
Revisiting LightGCN: Unexpected Inflexibility, Inconsistency, and
A Remedy Towards Improved Recommendation
Geon Lee
KAIST

Seoul, Republic of Korea
geonlee0325@kaist.ac.kr

Kyungho Kim
KAIST

Seoul, Republic of Korea
kkyungho@kaist.ac.kr

Kijung Shin
KAIST

Seoul, Republic of Korea
kijungs@kaist.ac.kr

Abstract
Graph Neural Networks (GNNs) have emerged as effective tools
in recommender systems. Among various GNN models, LightGCN
is distinguished by its simplicity and outstanding performance. Its
efficiency has led to widespread adoption across different domains,
including social, bundle, and multimedia recommendations. In this
paper, we thoroughly examine the mechanisms of LightGCN, focus-
ing on its strategies for scaling embeddings, aggregating neighbors,
and pooling embeddings across layers. Our analysis reveals that,
contrary to expectations based on its design, LightGCN suffers from
inflexibility and inconsistency when applied to real-world data.

We introduce LightGCN++, an enhanced version of LightGCN
designed to address the identified limitations. LightGCN++ incorpo-
rates flexible scaling of embedding norms and neighbor weighting,
along with a tailored approach for pooling layer-wise embeddings
to resolve the identified inconsistencies. Despite its remarkably
simple remedy, extensive experimental results demonstrate that
LightGCN++ significantly outperforms LightGCN, achieving an
improvement of up to 17.81% in terms of NDCG@20. Furthermore,
state-of-the-art models utilizing LightGCN as a backbone for item,
bundle, multimedia, and knowledge-graph-based recommendations
exhibit improved performance when equipped with LightGCN++.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Recommender Systems, Graph Neural Networks, LightGCN

ACM Reference Format:
Geon Lee, Kyungho Kim, and Kijung Shin. 2024. Revisiting LightGCN:
Unexpected Inflexibility, Inconsistency, and A Remedy Towards Improved
Recommendation. In 18th ACM Conference on Recommender Systems (RecSys
’24), October 14–18, 2024, Bari, Italy. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3640457.3688176

1 Introduction & Related Work
Recommender systems are crucial in web applications, assisting
users navigate the vast amount of available information. They pre-
dict user preferences based on interaction patterns between users

This work is licensed under a Creative Commons Attribution
International 4.0 License.

RecSys ’24, October 14–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0505-2/24/10
https://doi.org/10.1145/3640457.3688176

and items, and recently, their capabilities have been remarkably
enhanced by integrating graph neural networks (GNNs) [11].

Among GNN-based recommender systems, LightGCN [6] stands
out for its effectiveness and efficiency, enhancing recommendation
performance by removing complexities unnecessary for recommen-
dation (spec., feature transformation and nonlinearities). Due to its
high efficacy, LightGCN has been widely adopted across various
recommendation domains (e.g., social [15, 25, 31, 32], bundle (i.e.,
itemset) [4, 9, 18, 23], andmultimedia [10, 22, 34] recommendations).
Furthermore, it has been integrated as a fundamental component
in further enhanced methods [12, 16, 17, 24, 30, 33, 36].

Inspired by the broad applicability of LightGCN, we conduct an
in-depth investigation into its core mechanisms. We thoroughly
examine its strategies for scaling embedding norms, aggregating
neighbors, and pooling embeddings across layers. Our analysis
reveals that, when applied to real-world data, LightGCN exhibits
notable inflexibility and inconsistency in its operations, contrary to
expectations based on their formulation. Specifically, we observe
that rigidity in embedding norms leads to inflexible near-uniform
weighting across neighbors and inconsistent disparities between
layers in LightGCN, which may limit its effectiveness.

Building on these insights, we propose LightGCN++, an en-
hanced version of LightGCN. LightGCN++ offers a simple yet pow-
erful remedy, introducing flexibility in norm scaling and neighbor
weighting along with adjustable layer-wise embedding pooling. By
addressing the identified inflexibility and inconsistency of Light-
GCN, our experimental results show that LightGCN++ enhances
recommendation performance across diverse datasets. Notably, the
versatility of LightGCN++ enables its adoption in diverse state-of-
the-art recommendation models across various domains.

In summary, this paper makes the following contributions:

• Analysis and observation.We thoroughly analyze LightGCN
and uncover unexpected inflexibility and inconsistency which
could potentially limit its effectiveness.

• Remarkably simple yet powerful remedy. We develop Light-
GCN++, which introduces flexible norm scaling, neighbor weight-
ing, and adjustable layer-wise pooling for addressing LightGCN’s
limitations while preserving its inherent strengths.

• Experiments. Extensive experiments demonstrate that Light-
GCN++ mitigates LightGCN’s limitations and significantly im-
proves the recommendation performance.

Code and datasets: https://github.com/geon0325/LightGCNpp.

