model with JI, U-MON+ performed best in all 
cases. Similarly, as seen in Tables 3 and 6, U-MON+ and C-MON+ outperformed 
other methods in almost all cases, with only one or two exceptions, under the IC 
model with BT and the LT model, respectively. U-MON+ also performed overall best 
under the IC model with LP as shown in Table 5. In total, U-MON+ and C-MON+ 
(i.e., IM algorithms equipped with MONSTOR+) were most accurate in 81.5% and 
77.8% of IM use cases under the IC and LT models, respectively. Moreover, in most 
cases, their performances were close to or sometimes even better than the target 
performances.

4.4 Q3. Ablation study

We demonstrate the importance of two key enhancements in MONSTOR+: the aux-
iliary structural node features (discussed in Sect. 3.3.1) and the advanced pooling 
function (explained in Sect. 3.3.2). To evaluate their impact, we measured the root 
mean square error (RMSE) of the influence and infection probabilities estimated by 
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four variations: (1) MONSTOR+ (with all enhancements), (2) MONSTOR+ without 
the auxiliary structural node features, (3) MONSTOR+ without the advanced pooling 
function, and (4) MONSTOR (MONSTOR+ without the auxiliary structural node 
features and the advanced pooling function). We also evaluated their performance on 
the IM problem across different diffusion models.

As shown in Tables 7 and 8, both enhancements improved the estimation accuracy 
of MONSTOR+. Tables 9 and 10 further demonstrate that these enhancements also 
lead to improved performance on the IM problem (also refer to Appendix A.2 for 
additional results). Specifically, the auxiliary structural node features played a more 
significant role under the LT model, whereas the advanced pooling function had a 
greater impact under the IC model for both IE and IM problems. The impact of the 
auxiliary structural node features was relatively minor in JI cases, where activation 
probabilities are low, resulting in smaller weights for local cycles. The effectiveness 
of both enhancements was also evident in terms of mean absolute percentage error 
(MAPE), as detailed in Appendix A.2.

4.5 Q4. Scalability

We present our analysis of the scalability of MONSTOR+. For this analysis, we gen-
erated realistic graphs of various sizes using the R-MAT generator (Chakrabarti et al. 
2004) with parameters a = 0.7 and b = c = d = 0.1. The number of edges in the 
generated graphs ranged from 220 to 224, and for every graph, we set the number of 
nodes to 20% of the number of edges. We used the weighted cascade model (Kempe 
et al. 2003) to determine the activation probability of each edge in the generated 
graphs. To reduce memory requirements during the pre-processing of MONSTOR+ 
(i.e., computing the auxiliary structural node features), as discussed in Sect. 3.3.1, we 
partitioned the columns of P and A into blocks.5 For estimation time, we divided the 
runtime for influence estimations for 1, 000 different seed sets by the number of seed 
sets. For each seed set, we first chose its size uniformly at random from 1 to 10% 
of |V| and then chose seed nodes uniformly at random. Moreover, since the runtime 
scaled linearly with the number of stacked GNNs (i.e., s), we measured the estima-
tion time per stacked GNN.

In Table 11, we present the runtime of (1) pre-processing of MONSTOR+ and (2) 
influence estimation by MONSTOR and MONSTOR+ on graphs of varying sizes. 
For MONSTOR+, as expected from the theoretical analysis in Sect. 3.4, the run-
time for pre-processing, which is executed only once, increased super-linearly with 
respect to the number of edges in the input graph. The runtime for influence estima-
tion by MONSTOR and MONSTOR+, which is performed repeatedly for each seed 
set, exhibited near-linear scalability.

4.6 Q5. Submodularity

It is well known that the influence maximization is a submodular maximization prob-
lem, and many IM algorithms exploit the submodularity of the ground-truth influence 

5 Specifically, each block consisted of 10, 000 × 220/|E| columns.
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(a) Extended
k = 10 50 100 Av-

er-
age 
rank

Target 
Influence

244.5 ± 16.3 529.3 ± 20.7 705.4 ± 22.3 –

U-MON+ 
(Proposed)

244.4 ± 16.3 529.4 ± 20.7 707.2 ± 22.5 1

D-SSA 243.8 ± 16.4 524.7 ± 20.7 697.6 ± 22.4 6
SSA 242.5 ± 16.4 520.5 ± 20.8 690.6 ± 22.4 7
TIM 244.4 ± 16.3 529.3 ± 20.8 707.2 ± 22.5 1.33
IMM 244.4 ± 16.3 529.3 ± 20.8 707.1 ± 22.4 2.33
IRIE 244.4 ± 16.3 529.3 ± 20.7 707.2 ± 22.4 1.33
PMIA 244.4 ± 16.3 529.2 ± 20.6 705.4 ± 22.3 3.67
C-GLIE 131.4 ± 12.1 348.6 ± 20.4 553.7 ± 22.5 8
(b) WannaCry

k = 10 50 100 Av-
er-
age 
rank

Target 
Influence

534.3 ± 24.3 1238.6 ± 34.6 1646.9 ± 36.9 –

U-MON+ 
(Proposed)

534.1 ± 24.3 1239.0 ± 34.3 1648.2 ± 37.2 1

D-SSA 531.4 ± 24.8 1229.6 ± 34.5 1632.5 ± 37.3 6
SSA 527.1 ± 25.2 1196.1 ± 34.5 1583.2 ± 37.0 7
TIM 534.1 ± 24.3 1238.9 ± 34.1 1648.1 ± 37.1 2
IMM 533.1 ± 25.1 1238.9 ± 34.3 1647.7 ± 37.2 4
IRIE 534.1 ± 24.3 1239.0 ± 34.2 1647.9 ± 37.6 1.67
PMIA 534.1 ± 24.3 1238.9 ± 34.3 1646.8 ± 36.8 3
C-GLIE 125.0 ± 16.7 508.6 ± 31.2 1255.8 ± 35.9 8
(c) Celebrity

k = 10 50 100 Av-
er-
age 
rank

Target 
influence

43.2 ± 5.7 89.9 ± 6.3 139.8 ± 6.2 –

U-MON+ 
(Proposed)

