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ABSTRACT
We address the multimedia recommendation problem, which uti-
lizes items’ multimodal features, such as visual and textual modali-
ties, in addition to interaction information. While a number of exist-
ing multimedia recommender systems have been developed for this
problem, we point out that none of these methods individually cap-
ture the influence of each modality at the interaction level. More im-
portantly, we experimentally observe that the learning procedures
of existing works fail to preserve the intrinsic modality-specific
properties of items. To address above limitations, we propose an
accurate multimedia recommendation framework, named MARIO,
based on modality-aware attention and modality-preserving de-
coders. MARIO predicts users’ preferences by considering the indi-
vidual influence of each modality on each interaction while obtain-
ing item embeddings that preserve the intrinsic modality-specific
properties. The experiments on four real-life datasets demonstrate
that MARIO consistently and significantly outperforms seven com-
petitors in terms of the recommendation accuracy: MARIO yields
up to 14.61% higher accuracy, compared to the best competitor.
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1 INTRODUCTION
With the development of the Web and storage systems, the amount
of available information is rapidly increasing. In addressing the
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Figure 1: Toy example for the influence of each modality on
each interaction. Note that the influence of each modality
may differ across interactions.

problem of information overload, recommender systems could be a
good solution in various domains, such as e-commerce and social
media. Collaborative filtering (CF), an approach popularly used
in recommender systems, exploits users’ past interactions such
as ratings and click logs for items [2–4, 8, 12, 13, 15, 17, 21, 22].
However, since interaction data are very sparse, CF methods face
a difficulty in accurately capturing the preferences of users and
the properties of items when they are involved with only a few
or no interactions. In order to mitigate this difficulty, many prior
works have exploited not only the interaction information but
also additional information about users and/or items, e.g., social
networks between users [27, 30] and items’ multimodal features [1,
5, 7, 18, 25, 26, 31, 32].

In this paper, we focus on multimedia recommender systems [5,
25, 26, 31, 32], which utilize items’ multimodal features (e.g., visual
and textual modalities) along with interaction information. For
instance, in the fashion domain, images (i.e., visual modality) or user
reviews (i.e., textual modality) for clothes can be regarded as items’
multimodal features. Based on such multimodal features, we can
better understand items’ properties not revealed from interaction
information and thus capture users’ preferences more accurately.

Most multimedia recommender systems [5, 7, 18, 25, 26, 31]
first obtain the pre-trained embeddings of items per modality via
deep learning techniques, e.g., convolutional neural networks [16]
for visual modality and long short-term memory [9] for textual
modality. Then, they learn the embedding of each user and the
embedding of each item, obtained by aggregating the pre-trained
embeddings, using the interaction information. Lastly, they predict
each user’s preference for each item based on their embeddings.

Based on the above procedure, recent studies designed an atten-
tion mechanism to capture the influence of each modality on the
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interactions between users and items. Specifically, GRCN [25] iden-
tifies the user-level influence of each modality on each user when
she/he interacts with items, whereas LATTICE [31] identifies the
global influence of each modality on all users when they interact
with items. However, none of these methods capture the individual
influence of each modality at the interaction level.

Furthermore, we point out a non-trivial but overlooked problem
of existing multimedia recommender systems [7, 18, 25, 26, 31]
in utilizing the multimodal features of items. Note that the pre-
trained embeddings of items from each modality reflect their intrin-
sic modality-specific properties that cannot be captured by interac-
tion information. However, we observe that the learning procedures
of existing works fail to preserve such modality-specific properties
in the final item embeddings. Specifically, they learn the final item
embeddings to be similar to the embeddings of users who inter-
act with the items, by aggregating the pre-trained embeddings for
modalities based on the interaction information. Accordingly, the
final item embeddings significantly lose the intrinsic modality-specific
properties; this observation will be elaborated more in Section 3.
Thus, we claim that the existing works cannot effectively utilize
the multimodal features of items as side information.

In this work, we aim to accurately predict users’ preferences by
considering the influence of each modality on each interaction, as
shown in Figure 1, while obtaining item embeddings that preserve
the intrinsic modality-specific properties. Towards this goal, we
propose MARIO, an accurate multimedia recommendation frame-
work based on Modality-aware Attention and modality-pReservIng
decOders. It consists of three components: (C1) Encoders based on
interaction and multimodal information; (C2) A predictor based on
attention network; (C3) Decoders for modality preservation.

In (C1), MARIO first obtains the visual/textual-modality embed-
dings of each item by encoding its pre-trained embeddings from vi-
sual and textual modalities into embeddings of the same dimension-
ality. Additionally,MARIO obtains the interaction-modality embed-
ding of each item by employing any CF method (e.g., BPRMF [21],
NGCF [24], and LightGCN [8]) that exploits only interaction infor-
mation; note that we regard the interaction information as another
modality in this work. During this process, MARIO obtains the
embedding of each user as well. Here, we highlight that this design
choice makes any CF methods be easily applied toMARIO to utilize
items’ multimodal features. In (C2), MARIO predicts each user’s
preference on each item by considering the influences of the visual,
textual, and interaction modalities together. To this end, we design
a novel modality-aware attention mechanism that individually iden-
tifies the influence of each modality at the interaction level. In (C3),
MARIO reconstructs the pre-trained embeddings by decoding the
modality embeddings obtained in (C1) for modality preservation.

Finally, MARIO learns the embeddings of users and items to
jointly optimize two objectives: the Bayesian personalized ranking
(BPR) loss [21] and the modality preservation (MP) loss. The BPR
loss is for making each user’s predicted preference on rated items
higher than that on unrated items while the MP loss is for preserv-
ing the intrinsic modality-specific properties in the corresponding
modality embeddings of items. By minimizing the above two losses
simultaneously,MARIO can fully utilize rich modality-specific se-
mantics in addition to user-item interaction information.

Our contributions are summarized as follows:

• Observation: We point out two limitations that existing multi-
media recommender systems overlook.

(1) Existing works do not take into account the individual influ-
ence of each modality at the interaction level.

(2) Learning procedures of existing works fail to preserve the in-
trinsic modality-specific properties of items, thereby adversely
affecting the accuracy. To the best of our knowledge, this work
is the first to point out this limitation in the multimedia rec-
ommendation problem.

• General Framework: We propose MARIO, a novel multimedia
recommendation framework based on modality-aware attention
and modality-preserving decoders. MARIO is easily equipped
with any CF methods based on interaction information.
• Extensive Evaluation: We validate the effectiveness of MARIO
through extensive experiments using four real-life datasets.MARIO
outperforms MAML [18], MMGCN [26], GRCN [25], and LAT-
TICE [31] significantly by up to 14.61%, 94.58%, 33.41%, and
17.21%, respectively, in terms of normalized discounted cumula-
tive gain (NDCG) at top-10 recommendation.