2 Analysis of LightGCN
In this section, we examine LightGCN [6], which is one of the most
successful and widely used GNN-based recommendation models.

https://orcid.org/0000-0001-6339-9758
https://orcid.org/0009-0008-8304-9585
https://orcid.org/0000-0002-2872-1526
https://doi.org/10.1145/3640457.3688176
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3640457.3688176
https://github.com/geon0325/LightGCNpp

RecSys ’24, October 14–18, 2024, Bari, Italy Geon Lee, Kyungho Kim, and Kijung Shin

0 500 1000 1500 2000
| i|

0

200

400

600

800

1000

Un
sc

al
ed

 A
gg

re
ga

te
d

Em
be

dd
in

g
No

rm

k=0 (=0.98)
k=1 (=0.94)
k=2 (=1.00)
k=3 (=1.00)

(a) MovieLens

0 400 800 1200
| i|

0

200

400

600

800

Un
sc

al
ed

 A
gg

re
ga

te
d

Em
be

dd
in

g
No

rm

k=0 (=0.98)
k=1 (=0.93)
k=2 (=0.99)
k=3 (=0.93)

(b) Amazon

Figure 1: The norm of the unscaled aggregated embedding
(
∑
𝑢∈N𝑖

|N𝑢 |−0.5e(𝑘)𝑢) tends to be proportional to the number
of neighbors |N𝑖 | for 𝑘 ≥ 0. The symbol 𝜌 represents the
Pearson correlation coefficient. More results are in [13].

2.1 Review: Definition of LightGCN
We first briefly review two main components of LightGCN.
Aggregation. LightGCN adopts simple neighbor aggregation by
removing feature transformation and non-linear activations. Its
aggregation at each 𝑘th layer is as follows:

e(𝑘+1)
𝑖

=
∑︁
𝑢∈N𝑖

1√︁
|N𝑖 | |N𝑢 |

e(𝑘)𝑢 . (1)

For brevity, we focus on the aggregation rule for item embeddings
(note its symmetry with that for user embeddings). Note that the
symmetric normalization term 1/

√︁
|N𝑢 | |N𝑖 | is used in Eq. (1).

Pooling. After aggregating embeddings through 𝐾 layers, the in-
termediate embeddings from each layer are combined to construct
the final user/item embeddings, which are utilized for making pre-
dictions. Specifically, LightGCN pools embeddings as follows:

e𝑢 =
∑︁𝐾

𝑘=0
𝜔𝑘e

(𝑘)
𝑢 , where 𝜔𝑘 =

1
𝐾 + 1

, ∀𝑘 ∈ {0, 1, · · · , 𝐾}. (2)

This means that mean pooling (i.e., equal importance for each
layer’s embedding) is used to aggregate the embeddings.

2.2 Basic Analysis: Dual Effects of Normalization
Now, we closely examine neighbor aggregation at each layer. The
aggregation rule for each item 𝑖 in Eq. (1) can be rewritten as:

e(𝑘+1)
𝑖

=
1√︁
|N𝑖 |

∑︁
𝑢∈N𝑖

1√︁
|N𝑢 |

e(𝑘)𝑢 , (3)

which we divide its normalization term into two components:
1/
√︁
|N𝑖 | (i.e., left term) and 1/

√︁
|N𝑢 | (i.e., right term). Our anal-

ysis reveals their distinct roles.
Role of the left term. The left term, 1/

√︁
|N𝑖 |, plays a role in scal-

ing the norm of the aggregated embedding e(𝑘+1)
𝑖

. The norm of the
embedding is derived as 1√

|N𝑖 |

∑
𝑢∈N𝑖

1√
|N𝑢 |

e(𝑘)𝑢

, i.e., the norm
of the scaled aggregated embedding is the product of 1/

√︁
|N𝑖 | and

the norm of the unscaled aggregated embedding.
Role of the right term. The right term, 1/

√︁
|N𝑢 |, which is applied

individually to each neighboring user 𝑢 ∈ N𝑖 , determines the “in-
fluence” of each neighbor 𝑢 on 𝑖 . While one might presume that
this explicit term 1/

√︁
|N𝑢 | solely determines the influence of 𝑢, we

argue that such a view overlooks the fact that the norms of user
embeddings (e.g.,

e(𝑘)𝑢

) may vary across users, which implicitly

0 500 1000 1500 2000
| i|

0
100
200
300
400
500
600
700

Un
sc

al
ed

 A
gg

re
ga

te
d

Em
be

dd
in

g
No

rm

=0.0 (=1.00)
=0.5 (=1.00)
=1.0 (=0.99)

(a) MovieLens

0 400 800 1200
| i|

0
100
200
300
400
500

Un
sc

al
ed

 A
gg

re
ga

te
d

Em
be

dd
in

g
No

rm

=0.0 (=0.97)
=0.5 (=0.98)
=1.0 (=0.99)

(b) Amazon

Figure 2: The norm of the unscaled aggregated embedding
(
∑
𝑢∈N𝑖

|N𝑢 |−𝛼e(𝑘)𝑢) tends to be proportional to the number
of neighbors |N𝑖 | for various 𝛼 ’s. The symbol 𝜌 represents a
Pearson correlation coefficient. More results are in [13].

affect the influence. We can rewrite Eq. (3) as follows:

e(𝑘+1)
𝑖

=
1√︁
|N𝑖 |

∑︁
𝑢∈N𝑖

e(𝑘)𝑢

√︁
|N𝑢 |

e(𝑘)𝑢e(𝑘)𝑢

 .
Essentially, the actual influence of each neighbor 𝑢 on 𝑖 is more
accurately described as

e(𝑘)𝑢

/√︁|N𝑢 |, which we refer to as the
effective weight of a neighbor 𝑢. It accounts for both explicit (i.e.,
1/
√︁
|N𝑢 |) and implicit (i.e.,

e(𝑘)𝑢

) influences of the neighbor.
2.3 Primary Empirical Observation
When applied to real-world datasets, we observe a near-linear rela-
tionship between the norms of the unscaled aggregated embeddings
and the numbers of neighbors, as shown in Figure 1, i.e., for 𝑘 ≥ 0, ∑︁