43.7 ± 5.8 90.4 ± 6.3 140.5± 6.3 1

D-SSA 43.7 ± 5.8 89.7 ± 6.2 139.9 ± 6.2 5
SSA 43.7 ± 5.8 90.0 ± 6.3 140.0 ± 6.3 4.67
TIM 43.7 ± 5.8 90.3 ± 6.3 140.1 ± 6.3 3
IMM 43.7 ± 5.8 90.1 ± 6.2 140.1 ± 6.3 3.33
IRIE 43.7 ± 5.8 90.4 ± 6.3 140.3 ± 6.3 1.33
PMIA 42.7 ± 5.7 90.4 ± 6.3 140.3 ± 6.3 2.33
C-GLIE 21.4 ± 3.4 72.7 ± 5.0 138.4 ± 6.1 8

Table 4 The performance (i.e., 
the influence of output seeds) 
of IM methods under the IC 
model with JI. We mark the best 
performances in bold
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function. Therefore, it is crucial to show that MONSTOR+ has the same characteris-
tic for claiming that IM algorithms based on the submodularity work properly when 
being integrated with MONSTOR+.

In this section, we review our experiments for testing the empirical submodular-
ity of MONSTOR+. To this end, we used 5, 000 test seed sets that were not used for 
training. For each seed set, we chose its size uniformly at random from 1 to 10% of 
|V| and then chose seed nodes uniformly at random. Using each pair S and T of the 
seed sets, we tested whether the following submodularity condition is met:

 f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). (7)

Table 5 The performance (i.e., the influence of output seeds) of IM methods under the IC model with LP. 
We mark the best performances in bold
(a) Extended

k = 10 50 100 Average rank
Target influence 1854.9 ± 135.6 2875.5 ± 60.5 3262.8 ± 45.7 –
C-MON+ (Proposed) 1852.2 ± 119.9 2876.8 ± 60.9 3265.6 ± 48.0 1.67
D-SSA 1849.0 ± 128.0 2865.6 ± 66.1 3236.3 ± 51.3 4.33
SSA 1848.0 ± 127.5 2861.5 ± 61.8 3230.6 ± 48.4 5.33
TIM 1852.2 ± 119.9 2876.5 ± 61.5 3267.0 ± 47.0 1.67
IMM 1852.3 ± 135.9 2875.5 ± 61.1 3264.4 ± 47.8 2.33
IRIE 1816.1 ± 135.4 2829.2 ± 73.0 3201.2 ± 57.4 6.67
PMIA 1829.9 ± 109.2 2828.7 ± 54.8 3243.1 ± 42.2 5.67
C-GLIE 1795.0 ± 121.4 2764.5 ± 58.1 2987.0 ± 44.9 8
(b) WannaCry

k = 10 50 100 Average rank
Target influence 5264.7 ± 389.3 7877.3 ± 200.3 9085.3 ± 136.2 –
C-MON+ (Proposed) 5264.9 ± 391.6 7888.4 ± 197.3 9106.2 ± 131.3 1.33
D-SSA 5247.4 ± 393.6 7857.2 ± 202.1 8983.1 ± 150.9 4.33
SSA 5244.1 ± 400.1 7819.3 ± 205.9 8996.1 ± 145.3 4.67
TIM 5264.9 ± 391.6 7887.6 ± 197.2 9106.6 ± 131.3 1.33
IMM 5264.9 ± 391.6 7887.4 ± 203.8 9102.8 ± 134.8 2.33
IRIE 5112.4 ± 467.7 7714.0 ± 257.3 8841.1 ± 206.0 7
PMIA 5196.1 ± 352.8 7807.4 ± 167.6 8981.3 ± 115.3 6
C-GLIE 5037.1 ± 442.4 7579.1 ± 173.9 8594.5 ± 122.2 8
(c) Celebrity

k = 10 50 100 Average rank
Target Influence 5508.5 ± 42.4 5607.7 ± 33.3 5640.9 ± 32.8 –
C-MON+ (Proposed) 5509.0 ± 42.5 5617.2 ± 33.2 5667.1 ± 33.3 1.33
D-SSA 5508.8 ± 42.5 5609.9 ± 33.2 5637.6 ± 33.1 6
SSA 5508.9 ± 42.6 5602.4 ± 33.4 5638.3 ± 33.4 6.33
TIM 5509.0 ± 42.5 5617.1 ± 33.2 5667.2 ± 33.3 1.67
IMM 5509.0 ± 42.5 5617.1 ± 33.1 5666.4 ± 33.2 2.67
IRIE 5509.0 ± 42.5 5617.2 ± 33.2 5667.1 ± 33.3 1.33
PMIA 5509.0 ± 42.5 5603.8 ± 33.2 5630.8 ± 33.1 5
C-GLIE 5443.1 ± 67.7 5609.4 ± 33.3 5621.6 ± 33.1 7.33
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In Table 12, we show the ratio of the pairs where the above submodularity con-
dition is met. The submodularity condition held for 99% or higher of the pairs in 
the Extended and WannaCry datasets regardless of the underlying diffusion models. 
However, in Celebrity (especially the IC model with JI), the ratio was much lower. 
One possible reason for this is that, in Celebrity, activation probabilities with JI are 
relatively small compared to BT and LP, as shown in Table 1.