2 RELATEDWORK
In this section, we briefly review existing multimedia recommender
systems. The multimedia recommender systems exploit extra infor-
mation of items (e.g., visual and textual modalities) in addition to
interaction information between users and items.

Early works have focused on exploiting a single modality of
items [1, 6, 7, 11, 19, 23, 28, 29]. CTRank [28] employs a topic model
using latent Dirichlet allocation (LDA) to extract textual features of
items and combines it with matrix factorization. VBPR [7] employs
convolutional neural networks (CNNs) to understand visual fea-
tures of items and combines it with Bayesian personalized ranking
(BPR). Many follow-up studies [1, 6, 11, 19, 23, 29] develop deep-
learning-based methods to better capture the intrinsic properties
with respect to textual or visual modalities. However, these methods
cannot simultaneously exploit items’ multimodal features.

Recent multimedia recommender systems [18, 25, 26, 31, 32]
utilize items’ multimodal features simultaneously in addition to
interaction information. JRL [32] utilizes each item’s visual and
textual modalities and interactions to learn the embedding of the
corresponding item and the embeddings of users who interact with
the item via deep learning techniques. MAML [18] predicts each
user’s preference on each item by aggregating the user embedding
and the item embeddings for the visual and textual modalities, in the
Euclidean space. MMGCN [26] builds a modality-aware interaction
graph based on the pre-trained item embeddings for each modality
and captures each user’s modality-specific preference on each item
via graph convolution networks (GCNs) [14] on each modality-
aware interaction graph. Then, it predicts each user’s preference
on each item by aggregating all the modality-specific preferences.
GRCN [25] prunes noisy edges in the user-item interaction graph
based on each user’s modality-specific preferences and employs
GCNs on the refined graph. Lastly, LATTICE [31] enriches the item
embeddings by learning latent item-item relations captured through
modality-specific similarities between items. Then, it considers
them as the item embeddings of downstream CF methods.

However, the aforementioned approaches capture the influence
on each modality only at the user level [25] or global level [31],
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Figure 2: Similarity of item pairs in their (a) visual modality, (b) textual modality, and (c) interaction modality. The magnified
part in each subfigure shows the similarity between the same pairs of items. The results show that, even for the same item pair,
the similarities in their visual modality, textual modality, and interaction modality vary significantly.

instead of capturing the influence finely for each individual in-
teraction. Furthermore, their learning procedures fail to preserve
intrinsic modality-specific properties in the final item embeddings.

3 MOTIVATION
In this section, we demonstrate the limitation of existingmultimedia
recommender systems through experiments using theAmazon-Men
Clothing dataset, which is widely used in multimedia recommenda-
tion researches [5, 7, 18, 31, 32].

First, we analyze the intrinsic modality-specific properties of
items in the Amazon-Men Clothing dataset. To this end, we obtain
the embedding of each item from each modality pre-trained by deep
learning techniques; we employ a deep CNN [10] for visualmodality,
sentence-transformers [20] for textual modality, and LightGCN [8]
for interaction modality.1 Then, for every pair of items, we calculate
the cosine similarity of their item embeddings for each modality,
i.e., visual modality, textual modality, or interaction modality.

Figures 2-(a), -(b), and -(c) show the results from visual modality,
textual modality, and interaction modality, respectively. In every
subfigure, the 𝑖-th row and the 𝑗-th column of colormaps corre-
spond to the 𝑖-th item and 𝑗-the item, and the color of each (𝑖, 𝑗)-th
entry indicates the cosine similarity of the embeddings of the 𝑖-th
and 𝑗-th items. The entries are in neon sky blue if the correspond-
ing similarity is zero, and the enlarged part in a red circle in every
subfigure shows the entries in the same positions, i.e., similarities
of randomly-sampled item pairs. As shown in Figures 2-(a), -(b),
and -(c), the similarities vary across item pairs; even for the same
item pair, the similarities vary across modalities. In order to sta-
tistically validate this claim, we measured the Pearson correlation
coefficient between the similarities obtained by (1) visual and tex-
tual modalities, (2) visual and interaction modalities, and (3) textual
and interaction modalities. As a result, the coefficient values are
surprisingly low, ranging from 0.0195 to 0.2191. The results indicate
that there exist the intrinsic modality-specific properties of items,
which cannot be captured by interaction modality only.

Now, we carefully examinewhether the item embeddings learned
by existingmultimedia recommender systems preserve themodality-
specific properties. To this end, we first obtain the final item em-
beddings from the two state-of-the-art multimedia recommender

1When employing other methods for this purpose, we observed similar tendencies.
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Figure 3: Density function for the differences between the
similarities of the pre-trained item embeddings (obtained
from eachmodality) and the similarities of the final item em-
beddings (obtained byMMGCN and LATTICE). Themodality-
specific properties in the pre-trained embeddings are not
accurately preserved in the final embeddings.

systems, spec., MMGCN [26] and LATTICE [31]. Then, for each
item, we calculate the cosine similarity with every other item by
using their final embeddings obtained by each method, which
we call f-similarities. After that, for each modality, we compare
the f -similarities with the similarities of pre-trained item embed-
dings, which we call p-similarities (see Figures 2-(a) and (b) for
p-similarities). Lastly, for each item, we compute the average differ-
ence between f -similarity and p-similarity with every other item.
The average differences indicate how much the final item embed-
dings of each method lose the intrinsic modality-specific properties
in the pre-trained embeddings. That is, the smaller the differences
are, the better the modality-specific properties are preserved.
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Figure 4: Overview of MARIO, which consists of three components: (C1) Encoders based on interaction and multimodal
information; (C2) A predictor based on attention network; (C3) Decoders for modality preservation.

Figure 3 shows the average differences for visual and textual
modalities. The 𝑥-axis indicates the average differences, and the
𝑦-axis indicates the probability density of each difference value.
Also, the blue and red colors indicate the results for all items and
those for the high-degree items (spec., hub items with more than
38 interactions), respectively; the dotted blue and red lines indicate
the average difference for all items and that for the high-degree
items, respectively. As shown in Figure 3-(a), by MMGCN, the
modality-specific properties of most items are not accurately pre-
served, regardless of the number of their interactions. However, as
shown in Figure 3-(b), when LATTICE is used, the information loss
is aggravated for those items with a high number of interactions.
Note that the embeddings of such items need to become similar
to the embeddings of many users who interacted with them. For
these items, the average difference measured for the visual (textual)
modality is 0.66 (0.72) and 0.41 (0.32), when MMGCN and LATTICE
are used, respectively.

Therefore, we conclude that (1) the final item embeddings of
existing multimedia recommender systems significantly lose the
intrinsic modality-specific properties, and (2) the information loss
is especially severe for the items with many interactions.

4 MARIO: PROPOSED FRAMEWORK
In this section, we propose a novel multimedia recommendation
framework, named MARIO, based on modality-aware attention
and modality-preserving decoders. In Section 4.1, we first define
the multimedia recommendation problem and present the overall
procedure of MARIO. In Sections 4.2 and 4.3, we describe the key
components and learning methods of MARIO in detail, respectively.