𝑢∈N𝑖

1√︁
|N𝑢 |

e(𝑘)𝑢

 ∝∼ |N𝑖 |, (4)

where ∝∼ denotes a strong positive linear correlation. This property
is further extended to the generalized right term, 1/|N𝑢 |𝛼 . Specifi-
cally,

∑
𝑢∈N𝑖

1
|N𝑢 |𝛼 e

(𝑘)
𝑢

 ∝∼ |N𝑖 | for various 𝛼 values, as shown in
Figure 2. We theoretically explore the potential rationale behind
these observations in [13].

2.4 In-Depth Analysis of LightGCN
In this deeper analysis, we uncover unexpected inflexibility and
inconsistency in the embedding behavior of LightGCN.
How LightGCN scales embedding norms.Based on our primary
observation (Eq. (4)), we derive the norm of the scaled aggregated
embedding e(𝑘+1)

𝑖
, for any 𝑘 ≥ 0, as follows:e(𝑘+1)𝑖

 = 1√︁
|N𝑖 |

 ∑︁
𝑢∈N𝑖

1√︁
|N𝑢 |

e(𝑘)𝑢

 ∝∼ 1√︁
|N𝑖 |

|N𝑖 | =
√︁
|N𝑖 |. (5)

This is empirically confirmed in Figure 3 where the embedding
norms

e(𝑘)
𝑖

 exhibit strong positive linear correlation with
√︁
|N𝑖 |

for 𝑘 ≥ 1. Notably, this property does not hold when 𝑘 = 0, as the
initial embeddings e(0)

𝑖
are not subject to normalization or neighbor

aggregation. This results in inconsistency in norm scaling between
embeddings at𝑘 = 0 and𝑘 ≥ 1, which should be carefully addressed
when pooling embeddings across layers, as discussed later.
How LightGCN aggregates neighbors.As discussed in Section 2.2,
the effective weight of a neighboring user 𝑢 ∈ N𝑖 is

e(𝑘)𝑢

/√︁|N𝑢 |.

Revisiting LightGCN: Unexpected Inflexibility, Inconsistency, and A Remedy Towards Improved Recommendation RecSys ’24, October 14–18, 2024, Bari, Italy

0 10 20 30 40 50
| i|

0

5

10

15

20

Sc
al

ed
 A

gg
re

ga
te

d
Em

be
dd

in
g

No
rm

k=0 (=-0.25)
k=1 (=0.94)
k=2 (=0.82)
k=3 (=1.00)

(a) MovieLens

0 5 10 15 20 25 30 35
| i|

0

5

10

15

20

Sc
al

ed
 A

gg
re

ga
te

d
Em

be
dd

in
g

No
rm

k=0 (=0.12)
k=1 (=0.89)
k=2 (=0.74)
k=3 (=0.93)

(b) Amazon

Figure 3: LightGCN exhibits inconsistency in norm scal-
ing. The norm of the scaled aggregated embedding
(|N𝑖 |−0.5

∑
𝑢∈N𝑖

|N𝑢 |−0.5e(𝑘)𝑢) tends to be proportional to
√︁
|N𝑖 |

when 𝑘 ≥ 1, but not when 𝑘 = 0. The symbol 𝜌 represents a
Pearson correlation coefficient. More results are in [13].

Interestingly, LightGCN’s norm scaling property (Eq. (5)) leads to a
near-uniform effective weight across neighbors when 𝑘 ≥ 1:e(𝑘)𝑢

/√︁|N𝑢 | ∝∼
√︁
|N𝑢 |/

√︁
|N𝑢 | = 1.

This near-uniformity, empirically confirmed in Figure 4, is sur-
prising since one might expect that a higher degree neighbor 𝑢
would have less influence due to the term 1/

√︁
|N𝑢 |. However, when

𝑘 ≥ 1, all neighbors, regardless of their degrees, are aggregated with
nearly identical effective weights. This inflexibility implies that
LightGCN may not properly account for the varying importance of
neighbors, which can be crucial for improving recommendations.
In contrast, when 𝑘 = 0, there is no discernible pattern betweene(𝑘)𝑢

 and √︁|N𝑢 |, and due to the denominator
√︁
|N𝑢 |, the effective

weights tend to decrease with the degree of neighbors.
How LightGCN pools embeddings. LightGCN applies identical
weights to embeddings across layers, meaning it combines embed-
dings at 𝑘 = 0 and 𝑘 ≥ 1 with a fixed weight ratio of 1 : 𝐾 (Eq. (2)).
However, recall the inconsistent norm scaling properties of em-
beddings at 𝑘 = 0 and 𝑘 ≥ 1. This notable disparity indicates that
employing an inflexible ratio in their combination may result in
suboptimal recommendation performance.