For each pair S and T where the submodularity condition was not met, we mea-
sured the mean absolute percentage error (MAPE) as follows:

 
f(S ∪ T ) + f(S ∩ T ) − f(S) − f(T )

f(S ∪ T ) + f(S ∩ T )
. (8)

Table 6 The performance (i.e., the influence of output seeds) of IM methods under the LT model. We mark 
the best performances in bold
(a) Extended

k = 10 50 100 Average rank
Target Influence 2273.8 ± 268.5 3763.6 ± 115.9 4332.4 ± 70.1 –
C-MON+ (Proposed) 2271.9 ± 267.9 3782.3 ± 119.2 4346.3 ± 69.3 1
D-SSA 2259.5 ± 2745 3750.0 ± 121.5 4306.9 ± 76.4 4.67
SSA 2263.6 ± 274.0 3764.8 ± 111.0 4334.2 ± 74.8 3.33
TIM 2271.9 ± 267.9 3782.3 ± 110.5 4345.9 ± 68.8 1.33
IMM 2271.9 ± 267.9 3752.1 ± 115.9 4289.9 ± 74.7 3.33
SIMPATH 2235.7 ± 225.6 3714.9 ± 103.1 4262.8 ± 61.5 6
(b) WannaCry

k = 10 50 100 Average rank
Target Influence 7448.6 ± 659.8 11008.2 ± 315.4 12606.6 ± 222.3 –
C-MON+ (Proposed) 7452.4 ± 660.7 11011.6 ± 316.8 12603.0 ± 226.9 1.33
D-SSA 7429.1 ± 667.3 10960.3 ± 303.1 12520.5 ± 232.0 3.67
SSA 7430.5 ± 669.5 10970.8 ± 362.6 12494.6 ± 247.8 3.33
TIM 7452.4 ± 660.7 11010.5 ± 313.2 12606.6 ± 222.5 1.33
IMM 7397.5 ± 706.7 10934.8 ± 364.0 12481.3 ± 244.5 5
SIMPATH 7256.1 ± 739.6 10742.6 ± 336.2 12367.5 ± 226.6 6
(c) Celebrity

k = 10 50 100 Average rank
Target Influence 6944.2 ± 116.1 7122.9 ± 1.5 7172.9 ± 1.5 –
C-MON+ (Proposed) 6944.7 ± 115.2 7123.8 ± 7.6 7173.9 ± 0.8 1.33
D-SSA 6943.1 ± 108.8 7123.3 ± 1.9 7173.3 ± 1.5 3.67
SSA 6944.6 ± 107.2 7122.5 ± 1.9 7172.5 ± 2.2 4
TIM 6944.7 ± 115.2 7123.8 ± 7.5 7173.9 ± 0.8 1.33
IMM 6944.8 ± 114.9 7120.5 ± 29.3 7172.4 ± 1.5 3.67
SIMPATH 6666.8 ± 314.2 6856.0 ± 272.5 6968.5 ± 242.8 6
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Table 7 Ablation study. Root mean square error (RMSE) of the influences estimated by MONSTOR+ and 
its variants with missing components in test datasets unseen during training
(a) Extended

Auxiliary node feature Advanced pooling IC model LT model Average rank
BT JI LP

(1) ✓ ✓ 0.47 0.42 6.68 8.31 1.25
(2) ✓ 0.49 0.20 12.26 31.92 2
(3) ✓ 4.50 1.63 64.92 16.18 3.25
(4) 6.85 1.28 27.68 47.80 3.5
(b) WannaCry

Auxiliary Advanced IC model LT model Average
node feature pooling BT JI LP rank

(1) ✓ ✓ 1.28 0.78 20.32 27.93 1.25
(2) ✓ 1.57 0.52 31.78 141.12 2.25
(3) ✓ 8.75 3.47 98.76 63.55 3.25
(4) 19.27 2.94 88.50 123.65 3.25
(c) Celebrity

Auxiliary Advanced IC model LT model Average
node feature pooling BT JI LP rank

(1) ✓ ✓ 0.73 0.74 12.32 27.65 1.5
(2) ✓ 7.13 0.09 46.28 86.35 2.25
(3) ✓ 11.07 0.30 733.02 42.53 3
(4) 5.90 0.87 109.61 100.14 3.25

Table 8 Ablation study. Root mean square error (RMSE) of the infection probabilities (of individual 
nodes) estimated by MONSTOR+ and its variants with missing components in test datasets unseen during 
training
(a) Extended

Auxiliarynode feature Advanced pooling IC model LT model Average rank
BT JI LP

(1) ✓ ✓ 0.0022 0.0015 0.0053 0.0077 1
(2) ✓ 0.0022 0.0015 0.0095 0.0200 1.75
(3) ✓ 0.0088 0.0027 0.0470 0.0087 3.25
(4) 0.0084 0.0032 0.0300 0.0253 3.5
(b) WannaCry

Auxiliary Advanced IC model LT model Average
node feature pooling BT JI LP rank

(1) ✓ ✓ 0.0022 0.0015 0.0066 0.0061 1
(2) ✓ 0.0022 0.0015 0.0087 0.0205 1.75
(3) ✓ 0.0063 0.0029 0.0317 0.0072 2.75
(4) 0.0081 0.0033 0.0325 0.0229 4
(c) Celebrity

Auxiliary Advanced IC model LT model Average
node feature pooling BT JI LP rank

(1) ✓ ✓ 0.0079 0.0005 0.0044 0.0045 1.75
(2) ✓ 0.0024 0.0005 0.0092 0.0150 1.75
(3) ✓ 0.0056 0.0006 0.1235 0.0062 3
(4) 0.0055 0.0006 0.0602 0.0152 3
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As shown in Table 13, the error (i.e., f(S ∪ T ) + f(S ∩ T ) − f(S) − f(T )) was 
marginal compared to the actual influence (i.e, f(S ∪ T ) + f(S ∩ T )). All these 
experiment results support that influence estimation by MONSTOR+ can be consid-
ered as submodular in practice.