4.1 Overview
The multimedia recommendation problem is defined as follows: Let
𝑢𝑖 ∈ U and 𝑣 𝑗 ∈ I denote a user and an item, respectively, where
U and I denote the sets of all users and all items, respectively;
N𝑖 denotes a set of items rated by user 𝑢𝑖 . We denote a user 𝑢𝑖 ’s
embedding as u𝑖 ∈ R𝑑 , where 𝑑 is the dimensionality of the embed-
ding. We denote an item 𝑣 𝑗 ’s (pre-trained) feature embedding with
respect to each modality𝑚 ∈ M as v𝑚

𝑗
∈ R𝑑𝑚 , where 𝑑𝑚 denotes

the dimensionality of the feature embedding andM is the set of
modalities. In this paper, we use visual, textual, and interaction
modalities of each item 𝑣 𝑗 , i.e.,M = {𝑉 ,𝑇 , 𝐼𝑁 }. For each user 𝑢𝑖 ,

Table 1: Key notations used in this paper

Notation Description

U, I Set of users 𝑢𝑖 and the set of items 𝑣𝑗
N𝑖 ,M Set of items rated by 𝑢𝑖 and the set of item modalities
𝑉 ,𝑇 , 𝐼𝑁 Visual, textual, and interaction modalities

u𝑖 , v𝑖 𝑗 Embedding of 𝑢𝑖 and personalized embedding of 𝑣𝑗 w.r.t 𝑢𝑖
v𝑚
𝑗
, v̄𝑚

𝑗
, ṽ𝑚

𝑗
Feature, modality, and recovered feature embeddings of 𝑣𝑗 w.r.t
modality𝑚

𝑑 Dimensionality of 𝑢𝑖 ’s embedding and 𝑣𝑗 ’s modality and per-
sonalized embeddings

𝑑𝑚 Dimensionality of 𝑣𝑗 ’s feature and recovered feature embed-
dings w.r.t modality𝑚

𝑎𝑚
𝑖𝑗

Influence of modality𝑚 on each interaction between 𝑢𝑖 and 𝑣𝑗
𝑟𝑖 𝑗 Preference of 𝑢𝑖 on 𝑣𝑗

the goal is to recommend the top-𝑁 items that are most likely to be
preferred by𝑢𝑖 among her unrated items, i.e.,I\N𝑖 . Note that, while
we focus on three modalities in this paper, if available, additional
modalities (e.g., audio modality) can easily be incorporated.

We present the overall procedure of MARIO (see Figure 4). First,
MARIO obtains each 𝑢𝑖 ’s embedding u𝑖 ∈ R𝑑 and each 𝑣 𝑗 ’s multi-
ple modality embeddings v̄𝑉

𝑗
, v̄𝑇

𝑗
, v̄𝐼𝑁

𝑗
∈ R𝑑 with respect to visual,

textual, and interaction modalities (Figure 4-(a)). Given u𝑖 , v̄𝑉
𝑗
, v̄𝑇

𝑗
,

and v̄𝐼𝑁
𝑗

,MARIO uses an attention network to infer the influence
𝑎𝑚
𝑖 𝑗
of each modality𝑚 on each interaction between𝑢𝑖 and 𝑣 𝑗 . Then,

MARIO obtains 𝑣 𝑗 ’s personalized embedding with respect to 𝑢𝑖 ,
which we denote by v𝑖 𝑗 ∈ R𝑑 , based on the modality-specific in-
fluences (Figure 4-(b)). Based on u𝑖 and v𝑖 𝑗 ,MARIO predicts each
user 𝑢𝑖 ’s preference 𝑟𝑖 𝑗 on each item 𝑣 𝑗 . At the same time, MARIO
uses decoders to preserve each 𝑣 𝑗 ’s modality-specific properties in
its personalized embedding v𝑖 𝑗 (Figure 4-(c)).

Finally, MARIO updates u𝑖 , v̄𝑉
𝑗
, v̄𝑇

𝑗
, and v̄𝐼𝑁

𝑗
aiming to jointly

minimize two losses (Figure 4-(d)): (1) the Bayesian personalized
ranking (BPR) loss for preserving the interaction information of 𝑢𝑖
and 𝑣 𝑗 and (2) the modality preservation (MP) loss for preserving
𝑣 𝑗 ’s modality-specific properties with respect to visual and textual
modalities. Table 1 lists the key notations used in this paper.

4.2 Key Components
In this subsection, we describe the three key components (i.e., en-
coders, a predictor, and decoders) of MARIO in detail.

996



MARIO: Modality-Aware Attention and Modality-Preserving Decoders for Multimedia Recommendation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Encoders.MARIO obtains 𝑑-dimensional embeddings u𝑖 and v𝑗

of user 𝑢𝑖 and item 𝑣 𝑗 by performing a CF method based on the
interaction information. Here, we consider v𝑗 as an interaction-
modality embedding v̄𝐼𝑁

𝑗
that represents 𝑣 𝑗 ’s interaction-specific

property. Note thatMARIO can obtain v̄𝐼𝑁
𝑗

by employing any CF
methods that learn the interaction information; thus, this design
choice makes any CF methods be easily applied toMARIO to utilize
items’ multimodal features. In Section 5, we demonstrate equipping
MARIO with each of three popular CF methods (spec., BPRMF [21],
NGCF [24], and LightGCN [8]) dramatically improves their recom-
mendation accuracy.

Next,MARIO obtains 𝑣 𝑗 ’s visual- and textual-modality embed-
dings v̄𝑉

𝑗
and v̄𝑇

𝑗
that represent its properties with respect to visual

and textual modalities, respectively. To this end,MARIO first en-
codes 𝑣 𝑗 ’s (pre-trained) feature embedding v𝑚

𝑗
for each modality

𝑚 into a 𝑑-dimensional compressed modality embedding v̄𝑚
𝑗
via a

compression layer as follows: ∀𝑚 ∈ M\𝐼𝑁 ,

v̄𝑚𝑗 = v𝑚𝑗 W𝑚, (1)

where W𝑚 ∈ R𝑑𝑚×𝑑 represents a learnable weight matrix of the
compression layer for each modality𝑚.

Then, MARIO enriches v̄𝑚
𝑗
based on the similarities between

𝑣 𝑗 and other items 𝑣𝑝 with respect to each modality 𝑚, which
cannot be captured by interaction modality (see Figure 2). To this
end, we build two types of 𝑘-nearest-neighbor (𝑘NN) item graphs.
Specifically, we calculate the cosine similarities 𝑠𝑚

𝑗𝑝
between 𝑣 𝑗 ’s

feature embedding v𝑚
𝑗
and 𝑣𝑝 ’s feature embedding v𝑚𝑝 , respectively.