3 Proposed Remedy: LightGCN++
Based on our understanding of LightGCN, we present LightGCN++
which retains the core advantages of LightGCN while addressing
its inflexibility and inconsistency encountered in real-world data.
Aggregation. To address the inflexibility in norm scaling and
neighbor weighting of LightGCN, we design LightGCN++’s neigh-
bor aggregation rule as follows:

e(𝑘+1)
𝑖

=
1

|N𝑖 |𝛼
∑︁
𝑢∈N𝑖

1
|N𝑢 |𝛽

e(𝑘)𝑢e(𝑘)𝑢

 , (6)

where 𝛼 and 𝛽 are controllable hyperparameters. Compared to
1/
√︁
|N𝑖 | in LightGCN, the left term 1/|N𝑖 |𝛼 offers more flexibility

in norm scaling. Recall that the norm of the unscaled aggregated
embedding is proportional to the number of neighbors, regardless
of the weight of each neighbor (Figure 2). Thus, the norm of the
scaled aggregated embedding is controllable by 𝛼 , i.e., ∥e(𝑘)

𝑖
∥ ∝∼

|N𝑖 |1−𝛼 for 𝑘 ≥ 1. Each neighbor embedding is normalized before
aggregation, and thus each neighbor 𝑢 is assigned an effective
weight of 1/|N𝑢 |𝛽 . The non-zero term 𝛽 biases the weighting either

101 102 103

| u|

1

2

4

Ef
fe

ct
iv

e
W

ei
gh

t

k = 0
k = 1
k = 2
k = 3

(a) MovieLens

101 102 103 104

| u|

0.5

1

2

4

Ef
fe

ct
iv

e
W

ei
gh

t

k = 0
k = 1
k = 2
k = 3

(b) Amazon

Figure 4: LightGCN exhibits inflexibility in neighbor weight-
ing. The effective weight

e(𝑘)𝑢

/√︁|N𝑢 | of every neighbor 𝑢
tends to be near-uniform for 𝑘 ≥ 1. More results are in [13].

toward low-degree neighbors (𝛽 > 0) or high-degree neighbors
(𝛽 < 0), addressing the inflexible near-uniform weighting issue in
LightGCN. Moreover, the effective weight remains 1/|N𝑢 |𝛽 for both
𝑘 = 0 and 𝑘 ≥ 1, ensuring consistency across all layers. This flexible
and controllable neighbor weighting allows weight distributions to
be finely customized for a target dataset.
Pooling. To account for the aforementioned inconsistency in norm
scaling between embeddings at 𝑘 = 0 and 𝑘 ≥ 1 (Figure 3), Light-
GCN++ adjusts the layer-wise weights for pooling as follows:

e𝑖 = 𝛾e
(0)
𝑖

+ (1 − 𝛾) 1
𝐾

∑︁𝐾

𝑘=1
e(𝑘)
𝑖
, (7)

where 𝛾 ∈ [0, 1] is a adjustable hyperparameter. By adaptively
controlling 𝛾 , we aim to better determine the relative importance
of embeddings at each layer. While LightGCN fixes 𝛾 to 1/(𝐾 + 1),
we show in Section 4 that this may not be the optimal choice.
Comparison with LightGCN enhancements.We compare Light-
GCN++ with recent enhancements to LightGCN [26, 28, 35], which
primarily aim to address the inflexibility in norm scaling of Light-
GCN, for example, by introducing 𝛼 in Eq. (6). Commonly, these
methods do not pay attention to the effective weights of neigh-
bors, which can be expressed as

e(𝑘)𝑢

/|N𝑢 |𝛽 ′ (specifically, AL-
GCN [28] fixes 𝛽′ to 1, AdjNorm [35] constrains 𝛽′ to 1 − 𝛼 , and
SSM-GNN [26] allows flexibility with 𝛽′). Firstly, compared to
the effective weight of 1/|N𝑢 |𝛽 in LightGCN++, which is explicitly
determined by the neighbor popularity |N𝑢 |, the effective weight
of

e(𝑘)𝑢

/|N𝑢 |𝛽 ′ includes e(𝑘)𝑢

, which implicitly affects the in-
fluence and thus results in less controllable effective weights. It
is important to note that, ALGCN [28] and AdjNorm [35] exhibit
inflexible near-uniform effective weights, similar to LightGCN, as
shown empirically in [13]. Secondly, the effective weights of all
these methods are inconsistent at layers 𝑘 = 0 and 𝑘 ≥ 1, especially
due to the arbitrary effective weights at 𝑘 = 0. Thirdly, they all
adopt mean pooling of layer-wise embeddings, and thus do not
address the inconsistency in norm scaling between layers at 𝑘 = 0
and 𝑘 ≥ 1. Lastly, and most importantly, all these methods are
outperformed by LightGCN++, which effectively addresses these
limitations, as empirically demonstrated in Section 4.
Complexity AnalysisWe analyze the complexity of LightGCN++.
Since it does not introduce any extra trainable parameters compared
to LightGCN, its 𝑂 (|V|𝐾𝑑) space complexity remains unchanged.
The time complexity of each phase of LightGCN++ is:

• The time complexity of computing the degree of every node (i.e.,
|N𝑖 |’s and |N𝑢 |’s) is 𝑂 (|E |).