5 Related work

Independent cascade (IC) and linear threshold (LT) are the two most extensively 
studied diffusion models. In the IC model, once a node u is infected, it attempts 
once to infect each direct neighbor v independently with probability p(u,v). In the LT 
model, a node v is infected if a sufficient number of its direct neighbors (larger than a 
threshold) are infected. Numerous successful real-world studies are based on the IC 
(Yadav et al. 2016; Wilder and Vorobeychik 2018) and LT (He et al. 2012; Ou et al. 
2016) models.

Influence maximization (i.e., to find a certain number of seed nodes that maximize 
the diffusion through a social network) is an NP-hard problem for both diffusion 
models (Kempe et al. 2003). Numerous methods have been proposed for influence 
maximization. Due to its NP-hardness, all these methods are approximate and do not 
guarantee the optimality of the output seed sets. They can be categorized into the 
following three types: (1) simulation-based, (2) sketch-based, and (3) proxy-based 
methods. In the simulation-based methods, MC simulations are explicitly repeated to 
estimate the influence of seed sets (Goyal et al. 2011a; Zhou et al. 2013). These meth-

Table 9 Ablation study. The influence maximization performance (i.e., the influence of output seeds) of 
MONSTOR+ and its variants with missing components under the IC model with LP in test datasets unseen 
during training. Refer to Appendix A.2 for the results under the IC model with BT and JI
(a) Extended

Auxiliary 
node feature

Advanced 
pooling

k = 10 50 100 Average 
rank

(1) ✓ ✓ 1852.2 ± 119.9 2876.8 ± 60.9 3265.6 ± 48.0 1
(2) ✓ 1849.5 ± 123.4 2875.6 ± 61.2 3265.5 ± 47.5 2
(3) ✓ 1849.3 ± 123.5 2866.0 ± 63.4 3243.8 ± 51.2 3.67
(4) 1849.3 ± 123.3 2868.0 ± 64.2 3251.2 ± 50.1 3
(b) WannaCry

Auxiliary Advanced k = 10 50 100 Average
node feature pooling rank

(1) ✓ ✓ 5264.9 ± 391.6 7888.4 ± 197.3 9106.2 ± 131.3 1.33
(2) ✓ 5266.1 ± 391.4 7884.3 ± 192.7 9103.2 ± 134.3 1.67
(3) ✓ 5241.4 ± 401.1 7855.4 ± 205.8 9075.0 ± 147.9 3.67
(4) 5266.3 ± 391.1 7880.0 ± 197.4 9060.5 ± 135.5 3.33

Auxiliary Advanced k = 10 50 100 Average
node feature pooling rank

(1) ✓ ✓ 5509.0 ± 42.5 5617.2 ± 33.2 5667.1 ± 33.3 1
(2) ✓ 5508.8 ± 42.6 5617.1 ± 33.2 5667.0 ± 33.2 2
(3) ✓ 5443.6 ± 67.7 5606.2 ± 33.2 5656.3 ± 33.2 3.67
(4) 5365.7 ± 95.9 5610.4 ± 33.2 5660.4 ± 33.2 3.33

1 3

   55  Page 24 of 38



Inductive influence estimation and maximization over unseen social…

ods focus on pruning unnecessary (redundant) simulations to minimize the required 
number of simulations. Among strong sketch-based methods, SSA (Nguyen et al. 

Table 10 Ablation study. The influence maximization performance (i.e., the influence of output seeds) of 
MONSTOR+ and its variants with missing components under the LT model in test datasets unseen during 
training
(a) Extended

Auxil-
iary node 
feature

Advanced 
pooling

k = 10 50 100 Aver-
age 
rank

(1) ✓ ✓ 2271.9 ± 267.9 3782.3 ± 119.2 4346.3 ± 69.3 1
(2) ✓ 2252.6 ± 255.9 3759.9 ± 121.0 4334.2 ± 83.1 3
(3) ✓ 2271.5 ± 267.7 3782.2 ± 119.0 4346.1 ± 69.2 2
(4) 2177.7 ± 250.8 3753.6 ± 130.4 4323.4 ± 82.4 4
(b) WannaCry

Auxiliary Advanced k = 10 50 100 Average
node 
feature

pooling rank

(1) ✓ ✓ 7452.4 ± 660.7 11011.6 ± 316.8 12603.0 ± 226.9 1.33
(2) ✓ 7422.9 ± 620.0 10991.2 ± 308.6 12572.8 ± 209.5 3.33
(3) ✓ 7450.6 ± 659.3 11008.9 ± 314.8 12604.8 ± 217.1 1.67
(4) 7424.0 ± 619.3 10974.1 ± 292.5 12560.5 ± 206.0 3.67
(c) Celebrity

Auxiliary Advanced k = 10 50 100 Average
node 
feature

pooling rank

(1) ✓ ✓ 6944.7 ± 115.2 7123.8 ± 7.6 7173.9 ± 0.8 1.33
(2) ✓ 6944.4 ± 97.6 7123.8 ± 0.8 7173.8 ± 0.8 2
(3) ✓ 6944.8 ± 97.5 7123.8 ± 0.8 7173.8 ± 0.8 1.33
(4) 6944.4 ± 97.5 7123.8 ± 0.8 7173.8 ± 0.8 2

(a) Pre-processing (performed only once) for MONSTOR+
|E| 220 221 222 223 224

Elapsed time 
(seconds)