Based on 𝑠𝑚
𝑗𝑝
, we construct a set N𝑚

𝑗
that consists of the most

similar 𝑘 items with 𝑣 𝑗 , i.e., neighborhood of 𝑣 𝑗 w.r.t𝑚. In the same
manner, we construct a set N̄𝑚

𝑗
by using 𝑣 𝑗 ’s modality embedding

v̄𝑚
𝑗
and 𝑣𝑝 ’s modality embedding v̄𝑚𝑝 . We repeat these processes

for all items and then build the following two 𝑘NN item graphs as
in [31]: ∀𝑚 ∈ M\𝐼𝑁 ,

A𝑚 =

{
𝑠𝑚
𝑗𝑝
, 𝑣𝑝 ∈ N𝑚

𝑗
,

0, otherwise,
Ā𝑚 =

{
𝑠𝑚
𝑗𝑝
, 𝑣𝑝 ∈ N̄𝑚

𝑗
,

0, otherwise,
(2)

where A𝑚 ∈ R |𝐼 |× |𝐼 | and Ā𝑚 ∈ R |𝐼 |× |𝐼 | represent the adjacency
matrices of the 𝑘NN item graphs based on feature and modality
embeddings with respect to each modality𝑚, respectively. Then,
we combine A𝑚 and Ā𝑚 for each modality𝑚, constructing the final
𝑘NN item graph G𝑚 as follows: ∀𝑚 ∈ M\𝐼𝑁 ,

G𝑚 = 𝜆A𝑚 + (1 − 𝜆)Ā𝑚, (3)

where 𝜆 ∈ (0, 1) indicates a hyperparameter that controls the
weights of A𝑚 and Ā𝑚 .

Now,MARIO enrichs v̄𝑚
𝑗
by applying graph convolutional net-

works (GCNs) to G𝑚 for each modality𝑚: ∀𝑚 ∈ M\𝐼𝑁 ,

(v̄𝑚𝑗 )
𝑙 =

∑︁
𝑣𝑝 ∈N𝑚

𝑗
∪N̄𝑚

𝑗

𝑔𝑚𝑗𝑝 (v̄
𝑚
𝑝 )𝑙−1,

Ḡ𝑚 = (D𝑚)−
1
2 G𝑚 (D𝑚)−

1
2 ,

(4)

where 𝑙 ∈ {1, · · · , 𝐿} represents the 𝑙-th GCNs layer; we set (v̄𝑚
𝑗
)0

as 𝑣 𝑗 ’s modality embedding v̄𝑚
𝑗
with respect to each modality𝑚.2

2We also used 𝑣𝑗 ’s interaction-modality embedding v̄𝐼𝑁
𝑗

for this setting, but
observed no significant improvement of the recommendation accuracy.

Also, D𝑚 ∈ R |𝐼 |× |𝐼 | represents a diagnoal degree matrix of G𝑚 .
Finally,MARIO considers 𝑣 𝑗 ’s embedding (v̄𝑚

𝑗
)𝐿 obtained from the

last 𝐿-th GCNs layer as 𝑣 𝑗 ’s final modality embedding v̄𝑚
𝑗
.

Predictor.MARIO predicts each user 𝑢𝑖 ’s preference 𝑟𝑖 𝑗 on each
item 𝑣 𝑗 based on u𝑖 , v̄𝑉

𝑗
,v̄𝑇

𝑗
, and v̄𝐼𝑁

𝑗
. Here, as mentioned in Sec-

tion 1, we note that the influence of each modality may vary across
interactions. As in the example shown in Figure 1, suppose that
four users 𝑢1, 𝑢2, 𝑢3, and 𝑢4 purchased an iPhone 13 (i.e., 𝑣1). In this
example, a user 𝑢4 purchased the item 𝑣1 because she/he prefers its
spec (i.e., textual modality) while the remaining users 𝑢1, 𝑢2, and
𝑢3 purchased the item 𝑣1 because they prefer its design (i.e., visual
modality). Furthermore,𝑢4 purchased an AirPods 3 (i.e., 𝑣2) because
she/he prefers its design rather than its spec.

For this reason, we design a modality-aware attention mecha-
nism to identify the influence of each modality𝑚 on each interac-
tion between 𝑢𝑖 and 𝑣 𝑗 . Using u𝑖 as a query, and v̄𝑉

𝑗
,v̄𝑇
𝑗
, and v̄𝐼𝑁

𝑗
as

keys and values,MARIO calculates the influence 𝑎𝑚
𝑖 𝑗

of each modal-
ity𝑚 on each interaction between 𝑢𝑖 and 𝑣 𝑗 as follows: ∀𝑚 ∈ M,

𝑎𝑚𝑖 𝑗 =
exp(𝑎𝑚

𝑖 𝑗
)∑

𝑚∈M exp(𝑎𝑚
𝑖 𝑗
) , where 𝑎𝑚𝑖 𝑗 =

u𝑖 ⊙ v̄𝑚
𝑗√

𝑑
, (5)

and ⊙ and
√
𝑑 represent the dot product and the scaling factor,

respectively.
Then,MARIO obtains 𝑣 𝑗 ’s personalized embedding v𝑖 𝑗 with re-

spect to 𝑢𝑖 by fusing 𝑣 𝑗 ’s modality embeddings v̄𝑉
𝑗
,v̄𝑇

𝑗
, and v̄𝐼𝑁

𝑗

based on their attentions 𝑎𝑉
𝑖 𝑗
, 𝑎𝑇

𝑖 𝑗
, and 𝑎𝐼𝑁

𝑖 𝑗
:

v𝑖 𝑗 =
∑︁

𝑚∈M 𝑎𝑚𝑖 𝑗 v̄
𝑚
𝑗 . (6)

Here, we highlight that 𝑣 𝑗 ’s personalized embedding v𝑖 𝑗 with re-
spect to each user 𝑢𝑖 enables to identify which modality𝑚 has the
most influence on the interaction between 𝑢𝑖 and 𝑣 𝑗 . We further
clarify that, unlike MMGCN [26],MARIO does not reflect the in-
teraction information in representing 𝑣 𝑗 ’s modality embeddings
v̄𝑉
𝑗
and v̄𝑇

𝑗
except for v̄𝐼𝑁

𝑗
; instead, the interaction information is

reflected only when MARIO aggregates all the modality embed-
dings v̄𝑉

𝑗
, v̄𝑇

𝑗
, and v̄𝐼𝑁

𝑗
, which are called late fusion. We believe that

this design choice contributes to preserving 𝑣 𝑗 ’s modality-specific
properties in v̄𝑉

𝑗
and v̄𝑇

𝑗
. As a demonstration, in Section 5, we val-

idate that this late fusion is more effective than early fusion (i.e.,
the aggregation strategy of MMGCN) in terms of accuracy.