RecSys ’24, October 14–18, 2024, Bari, Italy Geon Lee, Kyungho Kim, and Kijung Shin

Table 1: LightGCN++ consistently and significantly outperforms LightGCN in terms of Recall@20 and NDCG@20. State-of-the-
art methods enhanced with LightGCN++ (i.e., NCL++, SimGCL++, and XSimGCL++) also outperform their counterparts with
LightGCN. For each dataset, the best performance is in bold and the second-best is underlined.

Dataset LastFM MovieLens Gowalla Yelp Amazon
Metric Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
BPRMF [20] 0.2014 0.1891 0.2098 0.2692 0.1335 0.1040 0.0367 0.0301 0.0296 0.0223
NeuMF [7] 0.2182 0.2064 0.2167 0.2737 0.1231 0.0991 0.0375 0.0296 0.0236 0.0178
NGCF [21] 0.2334 0.2190 0.2280 0.2894 0.1364 0.1081 0.0462 0.0369 0.0318 0.0236
LR-GCCF [2] 0.1980 0.1919 0.1651 0.2252 0.0967 0.0829 0.0392 0.0322 0.0167 0.0136
HCCF [27] 0.2242 0.2128 0.2198 0.2881 0.1328 0.1152 0.0627 0.0510 0.0338 0.0256
UltraGCN [19] 0.2494 0.2528 0.2551 0.3172 0.1702 0.1408 0.0625 0.0507 0.0367 0.0278
LightGCL [1] 0.2525 0.2428 0.2344 0.2951 0.1703 0.1425 0.0623 0.0506 0.0418 0.0316
ALGCN [28] 0.2408 0.2318 0.2404 0.3050 0.1635 0.1376 0.0538 0.0435 0.0349 0.0259
AdjNorm [35] 0.2532 0.2434 0.2419 0.3054 0.1635 0.1344 0.0554 0.0448 0.0379 0.0282
SSM-GNN [26] 0.2612 0.2523 0.2515 0.3124 0.1639 0.1380 0.0602 0.0491 0.0373 0.0278
LightGCN [6] 0.2523 0.2427 0.2392 0.3010 0.1683 0.1426 0.0553 0.0449 0.0367 0.0274
LightGCN++ 0.2715** 0.2624** 0.2616** 0.3275** 0.1739** 0.1469** 0.0650** 0.0529** 0.0394** 0.0294**
Improvement 7.60% 8.11% 9.36% 8.80% 3.32% 3.01% 17.54% 17.81% 7.35% 7.29%
NCL [16] 0.2548 0.2453 0.2401 0.3027 0.1704 0.1430 0.0584 0.0475 0.0393 0.0293
NCL++ 0.2721** 0.2632** 0.2621** 0.3285** 0.1759** 0.1478** 0.0678** 0.0553** 0.0424** 0.0315**
Improvement 6.78% 7.29% 9.16% 8.52% 1.87% 1.81% 16.09% 16.42% 7.88% 7.50%
SimGCL [33] 0.2602 0.2494 0.2584 0.3217 0.1703 0.1424 0.0650 0.0528 0.0415 0.0314
SimGCL++ 0.2723** 0.2617** 0.2615** 0.3276** 0.1704 0.1431 0.0657** 0.0536** 0.0444** 0.0334**
Improvement 4.65% 4.93% 1.19% 1.83% 0.05% 0.49% 1.07% 1.70% 6.98% 6.36%
XSimGCL [30] 0.2614 0.2508 0.2600 0.3245 0.1678 0.1400 0.0651 0.0528 0.0397 0.0298
XSimGCL++ 0.2738** 0.2638** 0.2613 0.3270* 0.1705** 0.1432** 0.0674** 0.0549** 0.0454** 0.0342**
Improvement 4.74% 5.18% 0.50% 0.77% 1.60% 2.28% 3.53% 3.97% 14.35% 14.76%

Table 2: LightGCN++ enhances recommendation performance across various domains, specifically, bundle, multimedia, and
knowledge graph recommendations, demonstrating its versatility and applicability.

(a) Bundle Recommendation

Dataset Youshu NetEase iFashion

CrossCBR [18] 0.1584 0.0359 0.0778
CrossCBR++ 0.1625** 0.0361 0.0847**
Improv. 2.58% 0.55% 8.88%

(b) Multimedia Recommendation

Dataset Clothing Sports Baby

LATTICE [34] 0.0316 0.0428 0.0364
LATTICE++ 0.0322 0.0463** 0.0402**
Improv. 1.90% 8.18% 10.44%

(c) Knowledge Graph Recommendation

Dataset Yelp Amazon MIND

KGCL [29] 0.0470 0.0737 0.0519
KGCL++ 0.0475 0.0782** 0.0551**
Improv. 1.06% 6.11% 6.17%

• While LightGCN takes 𝑂 (|E |𝐾𝑑) time for neighborhood aggre-
gation and 𝑂 (|V|𝐾𝑑) time for layer-wise pooling. LightGCN++
additionally requires embedding normalization at each layer, with
a time complexity of 𝑂 (|V|𝐾𝑑) in total.

• The time complexity of computing the BPR loss is 𝑂 (|E |𝑑).

4 Experimental Results
In this section, we review our experiments, whose results support
the effectiveness of LightGCN++.

