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Abstract

Do real-world hypergraphs obey any patterns? Are power laws fun-
damental in hypergraphs as they are in real-world graphs? What
generator can reproduce these patterns? A hypergraph is a gen-
eralization of a conventional graph, and it consists of nodes and
hyperedges, with each hyperedge joining any number of nodes.
Hypergraphs are adept at representing group interactions where
two or more entities interact simultaneously, such as collaborative
research and group discussions. In a wide range of real-world hy-
pergraphs, we discover power-law or log-logistic distributions in
eight structural properties. To simulate these observed patterns, we
introduce HyRec, a tractable and realistic generative model lever-
aging the Kronecker product. We mathematically demonstrate that
HyRec accurately reproduces both the patterns we observed and
typical evolutionary trends found in real-world hypergraphs. To
fit the parameters of HyRec to large-scale hypergraphs, we design
SingFit, a fast and space-efficient algorithm successfully applied
to eleven real-world hypergraphs with up to one million nodes and
hyperedges. This paper makes the following contributions: (a) Dis-
coveries: we identify multiple patterns that real-world hypergraphs
obey, (b) Model: we propose HyRec, a tractable and realistic model
capable of reproducing real-world hypergraphs efficiently (spec.,
with fewer than 1,000 parameters) with the support of SingFit, and
(c) Proofs: we prove that HyRec adheres to these patterns.

CCS Concepts

• Information systems→ Data mining.

Keywords

Hypergraph, Structural pattern, Generativemodel, Kronecker graph

ACM Reference Format:

Minyoung Choe, Jihoon Ko, Taehyung Kwon, Kijung Shin, and Christos
Faloutsos. 2025. Kronecker Generative Models for Power-Law Patterns in
Real-World Hypergraphs. In Proceedings of the ACM Web Conference 2025
(WWW ’25), April 28-May 2, 2025, Sydney, NSW, Australia. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3696410.3714893

This work is licensed under a Creative Commons Attribution 4.0 International License.
WWW ’25, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1274-6/25/04
https://doi.org/10.1145/3696410.3714893

1 Introduction

In the real world, group interactions, such as collaborative research,
co-purchases of items, and group discussions on online platforms,
are prevalent. These are well-represented by hypergraphs, where
each hyperedge indicates a group interaction as a subset of nodes
of any size. Hypergraphs extend conventional graphs, overcoming
their limitation of exclusively modeling pairwise interactions.

What patterns or “laws” shape the structure of real-world hyper-
graphs? While power laws are fundamental in real-world graphs
[15, 19], are they also prevalent in hypergraphs? To answer this, we
analyze eight power-law properties across eleven real-world hyper-
graphs. First, we confirm the presence of power laws in previously
identified heavy-tailed distributions, specifically for node pair de-
grees and hyperedge intersection sizes in hypergraphs [13, 24, 27],
by applying linear regression fitting on a log-log scale. We also
reveal that the slopes of these linear regressions are consistent
within the same domains. Then, we find that the distributions of
node degrees and hyperedge sizes follow log-logistic distributions,
which are mathematically closely related to power laws. Lastly, we
uncover new power-law patterns related to clustering coefficients,
density, and overlap[27] in hypergraphs.

What mechanisms underlie the complex structures of real-world
hypergraphs, and how can we effectively model them? Inspired by
the Kronecker graph model [29], a successful generative model for
conventional graphs, we introduce HyRec, a new generative model
for hypergraphs. In essence, it yields an incidence matrix, indicating
which nodes belong to which hyperedges, through the Kronecker
power of a small-sized initiator matrix. We mathematically prove
that HyRec yields five structural properties following multinomial
distributions, which can mimic power-law and log-logistic distribu-
tions [4, 10, 29], and simulates evolutionary patterns of real-world
hypergraphs, such as densification and shrinking diameters [24].

Since HyRec generates hypergraphs using Kronecker products
of the initiator matrix, finding the most suitable initiator matrix
to accurately reflect a specific real-world hypergraph is critical for
the model’s success. This poses significant challenges, including
(C1) identifying node correspondences, (C2) ensuring differentiable
generation, and (C3) maintaining computational cost feasible. To
address these challenges, we propose SingFit, a fast and space-
efficient fitting algorithm for HyRec. SingFit (S1) circumvents the
node correspondence issue by aligning singular values, instead
of hyperedge occurrences, (S2) employs Gumbel-Softmax [20] for
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Table 1: Comparison of Hypergraph Generative Models.

Our HyRec is the only model that matches all the specs.

HyperCL is labeled as ‘?’ since only analysis of node degrees

and hyperedge sizes is available for it.

No Size Theoretical Not Requiring Extra-

Capability Limit Analysis Detailed Statistics polation

HyperCL [27] ✔ ?

HyperFF [24] ✔ ✔ ✔
HyperPA [13] ✔
HyperLAP [27] ✔
THera [21] ✔ ✔

HyRec ✔ ✔ ✔ ✔

continuous approximation of sampling to ensure differentiability,
and (S3) leverages Kronecker product properties by dividing the
full-matrix sampling into smaller matrices, reducing both space
and time requirements.