408.68 1629.10 5584.23 25669.33 135908.99

(b) Influence estimation for MONSTOR+ per each seed set
|E| 220 221 222 223 224

Estima-
tion time 
(milliseconds)

56.87 104.30 179.06 311.59 638.63

(c) Influence estimation for MONSTOR per each seed set
|E| 220 221 222 223 224

Estima-
tion time 
(milliseconds)

32.3 58.5 100.0 137.7 222.5

Table 11 The runtime of pre-
processing (performed only 
once) and estimation (per-
formed repeatedly for each seed 
set) by MONSTOR(+) in graphs 
with varying numbers of edges
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2016), D-SSA (Nguyen et al. 2016), TIM (Tang et al. 2014), and IMM (Tang et al. 
2015) are applicable to both IC and LT models. Among strong proxy-based methods, 
IRIE (Jung et al. 2012) and PMIA (Wang et al. 2012) are applicable to the IC model, 
and SIMPATH (Goyal et al. 2011b) is applicable to the LT model. See a survey (Li 
et al. 2018) for details.

Related to the influence estimation (IE) problem, Yan et al. (2019) proposed a 
neural network is used to predict the influence of a given seed-node set. While our 
method relies on a given social network and a specific diffusion model, their method 
does not assume the observability of the underlying social network or a specific diffu-
sion model. However, they require numerous seed-node sets and ground-truth influ-
ence pairs for such generality.

Related to the influence maximization (IM) problem, DISCO (Li et al. 2019) learns 
a function that estimates the influence of a given seed set and then selects seed nodes 
that maximize estimated influence based on deep reinforcement learning. GCOMB 
(Manchanda et al. 2020) leverages a GNN to prune low-quality nodes, followed by 
a Q-learning module to select high-quality seed nodes under a budget constraint, 
enabling efficient IM on large-scale graphs. Unlike our method, both approaches are 
not designed to explicitly estimate the influence of seed sets; instead, they focus on 
directly selecting seed sets to maximize influence. They are evaluated exclusively 
under the IC model, with no investigation into their applicability to other diffusion 
models. Most notably, their learning models are transductive, i.e., incapable of esti-
mating influence in social networks unseen during training. In contrast, we aim at 
designing an inductive method, which is capable of estimating the influence of seed 
nodes in networks whose connections and activation probabilities are completely 
unseen during training. In addition, our method estimates MC simulation results and 
thus can be equipped with greedy-based IM algorithms (Kempe et al. 2003; Goyal 
et al. 2011a; Zhou et al. 2013), whereas the aforementioned methods (Li et al. 2019; 
Manchanda et al. 2020) directly search for seed nodes.

The most relevant to our work is GLIE (Panagopoulos et al. 2023), as it shares 
the motivation of replacing repeated Monte Carlo simulations with a GNN-based 

Dataset IC model LT model
BT JI LP

Extended 7.26e−05 7.83e−05 0.0017 0.0006
WannaCry 1.90e−09 2.14e−05 0.0048 0.0050
Celebrity 0.0012 5.18e−05 0.0073 0.0239

Table 13 Mean absolute per-
centage error (MAPE) of MON-
STOR+ for the cases where 
submodularity does not hold

 

Dataset IC model LT model
BT JI LP

Extended 0.997 0.992 0.999 0.996
WannaCry  1.000 0.998 0.997 0.992
Celebrity 0.904 0.670 0.959 0.871

Table 12 The ratio of cases 
where the submodularity holds 
in influence estimates provided 
by MONSTOR+
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Fig. 8 Scatter plots showing ground-truth influence versus estimates from MONSTOR+ or GLIE on 
test datasets unseen during training. Red and blue dots represent estimates from MONSTOR+ and 
GLIE, respectively, while black lines indicate perfect estimation. GLIE is applicable only to the IC 
model
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Fig. 9 Mean absolute percentage error (MAPE) of the influences estimated by MONSTOR+ and re-
peated MC simulations (with varying numbers of repetitions) in test datasets unseen during training. 
The further toward the lower-left corner a method is positioned in the plot, the faster and more accurate 
it is
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Table 14 Ablation study. Mean absolute percentage error (MAPE) of the influences estimated by MON-
STOR+ and its variants with missing components in test datasets unseen during training
(a) Extended

Auxiliary Advanced IC model LT model Average
node feature pooling BT JI LP rank

(1) ✓ ✓ 0.0015 0.0015 0.0301 0.0115 1.5
(2) ✓ 0.0023 0.0010 0.0195 0.0280 1.5
(3) ✓ 0.0177 0.0092 0.4847 0.0398 3.5
(4) 0.0178 0.0050 0.0325 0.0415 3.5
(b) WannaCry

Auxiliary Advanced IC model LT model Average
node feature pooling BT JI LP rank

(1) ✓ ✓ 0.0047 0.0009 0.0606 0.0266 1.75
(2) ✓ 0.0047 0.0007 0.0314 0.0458 1.75
(3) ✓ 0.0096 0.0049 0.1805 0.0455 3.25
(4) 0.0277 0.0028 0.0302 0.0556 3
(c) Celebrity

Auxiliary Advanced IC model LT model Average
node feature pooling BT JI LP rank

(1) ✓ ✓ 0.0271 0.0060 0.025 0.0837 1.5
(2) ✓ 0.0642 0.0013 0.1178 0.1684 2.25
(3) ✓ 0.0942 0.0045 0.1166 0.5369 3
(4) 0.0624 0.0083 0.2203 0.1845 3.25

Table 15 Ablation study. The influence maximization performance (i.e., the influence of output seeds) of 
MONSTOR+ and its variants with missing components under the IC model with BT in test datasets unseen 
during training
(a) Extended