4.1 Experimental Settings
Datasets. We use five benchmark datasets: LastFM [8], Movie-
Lens [5], Gowalla [3, 14], Yelp [6, 16], and Amazon [6, 16]. Each is
divided into training, validation, and test sets using a ratio of 7:1:2.
Baselines. We evaluate LightGCN++ and various recommender
systems, including state-of-the-artmethods: BPRMF [20], NeuMF [7],
NGCF [21], LR-GCCF [2], HCCF [27], UltraGCN [19], LightGCL [1],
ALGCN [28], AdjNorm [35], SSM-GNN [26], LightGCN [6], NCL [16],
SimGCL [33], and XSimGCL [30]. Specifically, NCL, SimGCL, and
XSimGCL employ LightGCN as their backbone.
Implementations. LightGCN++ is implemented based on the offi-
cial PyTorch source code of LightGCN. The embedding dimension
is set to 64, the batch size is set to 2,048, and the learning rate is set
to 0.001 with a regularization coefficient of 0.0001. We tune 𝛼 , 𝛽 ,

and 𝛾 for each dataset using validation sets. For GNN-based models,
including LightGCN++, we set the number of layers 𝐾 to 2.
Evaluation metrics.Weuse twometrics, NDCG@𝑁 and Recall@𝑁
to evaluate top-𝑁 recommendations. We set 𝑁 to 20, unless other-
wise stated, and results for 𝑁 = 10 and 𝑁 = 40 are in [13]. In each
setting, we conduct ten trials and report the average performance.
Details. Refer to [13] for more detailed experimental settings.

4.2 Experimental Results
We conduct comparative analyses on five datasets to evaluate the
recommendation performance of LightGCN++ and its integration
with state-of-the-art methods. In Tables 1 and 2, * and ** indicates
that 𝑝 < 0.01 and 𝑝 < 0.001, respectively, for a one-tailed t-test.
Accuracy. First, as shown in Table 1, LightGCN++ consistently
and significantly outperforms LightGCN across all datasets. This
indicates that LightGCN++, by effectively addressing the empirical
inflexibility and inconsistency of LightGCN, is capable of yield-
ing more accurate recommendations. Additionally, we evaluate
the performance of state-of-the-art methods that use LightGCN as
their backbone model after replacing it with LightGCN++. They
are named NCL++, SimGCL++, and XSimGCL++. Integrating Light-
GCN++ leads to improved performance for these models across all
datasets. In addition, LightGCN++ and the methods integrate it con-
sistently secure the top two ranks among the compared methods,
demonstrating the effectiveness of LightGCN++.

Revisiting LightGCN: Unexpected Inflexibility, Inconsistency, and A Remedy Towards Improved Recommendation RecSys ’24, October 14–18, 2024, Bari, Italy

LightGCN

LightGCN++

G1 G2 G3 G4 G50.00
0.05
0.10
0.15
0.20
0.25
0.30

ND
CG

@
20

(a) LastFM
G1 G2 G3 G4 G50.0

0.1
0.2
0.3
0.4
0.5
0.6

ND
CG

@
20

(b) MovieLens
G1 G2 G3 G4 G50.00

0.05
0.10
0.15
0.20
0.25
0.30

ND
CG

@
20

(c) Gowalla
G1 G2 G3 G4 G50.00

0.02
0.04
0.06
0.08
0.10

ND
CG

@
20

(d) Yelp
G1 G2 G3 G4 G50.000

0.005
0.010
0.015
0.020
0.025
0.030
0.035

ND
CG

@
20

(e) Amazon

Figure 5: LightGCN++ providesmore accurate recommendations for users with varying levels of sparsity, compared to LightGCN.

Table 3: Each design choice in LightGCN++ contributes to its
improved performance (in terms of NDCG@20).

Dataset LastFM MovieLens Gowalla Yelp Amazon
LightGCN 0.2427 0.3010 0.1426 0.0449 0.0274

LightGCNw/o 𝛼
++ 0.2580 0.3275 0.1435 0.0498 0.0291

LightGCNw/o 𝛽
++ 0.2536 0.3275 0.1463 0.0516 0.0280

LightGCNw/o 𝛾
++ 0.2614 0.3217 0.1436 0.0507 0.0282

LightGCN++ 0.2624 0.3275 0.1469 0.0529 0.0294

Versatility.We evaluate LightGCN++ across different recommen-
dation domains: bundle, multimedia, and knowledge graph. By
replacing LightGCN used in CrossCBR [18], LATTICE [34], and
KGCL [29], with LightGCN++, we enhance them to CrossCBR++,
LATTICE++, and KGCL++. As shown in Table 2, LightGCN++ en-
hances the performance of these models in their respective domains,
demonstrating the versatility and applicability of LightGCN++. Fur-
thermore, following [1], we classify users into five groups (G1 to
G5) based on their degrees. Each group has the same degree sum,
with G1 representing users with the highest degrees and G5 repre-
senting those with the lowest. As shown in Figure 5, LightGCN++
consistently outperforms LightGCN across all user groups. This
indicates that LightGCN++ is proficient at recommending items to
users with varying levels of interactions.
Effectiveness. To verify the effectiveness of each design choice of
LightGCN++, we assess the performance of the following variants:

• LightGCNw/o 𝛼
++ uses a fixed value of 𝛼 = 0.5 in Eq. (6), i.e.,

without flexible embedding norm scaling.
• LightGCNw/o 𝛽

++ uses a fixed value of 𝛽 = 0 in Eq. (6), i.e., without
flexible neighbor weighting.