Finally, MARIO predicts 𝑢𝑖 ’s preference on 𝑣 𝑗 , as follows, and
recommends the most preferred top-𝑁 items to 𝑢𝑖 :

𝑟𝑖 𝑗 = u𝑖 ⊙ v𝑖 𝑗 . (7)

Decoders forModality Preservation. Lastly, we design a decoder
layer to effectively preserve 𝑣 𝑗 ’s modality-specific properties in its
modality embeddings. Recall that MARIO compresses 𝑣 𝑗 ’s feature
embedding v𝑚

𝑗
∈ R𝑑𝑚 with respect to each modality𝑚 ∈ M\𝐼𝑁

into the 𝑑-dimensional embedding via a compression layer, i.e.,
Eq. (1). For each modality 𝑚, MARIO decodes 𝑣 𝑗 ’s compressed
modality embedding v̄𝑚

𝑗
∈ R𝑑 to restore the 𝑑𝑚-dimension of its

feature embedding v𝑚
𝑗
via a decoder layer as follows: ∀𝑚 ∈ M\𝐼𝑁 ,

ṽ𝑚𝑗 = v̄𝑚𝑗 W̄𝑚, (8)
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Algorithm 1 MARIO

Input: (1) users U; (2) items V; (3) items N𝑖 rated by each user 𝑢𝑖 , for
∀𝑢𝑖 ; (4) modalitiesM; (5) feature embeddings v𝑚

𝑗
of each item 𝑣𝑗 , for

∀𝑣𝑗 , ∀𝑚 ∈ M; (6) the number of neighbors 𝑘 used for 𝑘NN graphs; (7) the
maximum number of epochs ℎ
Output: u𝑖 , v̄𝑚

𝑗
, for ∀𝑢𝑖 , ∀𝑣𝑗 , ∀𝑚

1: Initialize u𝑖 , v𝑗 , for ∀𝑢𝑖 , ∀𝑣𝑗
2: for 𝑒𝑝𝑜𝑐ℎ ← 1 to ℎ do
3: u𝑖 , v̄𝐼𝑁

𝑗
= 𝑐 𝑓 _𝑚𝑒𝑡ℎ𝑜𝑑(u𝑖 , v𝑗 , N𝑖 ), for ∀𝑢𝑖 , ∀𝑣𝑗

4: for𝑚 ∈ M\𝐼𝑁 do
5: v̄𝑚

𝑗
← v𝑚

𝑗
W𝑚 , for ∀𝑣𝑗 ⊲ Compression Layer

6: Construct 𝑘NN item graphs for𝑚 via Eq. (2) and Eq. (3)
7: Update v̄𝑚

𝑗
via Eq. (4), for ∀𝑣𝑗 ⊲ GCNs Layer

8: end for
9: Calculate 𝑎𝑚

𝑖𝑗
via Eq. (5), for ∀𝑢𝑖 , ∀𝑣𝑗 , ∀𝑚 ⊲ Attention Network

10: Obtain v𝑖 𝑗 via Eq. (6), for ∀𝑢𝑖 , ∀𝑣𝑗
11: 𝑟𝑖 𝑗 = u𝑖 ⊙ v𝑖 𝑗 , for ∀𝑢𝑖 , ∀𝑣𝑗
12: for𝑚 ∈ M\𝐼𝑁 do ⊲ Decoder Layer
13: ṽ𝑚

𝑗
= v̄𝑚

𝑗
W̄𝑚 , for ∀𝑣𝑗

14: end for
15: Update u𝑖 , v𝑗 , W𝑚 , via Eq. (9), for ∀𝑢𝑖 , ∀𝑣𝑗 , ∀𝑚 ∈ M\𝐼𝑁
16: ⊲ BPR Loss
17: Update W𝑚 , W̄𝑚 via Eq. (10), for ∀𝑚 ∈ M\𝐼𝑁 ⊲ MP Loss
18: end for

where W̄𝑚 ∈ R𝑑×𝑑𝑚 represents a learnable weight matrix of the
decoder layer for each modality𝑚. The 𝑣 𝑗 ’s recovered feature em-
bedding ṽ𝑚

𝑗
with respect to each modality𝑚 is used to preserve

𝑣 𝑗 ’s modality-specific properties in the training process of MARIO,
as elaborated in detail in the following subsection.

4.3 Training
Finally, we learn each user 𝑢𝑖 ’s embedding u𝑖 and each item 𝑣 𝑗 ’s
modality embeddings v̄𝑉

𝑗
,v̄𝑇
𝑗
, and v̄𝐼𝑁

𝑗
with the loss functions below.

Bayesian Personalized Ranking (BPR) Loss. Basically, MARIO
employs the Bayesian personalized ranking (BPR) loss L𝐵𝑃𝑅 to
preserve the interaction information:

L𝐵𝑃𝑅 = −
∑︁

𝑢𝑖 ∈U

∑︁
𝑣𝑗 ∈N𝑖

∑︁
𝑣𝑝 ∈N𝑖 \I

ln 𝜎 (𝑟𝑖 𝑗 − 𝑟𝑖𝑝 ), (9)

where 𝜎 indicates the sigmoid function. That is, the embeddings of
𝑢𝑖 , 𝑣 𝑗 , 𝑣𝑝 are learned based on the intuition that 𝑢𝑖 ’s preference 𝑟𝑖 𝑗
on the rated item 𝑣 𝑗 is likely to be higher than 𝑢𝑖 ’s preference 𝑟𝑖𝑝
on an (randomly-sampled) unrated item 𝑣𝑝 . However, as shown in
Section 3, we observed that when the parameters are learned based
only on the interaction information, the final item embeddings
significantly lose their intrinsic modality-specific properties.
Modality Preservation (MP) Loss. To address this problem,MARIO
additionally uses a modality preservation (MP) loss to preserve 𝑣 𝑗 ’s
modality-specific properties in its modality embeddings. Specifi-
cally, MARIO aims to minimize the difference between 𝑣 𝑗 ’s (pre-
trained) feature embedding v𝑚

𝑗
and 𝑣 𝑗 ’s recovered feature embed-

ding ṽ𝑚
𝑗
(i.e., Eq. (8)) with respect to each modality𝑚 as follows:

L𝑀𝑃 =
∑︁

𝑚∈M\𝐼𝑁

∑︁
𝑣𝑗 ∈I

𝑑𝑚∑︁
𝑓 =1
|v𝑚𝑗 (𝑓 ) − ṽ𝑚𝑗 (𝑓 ) |. (10)

Table 2: Dataset statistics

Dataset # User # Item # Interaction Sparsity Dim. of V / T

Baby 19,445 7,050 160,792 99.88% 4,096 / 1,024
Clothing 4,955 5,028 32,363 99.87% 4,096 / 1,024
Office 4,874 2,406 52,957 99.55% 4,096 / 1,024
Musical 1,429 900 10,261 99.20% 4,096 / 1,024