Auxiliary Advanced k = 10 50 100 Average
node feature pooling rank

(1) ✓ ✓ 481.1 ± 31.1 968.5 ± 28.6 1223.2 ± 28.8 1
(2) ✓ 481.1 ± 31.1 968.5 ± 28.8 1223.1 ± 29.0 1.33
(3) ✓ 479.7 ± 30.3 954.7 ± 29.5 1202.2 ± 29.5 3
(4) 479.7 ± 30.3 943.2 ± 29.5 1195.3 ± 29.5 3.67
(b) WannaCry

Auxiliary Advanced k = 10 50 100 Average
node feature pooling rank

(1) ✓ ✓ 991.1 ± 68.0 2123.7 ± 59.1 2753.3 ± 55.7 1.33
(2) ✓ 990.9 ± 68.0 2123.9 ± 59.3 2753.1 ± 56.0 1.67
(3) ✓ 989.1 ± 59.6 2084.6 ± 55.7 2711.7 ± 54.0 3
(4) 989.0 ± 59.6 2082.0 ± 55.5 2705.2 ± 53.6 4
(c) Celebrity

Auxiliary Advanced k = 10 50 100 Average
node feature pooling rank

(1) ✓ ✓ 52.8 ± 6.9 105.1 ± 6.6 155.0 ± 6.6 1.67
(2) ✓ 52.6 ± 6.8 105.2 ± 6.6 155.3 ± 6.6 1.33
(3) ✓ 47.1 ± 7.3 103.1 ± 6.6 153.2 ± 6.6 3
(4) 45.2 ± 6.6 97.4 ± 6.5 147.3 ± 6.5 4
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estimator with our method. Note that GLIE does not compromise the novelty of our 
work, as our conference version (Ko et al. 2020) was published earlier. Similar to our 
methods, GLIE is inductive, allowing a model trained on small (synthetic) graphs to 
be applied to larger (real-world) graphs at test time. However, while GLIE aims to 
estimate the total influence of each seed set by being trained on influence–seed set 
pairs, our methods predict infection probabilities at the node level, using fine-grained 
(i.e., node-level) supervision that leads to more accurate estimation (see Sects. 4.2 
and 4.3 for experimental results). This capability is particularly valuable in applica-
tions where understanding the influence on individual nodes is critical, for exam-
ple, in targeted interventions or personalized marketing strategies. Moreover, while 
GLIE is limited to the IC model, MONSTOR+ is not restricted to the IC model (see 
Appendix A.3).

Machine learning approaches, including GNNs (Qiu et al. 2018; Cao et al. 2020), 
have been used for different but relevant tasks, including predicting the future size 
of a cascade from its initial stage (Shafiq and Liu 2017; Cao et al. 2020) and estimat-
ing the probability that each individual (i.e., node) takes a social action (Qiu et al. 
2018). Especially, GNN-based models have been extensively utilized for epidemic 
forecasting (Panagopoulos et al. 2021; Wang et al. 2022; Xie et al. 2022; Tomy et al. 
2022). In this context, nodes of the input graph represent regions, not individuals, and 
edges indicate geographic adjacency or human mobility. The objective is to predict 
the number of infection cases that accumulate over time at each region, as opposed to 
calculating the number of nodes to be infected. Another relevant task, where GNN-

Table 16 Ablation study. The influence maximization performance (i.e., the influence of output seeds) of 
MONSTOR+ and its variants with missing components under the IC model with JI in test datasets unseen 
during training
(a) Extended

Auxiliary Advanced k = 10 50 100 Average
node feature pooling rank

(1) ✓ ✓ 244.4 ± 16.3 529.4 ± 20.7 707.2 ± 22.5 1.33
(2) ✓ 244.5 ± 16.3 529.3 ± 20.7 707.2 ± 22.5 1.33
(3) ✓ 244.4 ± 16.3 523.4 ± 20.7 695.4 ± 22.8 2.67
(4) 241.8 ± 16.2 515.9 ± 20.9 679.7 ± 22.7 4
(b) WannaCry

Auxiliary Advanced k = 10 50 100 Average
node feature pooling rank

(1) ✓ ✓ 534.1 ± 24.3 1239.0 ± 34.3 1648.2 ± 37.2 1.67
(2) ✓ 534.1 ± 24.2 1239.1 ± 34.3 1648.3 ± 37.3 1.33
(3) ✓ 531.4 ± 23.8 1233.6 ± 34.1 1635.5 ± 37.3 3
(4) 528.7 ± 23.7 1232.7 ± 33.9 1629.9 ± 37.0 4
(c) Celebrity

Auxiliary Advanced k = 10 50 100 Average
node feature pooling rank

(1) ✓ ✓ 43.7 ± 5.8 90.4 ± 6.3 140.5 ± 6.3 1
(2) ✓ 43.7 ± 5.8 90.4 ± 6.3 140.4 ± 6.3 1.33
(3) ✓ 41.9 ± 5.6 89.0 ± 6.2 139.0 ± 6.2 3
(4) 40.0 ± 5.4 87.2 ± 6.1 137.1 ± 6.1 4
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(a) Extended
k = 5 10 30 Average

rank
Target 
Influence

3529.3 ± 291.9 3831.0 ± 
192.6

4140.2 ± 
136.3

-

C-MON+ 
(Proposed)

3540.8 ± 291.7 3832.2 ± 
209.0

4192.2 ± 
121.6

1

Degree 2674.7 ± 191.7 2731.5 ± 
155.1

3721.3 ± 
137.6

3.33

Coreness 2312.4 ± 601.8 2641.1 ± 
232.5

2862.1 ± 
119.6

5

D-SSA 2960.4 ± 473.6 3054.7 ± 
411.6

3534.8 ± 
211.3

3

SSA 2720.6 ± 744.3 3155.6 ± 
319.2

3566.5 ± 
158.3

2.67

(b) WannaCry
k = 5 10 30 Average

rank
Target 
Influence

11485.5 ± 737.7 12032.9 ± 
661.2

12590.1 
± 538.4

-

C-MON+ 
(Proposed)