• LightGCNw/o 𝛾
++ uses a fixed value of 𝛾 = 1/(𝐾 + 1), i.e., mean-

pooling, without flexible layer-wise embedding pooling.

As shown in Table 3, LightGCN++ outperforms all its variants,
confirming the efficacy of LightGCN++’s design choices.
Parameter analysis. We examine the influence of the control-
lable hyperparameters 𝛼 , 𝛽 , and 𝛾 on the performance of Light-
GCN++. In Figure 6, we evaluate the performance of LightGCN++
for 𝛼 ∈ {0.0, 0.1, · · · , 1.0}, 𝛽 ∈ {−0.25,−0.2, · · · , 0.25}, and 𝛾 ∈
{0.0, 0.1, · · · 1.0}. Our observations indicate that the impact of the
values of 𝛼 , 𝛽 , and 𝛾 varies across datasets, and thus their flexible
and proper adjustment is crucial for improved recommendation. In
[13], we offer more results and potential rationales for the chosen
hyperparameters in relation to the graph structure.
Speed.We evaluate the speed of LightGCN++. As shown in Table 4,
LightGCN++ is marginally slower than LightGCN, with an increase
in runtime ranging from 0.08% to 5.29%, as we can expect from our
complexity analysis in Section 3. 1
1Experiments were conducted on a computer with RTX 3090Ti GPUs.

Recall@20 NDCG@20

0.0 0.2 0.4 0.6 0.8 1.0
0.10
0.15
0.20
0.25
0.30

(a) MovieLens (𝛼)

0.2 0.0 0.2
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32

(b) MovieLens (𝛽)

0.0 0.2 0.4 0.6 0.8 1.0
0.22
0.24
0.26
0.28
0.30
0.32

(c) MovieLens (𝛾)

0.0 0.2 0.4 0.6 0.8 1.0
0.015
0.020
0.025
0.030
0.035
0.040

(d) Amazon (𝛼)

0.2 0.0 0.2
0.026
0.028
0.030
0.032
0.034
0.036
0.038
0.040

(e) Amazon (𝛽)

0.0 0.2 0.4 0.6 0.8 1.0
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350
0.0375
0.0400

(f) Amazon (𝛾)

Figure 6: The controllable hyperparameters 𝛼 , 𝛽 , and 𝛾 have
varying impacts on different datasets, indicating the impor-
tance of their flexible and adaptive adjustment.

Table 4: Runtime (in seconds) of LightGCN and LightGCN++
per epoch. LightGCN++ is marginally slower than LightGCN.

Dataset LightGCN LightGCN++ Increase
LastFM 0.9137 0.9345 2.27 %
MovieLens 10.0144 10.0232 0.08 %
Gowalla 13.2507 13.3094 0.44 %
Yelp 21.2809 22.0242 3.49 %
Amazon 46.2871 48.7372 5.29 %

5 Conclusions
In this paper, we conduct an in-depth analysis of LightGCN. Our
analysis reveals that, contrary to expectations based on its math-
ematical formulation, LightGCN suffers from notable inflexibility
and inconsistency when applied to real-world data. In response,
we develop LightGCN++, a remedy that incorporates flexible ad-
justments in embedding norm scaling, neighbor weighting, and
layer-wise pooling. Through extensive experiments, we demon-
strate that LightGCN++ significantly outperforms LightGCN and
enhances LightGCN-based models across multiple domains.
Acknowledgements. This research was supported in part by the
NAVER-Intel Co-Lab. The work was conducted by KAIST and re-
viewed by both NAVER and Intel. This work was supported by
Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government (MSIT)
(No. RS-2019-II190075, Artificial Intelligence Graduate School Pro-
gram (KAIST)).

RecSys ’24, October 14–18, 2024, Bari, Italy Geon Lee, Kyungho Kim, and Kijung Shin

References
[1] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2022. LightGCL: Simple

Yet Effective Graph Contrastive Learning for Recommendation. In ICLR.
[2] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting

graph based collaborative filtering: A linear residual graph convolutional network
approach. In AAAI.

[3] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and Mobility:
User Movement In Location-Based Social Networks. In KDD.

[4] Xiaoyu Du, Kun Qian, Yunshan Ma, and Xinguang Xiang. 2023. Enhancing Item-
level Bundle Representation for Bundle Recommendation. ACM Transactions on
Recommender Systems (2023).

[5] F. Maxwell Harper and Joseph A Konstan. 2015. The MovieLens Datasets: History
and Context. ACM Transactions on Interactive Intelligent Systems 5, 4 (2015), 1–19.

[6] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In SIGIR.

[7] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW.

[8] Cantador Iván, Brusilovsky Peter, and Kuflik Tsvi. 2011. Second Workshop on
Information Heterogeneity and Fusion in Recommender Systems. In RecSys.

[9] Kyungho Kim, Sunwoo Kim, Geon Lee, and Kijung Shin. 2024. Towards Better
Utilization of Multiple Views for Bundle Recommendation. In CIKM.