Note that the interaction modality is not included in the MP
loss becauseMARIO does not assume items’ feature embeddings
obtained from interaction modality. Via the MP loss,MARIO learns
the compression layer (i.e., W𝑚 in Eq. (1)) and the decoder layer (i.e.,
W̄𝑚 in Eq. (8)), aiming to make 𝑣 𝑗 ’s visual- and textual-modality
embeddings v̄𝑉

𝑗
and v̄𝑇

𝑗
preserve the intrinsic modality-specific

properties in feature embeddings v𝑉
𝑗
and v𝑇

𝑗
, respectively. To the

best of our knowledge, the MP loss is the first attempt that ef-
fectively preserves the intrinsic modality-specific properties for
accurate recommendation. We believe that our discovery suggests a
promising direction for the multimedia recommendation problem.
Final Loss. The final loss function of MARIO is as follows:

L = L𝐵𝑃𝑅 + 𝜇L𝑀𝑃 , (11)

where 𝜇 ∈ (0, 1] represents a hyperparameter that controls the
balance betweenL𝐵𝑃𝑅 andL𝑀𝑃 . By jointly optimizing the BPR and
MP losses,MARIO fully utilizes rich modality-specific semantics in
addition to user-item interaction information.

Algorithm 1 sketches the overall procedure of MARIO. First,
MARIO obtains user embeddings u𝑖 and the interaction-modality
embeddings v̄𝐼𝑁

𝑗
of items by employing a CF method (Lines 1-3).

Also, MARIO obtains the visual- and textual-modality embeddings
v̄𝑉
𝑗
and v̄𝑇

𝑗
of items based on their feature embeddings v𝑉

𝑗
and

v𝑇
𝑗
, respectively (Lines 4-8). Next,MARIO builds the personalized

embeddings v𝑖 𝑗 of the items 𝑣 𝑗 with respect to users𝑢𝑖 by fusing the
modality embeddings v̄𝑉

𝑗
, v̄𝑇

𝑗
, and v̄𝐼𝑁

𝑗
based on their attentions 𝑎𝑉

𝑖 𝑗
,

𝑎𝑇
𝑖 𝑗
, and 𝑎𝐼𝑁

𝑖 𝑗
(Lines 9-10). Then,MARIO predicts the preferences 𝑟𝑖 𝑗

of users𝑢𝑖 on the items 𝑣 𝑗 while it decodes the compressed modality
embeddings v̄𝑚

𝑗
to the recovered feature embeddings ṽ𝑚

𝑗
(Lines

11-14). Finally, MARIO updates user embeddings u𝑖 , interaction-
modality embeddings of items v̄𝐼𝑁

𝑗
, and W𝑚 (𝑚 ∈ M\𝐼𝑁 ) based

on the BPR loss (Lines 15-16). In addition, MARIO updates the
parameters W𝑚 and W̄𝑚 (𝑚 ∈ M\𝐼𝑁 ) of the compression layer
and the decoder layer based on the MP loss (Line 17).

5 EVALUATION
We designed our experiments, aiming at answering the following
key research questions (RQs):
• RQ1: DoesMARIO provide more-accurate top-𝑁 recommenda-
tion than state-of-the-art multimedia recommender systems?
• RQ2: Is exploiting all the item modalities under the MARIO
effective for multimedia recommendation?
• RQ3: Are the modality-aware attention network of MARIO ef-
fective for multimedia recommendation?
• RQ4: Does the MP loss of MARIO help modality preservation
and accurate multimedia recommendation?
• RQ5: Does equipping MARIO with different CF methods consis-
tently improve their accuracies?
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Table 3: Accuracies of four multimedia recommender systems and MARIO. The symbol * denotes that 𝒑-values are below 0.05,
indicating the differences are statistically significant. MARIO significantly outperforms all competitors in most cases. That is,
MARIO provides most accurate multimedia recommendation.

Datasets Baby Clothing Office Musical
Metrics NDCG@10 Recall@10 Pre@10 NDCG@10 Recall@10 Pre@10 NDCG@10 Recall@10 Pre@10 NDCG@10 Recall@10 Pre@10
MAML − − − 0.0226 0.0442 0.0044 0.0505 0.0887 0.0112 0.0662 0.1302 0.0134
MMGCN 0.0187 0.0370 0.0039 0.0133 0.0260 0.0026 0.0281 0.0534 0.0067 0.0517 0.0980 0.0101
GRCN 0.0262 0.0468 0.0050 0.0194 0.0355 0.0036 0.0553 0.0845 0.0106 0.0541 0.1068 0.0110

LATTICE 0.0276 0.0503 0.0053 0.0221 0.0404 0.0040 0.0589 0.0902 0.0109 0.0769 0.1459 0.0148
MARIO 0.0300* 0.0539* 0.0056* 0.0259* 0.0484* 0.0048* 0.0583 0.0932* 0.0110 0.0790* 0.1513* 0.0153*

Improvement 8.58% 7.20% 6.81% 14.61% 9.59% 9.09% -0.89% 3.38% -1.47% 2.73% 3.68% 3.30%

Metrics NDCG@20 Recall@20 Pre@20 NDCG@20 Recall@20 Pre@20 NDCG@20 Recall@20 Pre@20 NDCG@20 Recall@20 Pre@20
MAML − − − 0.0289 0.0694 0.0035 0.0628 0.1350 0.0086 0.0822 0.1919 0.0099
MMGCN 0.0249 0.0615 0.0033 0.0168 0.0399 0.0020 0.0375 0.0892 0.0056 0.0692 0.1682 0.0086
GRCN 0.0335 0.0743 0.0040 0.0242 0.0544 0.0027 0.0689 0.1326 0.0084 0.0707 0.1726 0.0089

LATTICE 0.0355 0.0804 0.0042 0.0279 0.0634 0.0032 0.0725 0.1360 0.0083 0.0944 0.2126 0.0109
MARIO 0.0378* 0.0838* 0.0044* 0.0314* 0.0706* 0.0035 0.0728* 0.1418* 0.0086 0.0968* 0.2195* 0.0113*

Improvement 6.58% 4.13% 4.02% 8.50% 1.79% 0.00% 0.38% 4.26% 0.00% 2.53% 3.26% 3.21%
−: out-of-memory