11489.2 ± 
1028.6

11877.0 ± 
967.7

12659.0 
± 716.4

1

Degree 11048.2 ± 710.5 11294.2 ± 
559.3

11814.3 
± 410.1

3.67

Coreness 11120.9 ± 691.1 11442.7 ± 
563.1

11739.9 
± 433.6

3.33

D-SSA 10900.0 ± 
944.5

11090.7 ± 
826.4

11766.3 
± 500.3

4.67

SSA 11151.5 ± 911.0 11376.2 ± 
618.3

12103.2 
± 457.4

2.33

(c) Celebrity
k = 5 10 30 Average

rank
Target 
Influence

6694.1 ± 265.6 6708.5 ± 
259.6

6716.5 ± 
255.7

-

C-MON+ 
(Proposed)

6633.4 ± 315.4 6713.7 ± 
245.3

6738.1 ± 
242.8

2.33

Degree 6628.4 ± 309.3 6730.3 ± 
223.8

6753.6 ± 
209.8

1.33

Coreness 6531.3 ± 435.6 6721.2 ± 
237.8

6742.9 ± 
222.1

2.33

D-SSA 6399.3 ± 645.1 6607.0 ± 
359.8

6720.8 ± 
248.9

5

SSA 6483.6 ± 477.1 6634.2 ± 
313.1

6721.5 ± 
247.3

4

Table 17 The performance (i.e., 
the influence of output seeds) 
of IM methods under the G-SIR 
model. We mark the best perfor-
mances in bold
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based models have been effective, is to detect fake news based on the topology of 
dynamic diffusion patterns (Han et al. 2020; Sun et al. 2022). There also exist many 
attempts to predict solutions to various NP-hard problems, and our work was greatly 
inspired by them. Solutions for the satisfiability, maximal independent set, minimum 
vertex cover, traveling salesman, and knapsack problems can be predicted by deep 
learning models (Khalil et al. 2017; Manchanda et al. 2019; Bello et al. 2016; Zoph 
and Le 2016).

Table 18 The performance (i.e., the influence of output seeds) of IM methods under the considered dif-
fusion models on the Twitter dataset. We mark the best performances in bold. In some settings, the target 
influence could not be computed within a reasonable time and was therefore omitted
(a) IC model

k = 10 50 100 Average
rank

Target Influence 4816.7 ± 886.0 11898.2 ± 821.3 16730.7 ± 755.2 -
C-MON+ (Inductive) 4811.1 ± 842.0 11977.6 ± 823.3 16896.6 ± 753.1 4.33
C-MON+ (Transductive) 4819.3 ± 887.3 11989.6 ± 818.8 16915.5 ± 755.7 1.33
SSA 3772.3 ± 778.9 11896.1 ± 814.3 16840.3 ± 751.7 6
D-SSA 3991.8 ± 837.5 11845.8 ± 815.6 16904.3 ± 754.5 5.33
TIM 4818.7 ± 886.7 11994.3 ± 821.9 16912.5 ± 756.7 2
IMM 4819.0 ± 886.7 11986.3 ± 823.6 16906.1 ± 755.7 2.67
IRIE 3058.9 ± 726.2 8975.9 ± 828.2 13580.1 ± 764.7 8
PMIA 2007.3 ± 489.0 7886.3 ± 790.6 11761.7 ± 798.5 9
C-GLIE (Inductive) 4097.0 ± 820.1 9659.2 ± 817.0 14335.2 ± 754.5 6.33
(b) LT model

k = 10 50 100 Average
rank

Target Influence 9779.9 ± 2922.2 23822.5 ± 2893.5 Out of Time -
C-MON+ (Inductive) 9720.0 ± 2761.0 23981.6 ± 2865.6 32376.3 ± 2459.6 3.67
C-MON+ (Transductive) 9671.0 ± 2748.3 24009.9 ± 2876.5 32445.7 ± 2454.2 2.67
D-SSA 5878.8 ± 2379.9 23895.7 ± 2883.1 32356.9 ± 2525.4 5.33
SSA 7377.8 ± 2659.1 23893.7 ± 2887.5 32295.6 ± 2520.9 5.67
TIM 9835.3 ± 2904.4 24025.4 ± 2904.1 32481.6 ± 2502.2 1.33
IMM 9839.8 ± 2910.4 24002.4 ± 2880.8 32421.9 ± 2503.3 2.33
(c) GSIR model

k = 5 10 30 Average
rank

Target Influence Out of Time Out of Time Out of Time -
C-MON+ (Inductive) 73376.9 ± 1505.9 73476.7 + 1476.4 74236.9 ± 1361.4 2.67
C-MON+ (Transductive) 73336.1 ± 1502.3 73518.3 ± 1464.7 74368.3 + 1341.9 2
Degree 73225.2 ± 1457.3 73330.2 ± 1514.3 73376.8 ± 1508.0 5
Coreness 71142.1 ± 12347.7 71249.3 ± 12293.1 71295.5 ± 12235.8 6
D-SSA 73235.9 ± 1538.8 73658.7 ± 1422.8 74241.6 ± 1318.7 2.67
SSA 73254.7 ± 1527.2 73683.3 ± 1429.9 74196.5 ± 1336.3 2.67
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6 Conclusions

In this work, we present MONSTOR+, an inductive machine learning approach for 
influence estimation (IE) under the independent cascade (IC) and linear threshold 
(LT) models. We summarize its advantages as follows:

 ● Inductive: Utilizing an inductive machine learning model and features, MON-
STOR+ is able to make predictions for seed-node sets and social networks not 
encountered during training.