[10] Taeri Kim, Yeon-Chang Lee, Kijung Shin, and Sang-Wook Kim. 2022. MARIO:
Modality-Aware Attention and Modality-Preserving Decoders for Multimedia
Recommendation. In CIKM.

[11] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[12] Geon Lee, Kyungho Kim, and Kijung Shin. 2024. Post-Training Embedding
Enhancement for Long-Tail Recommendation. In CIKM.

[13] Geon Lee, Kyungho Kim, and Kijung Shin. 2024. Revisiting LightGCN: Unex-
pected Inflexibility, Inconsistency, and A Remedy Towards Improved Recommen-
dation (Supplementary Document). https://github.com/geon0325/LightGCNpp/
blob/main/supplementary_document.pdf.

[14] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-
eling User Exposure in Recommendation. In WWW.

[15] Jie Liao, Wei Zhou, Fengji Luo, Junhao Wen, Min Gao, Xiuhua Li, and Jun Zeng.
2022. SocialLGN: Light graph convolution network for social recommendation.
Information Sciences 589 (2022), 595–607.

[16] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving
graph collaborative filtering with neighborhood-enriched contrastive learning.
In WWW.

[17] Fan Liu, Zhiyong Cheng, Lei Zhu, Zan Gao, and Liqiang Nie. 2021. Interest-aware
message-passing gcn for recommendation. In WWW.

[18] Yunshan Ma, Yingzhi He, An Zhang, Xiang Wang, and Tat-Seng Chua. 2022.
CrossCBR: cross-view contrastive learning for bundle recommendation. In KDD.

[19] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.
2021. UltraGCN: ultra simplification of graph convolutional networks for recom-
mendation. In CIKM.

[20] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.

[21] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR.

[22] Yinwei Wei, Wenqi Liu, Fan Liu, Xiang Wang, Liqiang Nie, and Tat-Seng Chua.
2023. Lightgt: A light graph transformer for multimedia recommendation. In
SIGIR.

[23] Yinwei Wei, Xiaohao Liu, Yunshan Ma, Xiang Wang, Liqiang Nie, and Tat-Seng
Chua. 2023. Strategy-aware bundle recommender system. In SIGIR.

[24] Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, and Tat-Seng
Chua. 2021. Contrastive learning for cold-start recommendation. In MM.

[25] Jiahao Wu, Wenqi Fan, Jingfan Chen, Shengcai Liu, Qing Li, and Ke Tang. 2022.
Disentangled Contrastive Learning for Social Recommendation. In CIKM.

[26] Jiancan Wu, Xiang Wang, Xingyu Gao, Jiawei Chen, Hongcheng Fu, Tianyu Qiu,
and Xiangnan He. 2022. On the effectiveness of sampled softmax loss for item
recommendation. ACM Transactions on Information Systems 42, 4 (2022), 1–26.

[27] Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, and Jimmy Huang.
2022. Hypergraph contrastive collaborative filtering. In SIGIR.

[28] Ronghai Xu, Haijun Zhao, Zhi-Yuan Li, and Chang-Dong Wang. 2023. ALGCN:
Accelerated Light Graph Convolution Network for Recommendation. InDASFAA.

[29] Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. 2022. Knowledge
graph contrastive learning for recommendation. In SIGIR.

[30] Junliang Yu, Xin Xia, Tong Chen, Lizhen Cui, Nguyen Quoc Viet Hung, and
Hongzhi Yin. 2024. XSimGCL: Towards extremely simple graph contrastive
learning for recommendation. IEEE Transactions on Knowledge and Data Engi-
neering 36, 2 (2024), 913–926.

[31] Junliang Yu, Hongzhi Yin, Min Gao, Xin Xia, Xiangliang Zhang, and Nguyen Quoc
Viet Hung. 2021. Socially-aware self-supervised tri-training for recommendation.
In SIGIR.

[32] Junliang Yu, Hongzhi Yin, Jundong Li, Min Gao, Zi Huang, and Lizhen Cui.
2020. Enhancing social recommendation with adversarial graph convolutional
networks. IEEE Transactions on Knowledge and Data Engineering 34, 8 (2020),
3727–3739.

[33] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung
Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive
learning for recommendation. In SIGIR.

[34] Jinghao Zhang, Yanqiao Zhu, Qiang Liu, Shu Wu, Shuhui Wang, and Liang Wang.
2021. Mining latent structures for multimedia recommendation. In MM.

[35] Minghao Zhao, Le Wu, Yile Liang, Lei Chen, Jian Zhang, Qilin Deng, Kai Wang,
Xudong Shen, Tangjie Lv, and Runze Wu. 2022. Investigating accuracy-novelty
performance for graph-based collaborative filtering. In SIGIR.

[36] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. 2021.
Disentangling user interest and conformity for recommendation with causal
embedding. In WWW.

https://github.com/geon0325/LightGCNpp/blob/main/supplementary_document.pdf
https://github.com/geon0325/LightGCNpp/blob/main/supplementary_document.pdf

	Abstract
	1 Introduction & Related Work
	2 Analysis of LightGCN
	2.1 Review: Definition of LightGCN
	2.2 Basic Analysis: Dual Effects of Normalization
	2.3 Primary Empirical Observation
	2.4 In-Depth Analysis of LightGCN

	3 Proposed Remedy: LightGCN++
	4 Experimental Results
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusions
	References