5.1 Experimental Settings
Datasets. We used four real-life Amazon datasets in different cat-
egories, which are widely used in previous studies of multimedia
recommendation [1, 5, 7, 18, 31, 32]: Baby, Men Clothing (Clothing,
in short), Office, and Musical Instruments (Musical, in short). They
contain not only the interaction information between users and
items but also the visual and textual modalities of items. Follow-
ing [18], we filtered out the users and the items with less than
five interactions. For visual and textual modalities, we used the
4,096- and 1,024-dimensional feature embeddings extracted by a
deep CNN [10] and sentence-transformers [20] in the same way
as in [31]. All the datasets are publicly available.3 Table 2 provides
some statistics of the four datasets.
Competitors. To evaluate the effectiveness of MARIO, we com-
pare MARIO with seven competitors. Following [31], we employed
three CF methods as baselines (i.e., BPRMF [21], NGCF [24], and
LightGCN [8]) which exploit the interaction information only. Also,
we used four state-of-the-art multimedia recommender systems,
i.e., MAML [18], MMGCN [26], GRCN [25], and LATTICE [31]. For
evaluation, we used the source code provided by the authors.
Evaluation Task. For testing, we split a dataset into training (80%),
validation (10%), and test (10%) sets in the same way as in [25, 26,
31]. Then, we performed top-10/20 recommendation by using each
method. To evaluate accuracy, we employed the following three
popular measures: precision, recall, and normalized discounted
cumulative gain (NDCG). For all of our experiments, we conducted
𝑡-tests with a 95% confidence level to verify the accuracy differences
between MARIO and competitors. The results in all measures and
all datasets show that all 𝑝-values are below 0.05, indicating the
differences are statistically significant.
Implementation Details. Following [18, 25, 26, 31], for a fair com-
parison, we set the dimensionality of the embeddings for users and
items to 64 in all methods including MARIO. Then, we carefully
tuned the hyperparameters of competitors and MARIO. Specifi-
cally, for hyperparameters of competitors, we used the best settings
found via grid search with the validation set in the following ranges:
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1, 1} for learning rate; {0, 0.00001,

3http://jmcauley.ucsd.edu/data/amazon/links.html

0.0001, 0.001, 0.01, 0.1} for regularization weight; {128, 256, 512,
1024} for the batch size; {0.1, 0.2, ..., 2.0} for the margin in the hinge
loss of MAML; {32, 64, 128} for the dimensionality of latent fea-
ture embeddings of MMGCN; {0, 0.1, ..., 0.8} for the dropout ratio of
LATTICE. ForMARIO, we set its hyperparameters as follows: learn-
ing rate=0.0005 for Baby and Office and 0.005 for other datasets;
regularization weight=0.00001; batch size=1024; 𝑘=10; 𝜆=0.9; 𝜇=1.

5.2 Results
Due to space limitations, for RQ2, RQ3, and RQ4, we omit the
results of MARIO on Baby, Office, and Musical datasets in this
paper. Instead, the details for the omitted results are available at
https://sites.google.com/view/mario-cikm2022.
RQ1: Comparison with Four Competitors. We conducted com-
parative experiments on four datasets to demonstrate the superior-
ity of MARIO over the following four state-of-the-art multimedia
recommender systems: MAML [18], MMGCN [26], GRCN [25],
and LATTICE [31]. For MARIO, we report the results of MARIO
equipped with LightGCN as a CF method. Table 3 shows the results.
The values in boldface and underlined indicate the best and 2nd best
accuracies in each column (i.e., each measure), respectively. Also,
‘Improvement’ indicates the degree of accuracy improvements by
MARIO over the best competitors. Note that, on Baby, the accu-
racies of MAML could not be obtained due to its out-of-memory
issue.4 Below, we summarize the results in Table 3.

First and most importantly,MARIO significantly outperforms all
competitors in almost all cases. Specifically, on Clothing,MARIO
outperforms the best competitor (i.e., MAML) by up to 9.09%, 9.59%,
and 14.61%, in terms of precision@10, recall@10, and NDCG@10,
respectively. Also, on Baby, MARIO outperforms the best competi-
tor (i.e., LATTICE) by up to 6.81%, 7.20%, and 8.58% in terms of
precision@10, recall@10, and NDCG@10, respectively.

Second, among the competitors except for MARIO, no single
method consistently outperforms all others. Best competitors change
depending on datasets and measures: LATTICE in terms of all mea-
sures on Baby and Musical, and in terms of recall and NDCG on
Office; MAML in terms of all measures on Clothing, and in terms of

4All the experiments were conducted in Ubuntu 18.04 LTS running on Nvidia
v100×2ea and 16 vCPUs with 180GB RAM.
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Table 4: The effects of exploiting all the item modalities.
MARIO consistently achieves the best accuracy when it ex-
ploits all the item modalities.

Model NDCG@10 Recall@10 Pre@10

MARIO𝒘/𝒐 V 0.0233 0.0415 0.0042
MARIO𝒘/𝒐 T 0.0243 0.0460 0.0046

MARIO 0.0259 0.0484 0.0048

Table 5: The effects of our attention network. The modality-
aware attention mechanism is most effective.

Model NDCG@10 Recall@10 Pre@10

MARIO𝒎𝒆𝒂𝒏 0.0256 0.0478 0.0048
MARIO𝒎𝒂𝒙 0.0232 0.0429 0.0043
MARIO𝒇 𝒄 0.0117 0.0214 0.0022
MARIO 0.0259 0.0484 0.0048

precision on Office. Note that our work made a direct comparison
between LATTICE and MAML for the first time.

Lastly, we see that MMGCN always shows the lowest accuracy.
While MMGCN uses early fusion (i.e., the interaction information
is reflected when learning the visual- and textual-modality embed-
dings), the remaining methods, includingMARIO, use late fusion.
In this context, the result supports the importance of preserving
the intrinsic modality-specific properties for accurate multimedia
recommendation (as examined in greater detail in RQ4).
RQ2: Effectiveness of Item Modalities. We verify whether, un-
der the MARIO, both visual and textual modalities help capture
users’ preferences accurately. For RQ2, we compareMARIO with
its two variants: (1) MARIO𝑤/𝑜 V does not use visual-modality em-
beddings of items; (2)MARIO𝑤/𝑜 T does not use textual-modality
embeddings of items. As shown in Table 4, MARIO consistently
and significantly outperforms the two variants with all measures.
Specifically,MARIO improves the accuracies of MARIO𝑤/𝑜 V and
MARIO𝑤/𝑜 T, up to 11.38% and 6.51% in terms of NDCG@10, re-
spectively. This result shows that using both visual and textual
modalities is effective in MARIO.
RQ3: Effectiveness of Our Attention Network. In Section 4,
we designed the attention mechanism that infers the influence of
each modality differently on each interaction. For RQ3, we com-
pareMARIO with its three variants: (1)MARIO𝑚𝑒𝑎𝑛 employs the
mean pooling when fusing all modality embeddings of items; (2)
MARIO𝑚𝑎𝑥 employs the max pooling when fusing all modality
embeddings of items; (3) MARIO𝑓 𝑐 employs a fully connected
layer that uses a concatenation of each item’s all modality em-
beddings as an input. Table 5 shows the accuracy of MARIO and its
three variants. We observe thatMARIO consistently outperforms
MARIO𝑚𝑒𝑎𝑛 , MARIO𝑚𝑎𝑥 , and MARIO𝑓 𝑐 . The results show that
it is most effective to use the proposed attention mechanism to
aggregate all modality embeddings of items by considering the
individual influence of each modality at the interaction level.
RQ4: Effectiveness of Our MP Loss. In Section 3, we demon-
strated that the learning procedures of existing works fail to pre-
serve the intrinsic modality-specific properties in final item em-
beddings. To alleviate such a limitation, we designed the MP loss
for modality preservation. To verify its effectiveness, we conduct
experiments to answer the following two subquestions:

Table 6: The average differences between p-similarities
(which are obtained from each modality) and f -similarities
(which are obtained byMMGCN, LATTICE, andMARIO). The
smaller the differences are, the better the modality-specific
properties are preserved. Note that MARIO is most effective
in preserving the intrinsic modality-specific properties.