In various real-world hypergraphs,HyRec, facilitated by SingFit,
demonstrates its efficacy in two practical scenarios: (1) Fitting: gen-
erating hypergraphs that closely replicate real-world hypergraphs
with minimal parameters, and (2) Extrapolation: forecasting their
future growth, offering insights into potential evolutionary trends.
Our contributions are as follows:

• Discoveries: We find out that real-world hypergraphs exhibit
power-law or log-logistic distributions in various properties.
• Model: We propose HyRec, a tractable generative model that
accurately replicates real-world hypergraph properties with a
small number of parameters.
• Proofs: We mathematically prove that HyRec is able to replicate
the discovered realistic power-law and log-logistic distributions
(see Theorem 1 and 2 in Section 5).

For reproducibility, our code and data are available at https:
//github.com/young917/HyRec.

2 Related Work

Kronecker Models for Graphs and Their Fitting Algorithms.

The Kronecker graph model [29] is recognized for its simplicity and
theoretical depth, offering a lens to understand real network dynam-
ics with a minimal set of parameters. It adeptly mimics real-world
network characteristics, such as heavy-tailed degree, eigenvalue,
and eigenvector distributions, making it a standard for benchmarks
like Graph500 [36]. Due to its tractability, extensive research has ex-
plored its theoretical properties, including degree distributions [39],
isolated nodes, triangles [37, 39], and network connectivity [33].
Applied to bipartite graphs, the Kronecker graph model reveals pat-
terns like scaling laws for edge clustering coefficients [42], which
are relevant to our study given the bipartite nature of hypergraphs
in linking nodes to hyperedges. However, our study prioritizes
unique attributes of hypergraphs, such as hyperedge intersection,
extending beyond the insights from bipartite graph analysis.

Fitting Kronecker graph models involves strategies like maxi-
mum likelihood [29], which aligns edge occurrences with adjacency
matrices, and method-of-moments estimators [17, 35], which match
structural counts, such as the counts of triangles and stars. Hyper-
Kron [14] aims to match the triangle (or motif) count in graphs
using 3D tensor Kronecker products. While it can be interpreted as
modeling hyperedge occurrences in uniform hypergraphs, where

all hyperedges have a size of three, it is not directly suitable for
real-world hypergraphs characterized by diverse hyperedge sizes.
Properties and Generators of Real-World Hypergraphs.Real-
world hypergraphs exhibit non-trivial structural and temporal pat-
terns. Structural properties include heavy-tailed distributions in
node degrees [13], hyperedge sizes [24], intersection sizes [24], sin-
gular values of incidence matrices [24], and node-pair degrees [27].
Moreover, hyperedges in real-world hypergraphs overlap more
significantly [27] with higher transitivity [21], compared to those
in random counterparts. Dynamics of time-evolving hypergraphs,
including diminishing overlaps, densification, and shrinking diam-
eters [24], have also been explored. Prior studies have examined
dynamics regarding repetition [3], recency [3], burstiness [5], per-
sistence [5, 9], ego-network structures [11], and triadic closures
among nodes or hyperedges [2, 28]. For a comprehensive overview
of patterns in real-world hypergraphs, see the survey [26].

Generative models aim to replicate these structural and dynamic
properties. They have focused on reproducing node subset connec-
tivity [13], modularity [16], heavy-tailed distributions [24], hyper-
edge overlaps [27], and transitivity [21]. Most of them, however,
require detailed hypergraph statistics, such as hyperedge size dis-
tributions, as inputs for accurate reproduction (see Table 1).

3 Preliminaries

3.1 Hypergraph and Incidence Matrix

A hypergraph G = (V, E) consists of a set of nodesV = {𝑣1, . . . ,
𝑣𝑁 } and a set of hyperedges E = {𝑒1, . . . , 𝑒𝑀 } ⊆ 2V . Each hyper-
edge 𝑒 ∈ E is a non-empty subset of V . The degree of a node 𝑣 ,
denoted by 𝑑𝑣 , is defined as the number of hyperedges containing
𝑣 . A hypergraph can also be expressed by an incidence matrix

𝐼 (G) ∈ {0, 1}𝑁×𝑀 , where each (𝑖, 𝑗 )-th entry 𝑔𝑖, 𝑗 of 𝐼 (G) is 1 if
and only if the hyperedge 𝑒 𝑗 contains the node 𝑣𝑖 . A path in a
hypergraph is defined as a sequence of hyperedges (𝑒𝑝1 , · · · , 𝑒𝑝𝐿 )
where 𝑒𝑝𝑖 ∩ 𝑒𝑝𝑖+1 ≠ ∅ for every 𝑖 ∈ {1, . . . , 𝐿 − 1}. The distance
between two nodes (𝑣𝑖 , 𝑣 𝑗 ) is defined as the length of a shortest
path (𝑒𝑝1 , · · · , 𝑒𝑝𝐿 ) where 𝑣𝑖 ∈ 𝑒𝑝1 and 𝑣 𝑗 ∈ 𝑒𝑝𝐿 . The diameter

of the hypergraph is the maximum distance between any pairs of
nodes; the effective diameter [31] is the minimum distance within
which 90% or more of node pairs are reachable.