 ● Fast and accurate: MONSTOR+ provided near-perfect influence estimation in 
terms of correlation coefficients (Fig. 8). Especially, compared to Monte Carlo 
(MC) simulations, MONSTOR+ was 5 to 3000 times faster for similar estimation 
accuracy (Figs. 6 and 7).

 ● Applicable to influence maximization (IM): IM algorithms equipped with MON-
STOR+, which replaces MC simulations, performed best in 22 out of 27 cases 
under the IC model and in 7 out of 9 cases under the LT model, among the 10 
compared methods (Tables 4-6).

For reproducibility, we make the source code and datasets used in this paper available 
at https://github.com/SojeongKim00/MONSTOR-plus.

A promising future direction is to enhance the scalability of MONSTOR+, par-
ticularly by reducing the cost of its preprocessing step. One approach is to explore 
more scalable feature alternatives to local cycles, whose computation incurs cubic 
time complexity.

Additional experimental results

Influence estimation accuracy

Figure 8 presents scatter plots comparing ground-truth and estimated influences on 
test datasets unseen during training under various diffusion models (refer to Sect. 4.2 
for detailed settings). Figure 9 shows the mean absolute percentage error (MAPE) of 
the influences estimated by MONSTOR+ and repeated MC simulations, with varying 
numbers of repetitions, (refer to Sect. 4.2.2 for detailed settings).

Ablation study

Table 14 shows the mean absolute percentage error (MAPE) of the influences esti-
mated by MONSTOR+ and its variants with missing components in test datasets 
unseen during training. Tables 15 and 16 present the influence maximization per-
formances (i.e., the influence of output seeds) of MONSTOR+ and its variants with 
missing components under the IC model with BT and JI, respectively, in test datasets 
unseen during training. Refer to Sect. 4.4 for detailed settings.
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Extension to another diffusion model

In this section, to show the generality of MONSTOR+, we extend it to another dif-
fusion model: the general Markov chain susceptible-infected-recovered (G-SIR) (Yi 
et al. 2022) model.

The G-SIR model generalizes the classic SIR diffusion process by allowing edge-
specific propagation probabilities. In the original SIR model, the propagation prob-
ability is uniform across all edges, whereas in the G-SIR model, each edge can have a 
distinct propagation probability. Under the G-SIR model, every active node simulta-
neously attempts to infect each of its out-neighbors with the corresponding activation 
probabilities and recovers independently with a recovery rate r. Once the activated 
nodes recover, they remain inactive for the rest of the diffusion process. As long as 
each activated node remains active, it can continue to infect other non-recovered 
nodes. The process continues until no further infections occur.

Support for the G-SIR model (or any diffusion model) is achieved by generating 
training and validation data via Monte Carlo simulations of the corresponding diffu-
sion process. Once the data are obtained, we train and stack our GNN model follow-
ing the pipeline described in Sect. 3.1.

We empirically evaluate the effectiveness of MONSTOR+ under the G-SIR model 
through comparisons with baseline methods. MONSTOR+ is combined with CELF 
as an influence estimator (we refer to the combination as C-MON+); however, its the-
oretical guarantees under the IC and LT models do not hold for the G-SIR model due 
to its non-submodularity. Considering the applicability to the G-SIR model, we use 
the following IM algorithms as competitors under G-SIR model: (1) CELF (Goyal 
et al. 2011a) among simulation-based algorithm as target influence; (2) SSA (Nguyen 
et al. 2016) and D-SSA (Nguyen et al. 2016) among non-simulation based methods, 
and (3) degree and coreness as heuristic methods. For the baselines, we follow the 
settings in the main paper.

In our experiments, the activation probability in the G-SIR model follows the 
weighted cascade model (Kempe et al. 2003), where the weight of each edge from 
node u to v is set to the inverse of the in-degree of v. The recovery rate is chosen 
uniformly at random from the range 0.28 to 0.35. In the G-SIR model, infected nodes 
continue to spread the infection until they recover, resulting in relatively high influ-
ence even with a small number of seeds. To account for this, we use fewer seed nodes 
than in other models and evaluate IM performance with 5, 10, and 30 seeds.

As shown in Table 17, our method (C-MON+) achieved the best performance on 
all datasets except Celebrity. Although it was not the top performer on every individ-
ual dataset, it demonstrated the best overall average performance across all datasets.

Experiments on a large-scale dataset

In this section, we present additional influence maximization (IM) experiments on a 
large-scale dataset, Twitter (Leskovec and Mcauley 2012), available from SNAP (Les-
kovec and Krevl 2014). The dataset consists of 81, 306 nodes and 1, 768, 149 edges.

Since the dataset does not provide (approximate) activation probabilities, we use 
the weighted cascade model (Kempe et al. 2003), in which the activation probability 
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of each edge is set to the reciprocal of the in-degree of the target node, in addition to 
the LT and G-SIR models. For our method, MONSTOR+, we consider two settings: 
(1) the transductive setting, where the model is trained and tested on the Twitter 
dataset, and (2) the inductive setting, where the model is trained on smaller datasets 
(Extended, Celebrity, and WannaCry) and tested on the larger Twitter dataset. The 
detailed settings, including baseline parameters, are kept the same as those used in 
Sect. 4.1.

As shown in Table 18, C-MON+ (i.e., MONSTOR+ applied to CELF for influ-
ence maximization) achieves the best performance in two out of the three diffusion 
models under the transductive setting. In the inductive setting, although C-MON+ is 
outperformed by several sketch-based methods, it significantly outperforms the other 
learning-based method, C-GLIE, under the IC model, where C-GLIE is applicable.
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