Modality MMGCN LATTICE MARIO

All Items Visual 0.6111 0.2721 0.2668
Textual 0.6541 0.1961 0.1842

Items with
High-degree

Visual 0.6576 0.4075 0.3062
Textual 0.7221 0.3155 0.2739

• RQ4-1: Do the final item embeddings byMARIO better preserve
the intrinsic modality-specific properties?
• RQ4-2: Does the MP loss help for the accurate multimedia rec-
ommendation?

For RQ4-1, we conducted an experiment in the same way as in
Section 3. Specifically, we compared the cosine similarities (i.e., p-
similarities) for all item pairs based on pre-trained item embeddings,
and those (i.e., f -similarities) based on the final item embeddings
obtained byMARIO. Then, for each item, we compared the average
of the differences between p-similarities and f -similarities over all
other items. Table 6 shows the differences averaged over all items
and those averaged only over high-degree items (spec., items with
more than 38 interactions) in MMGCN, LATTICE, and MARIO.
Due to space limitations, we compareMARIO only with MMGCN
and LATTICE, which were analyzed in Section 3. However, other
methods resulted in tendencies similar to those shown in Table 6.

First, we observe that the differences are always smallest in
MARIO. That is, MARIO is most effective in preserving the in-
trinsic modality-specific properties. Second, the differences are
significantly larger in MMGCN, which performs early fusion, than
in LATTICE and MARIO, which perform late fusion. The results
show that such early fusion harms accurate preservation of the
intrinsic modality-specific properties.

Furthermore, we examine the results for the high-degree items
in detail. Note that, for MMGCN and LATTICE, the information
loss is especially severe for high-degree items, as we mentioned
in Section 3. On the other hand, we observe that the MP loss of
MARIO affects modality preservation more for high-degree items
than for low-degree items. In particular, the differences for visual
modality in MARIO are significantly lower than those in MMGCN
and LATTICE. Recall that, as shown in Figure 2, on Clothing,
the visual-modality-specific property is quite different from the
interaction-modality-specific property, while the textual-modality-
specific property is relatively similar to the interaction-modality-
specific property. Thus, it means that the visual modality is informa-
tive as the additional information, compared to the textual modality;
in this regard, in RQ2, we confirmed that exploiting visual modality
is more effective rather than exploiting textual modality in terms of
recommendation accuracy. From this observation, we expect that
the MP loss of MARIO is more effective when the modality-specific
property cannot be captured by interaction information.

For RQ4-2, we analyze how the accuracy of MARIO depends on
the weight 𝜇 for the MP loss. In Figure 6, the 𝑥-axis represents the
value of 𝜇, and the𝑦-axis does the accuracy.We see that the accuracy
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Figure 5: Accuracies of three CF methods and MARIOs equipped with them. Any CF methods can be easily applied to MARIO

to utilize items’ multimodal features, and by doing so, their accuracies significantly improve.

of MARIO is always the worst when 𝜇=0. Specifically, MARIO
yields up to 6.19%, 6.19%, and 2.31% higher precision@10, recall@10,
and NDCG@10, respectively, when 𝜇 is 1 than when 𝜇 is 0. The
results show that preserving the modality-specific properties is also
effective in improving the accuracy of multimedia recommendation.
RQ5: Effectiveness ofMARIOs Equippedwith Three CFMeth-
ods. MARIO employs a CF method to obtain user embeddings and
interaction-modality embeddings of items. We claimed that this
design choice makes any CF methods be easily applied to MARIO
to utilize items’ multimodal features. To validate this claim, we com-
pare the accuracies of three popular CF methods (i.e., BPRMF [21],
NGCF [24], and LightGCN [8]) which use only the interaction in-
formation, and those of MARIO equipped with them, denoted by
MARIO (BPRMF), MARIO (NGCF), and MARIO (LightGCN).

As shown in Figure 5, the three versions of MARIO consistently
and dramatically outperform BPRMF, NGCF, and LightGCN, respec-
tively, on all datasets in terms of all measures. On Clothing,MARIO
(BPRMF) achieves up to 219.70%, 218.94%, and 215.57% higher pre-
cision@10, recall@10, and NDCG@10, respectively, than BPRMF.
MARIO (NGCF) also yields up to 26.61%, 26.85%, and 23.45% higher
precision@10, recall@10, and NDCG@10, respectively, than NGCF.
Lastly, MARIO (LightGCN) gives 110.53%, 110.53%, and 92.52%
higher precision@10, recall@10, and NDCG@10, respectively, than
LightGCN. Among the three versions,MARIO (LightGCN) achieves
the best accuracy on all datasets in terms of all measures.

The results indicate that equipping MARIO with CF methods
significantly improves their accuracies. In this sense, if better CF
methods would be available, they thus can be employed to enhance
the recommendation accuracy of MARIO.

The experimental results can be summarized as follows: (1)
MARIO consistently and significantly outperforms the state-of-the-
art multimedia recommender systems; (2) our attention network
helps to accurately capture each user’s preferences; (3) our MP loss
helps to preserve the intrinsic modality-specific properties of items;
(4) by being equipped with any CF methods,MARIO significantly
improves their original accuracy.
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Figure 6: The effect of 𝝁 on the accuracies of MARIO. It is
most effective when the value of 𝝁 is 1.

6 CONCLUSIONS
Observation. We pointed out that existing multimedia recom-
mender systems face difficulties in (1) accurately capturing the
individual influence of each modality at the interaction level and (2)
effectively exploiting the intrinsic modality-specific properties of
items. We demonstrated that learning procedures of existing works
fail to preserve the intrinsic modality-specific properties of items.
Framework Design. We proposed an accurate multimedia recom-
mendation framework MARIO based on modality-aware attention
andmodality-preserving decoders. Our framework is designed to be
easily equipped with any CF methods that exploit only interaction
information so that they can utilize items’ multimodal features.
Experiments. We demonstrated that MARIO consistently and
significantly outperforms its seven competitors on four real-life
datasets. Moreover, we validated that MARIO better preserves the
intrinsic properties of item modalities, compared to the state-of-
the-art multimedia recommender systems.
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