3.2 Kronecker Product and Power

Given two matrices A ∈ R𝑁×𝑀 and B ∈ R𝑃×𝑄 , the kronecker
product A ⊗ B ∈ R𝑁𝑃×𝑀𝑄 is a matrix formed by multiplying B by
each element of A, i.e.,

A ⊗ B :=


𝑎11B · · · 𝑎1𝑀B
.
.
.

. . .
.
.
.

𝑎𝑁 1B · · · 𝑎𝑁𝑀B

 .
We define the 𝐾-th Kronecker power of A as A[𝐾 ] = A[𝐾−1] ⊗ A
and A[1] = A.

3.3 Power-law and Log-logistic Distributions

Power-law distributions are frequently observed in various fields
[15, 32]. Mathematically, a quantity 𝑥 follows a power-law distribu-
tion if its probability distribution function is of the form 𝑝 (𝑥) ≈ 𝑥−𝛼 ,
where 𝛼 is a constant. The log-logistic distribution [6] occurs
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when the logarithm of a random variable (log𝑥) follows a logis-
tic distribution. A key characteristic of log-logistic distributions
is that the odds ratios [12]1 derived from them follow power-law
distributions, linking the two distributions.

4 Discoveries

In this section, we discover eight patterns across 11 real-world hy-
pergraphs from six distinct dataset domains: emails, contacts, drugs
(NDC), tags, threads, and co-authorship (described in Appendix A).
We first uncover (D1) power-law distributions in node pair degrees,
intersection sizes, and singular values of incidence matrices, with a
focus on distribution slopes. Then, we reveal that (D2) node degrees
and hyperedge sizes exhibit log-logistic distributions. Lastly, we dis-
cover (D3) additional power-law patterns in clustering coefficients,
density, and overlapness in egonets.

4.1 D1: Power-law Distributions

Prior studies have shown that node pair degrees [27], hyperedge
intersection sizes [24], and singular values [24] exhibit heavy-
tailed distributions. The degree of a node pair 𝑖, 𝑗 is defined as
𝑑 (2) (𝑖, 𝑗) := |𝑒 ∈ E : {𝑖, 𝑗} ⊆ 𝑒 |, i.e., the number of hyperedges con-
taining that pair. Intersection size measures the overlap between
hyperedges 𝑒𝑖 , 𝑒 𝑗 as

��𝑒𝑖 ∩ 𝑒 𝑗 ��, while singular values are derived
from the hypergraph’s incidence matrix (see Section 3.1).2

We extend these findings to eleven real-world hypergraphs,
including those with duplicated hyperedges, offering a comple-
mentary perspective to prior analyses focused on distinct hyper-
edges [24, 27]. Consistent with prior work, we evaluate the fits of
heavy-tailed distributions, using power-law and log-normal dis-
tributions,3 by comparing their log-likelihood ratios (LRs) against
those of exponential distributions. Table 2 shows that the LRs are
significantly greater than zero, indicating that power-law or log-
normal distributions fit better than exponential ones. To further
validate power-law characteristics, we evaluate the quality of linear
regression fits (𝑅2 scores) on a log-log scale, commonly used to test
power-law properties [12, 15]. Table 2 and Figure 1 show high 𝑅2

scores near 1 (i.e., good linear regression fitting on a log-log scale),
confirming power-law behavior. Similar slopes across hypergraphs
within the same domain suggest domain-based similarities.

4.2 D2: Log-logistic Distributions

Recent studies reveal that both node degrees and hyperedge sizes
exhibit heavy-tailed distributions rather than exponential ones [24].
However, they overlook the observed flatness at lower degrees or
sizes, deviating from perfect power-law distributions. Our analysis
of real-world hypergraphs suggests that, more precisely, both node

degrees and hyperedge sizes follow log-logistic distributions.
Based on the relation between power-law and log-logistic distri-

butions as discussed in Section 3.3, we investigate the odds ratios
1The odds ratio is defined as OddRatio(𝑥 ) := CDF(𝑥 )

1−CDF(𝑥 ) , where CDF is the cumulative
distribution function.
2Given the rapid decay of singular value distributions at the tail, we focus on top 50%
singular values. For larger datasets, spec., tags, threads, and co-authorship, we use top
1,000, 1,000, and 500 singular values, respectively.
3Power-law and log-normal distributions are both common types of heavy-tailed
distributions [24, 27]. We use a power-law distribution for node pair degrees and
log-normal distributions for intersection sizes and singular values.

(a) Pair Degree Dist. (b) Intersection Size Dist. (c) Singular Value Dist.

(d) Pair Degree (e) Intersection Size (f) Singular Value

Figure 1: Discovery D1: Real-world Hypergraphs Follow

Power-law Distributions. (a)-(c): The distributions of node

pair degrees, intersection sizes, and singular values from the

email-Eu dataset fit well with linear regressions on a log-log

scale, indicated by 𝑅2
scores close to 1. (d)-(f): The slopes tend

to be similar within the same dataset domain.

for node degrees and hyperedge sizes. Through linear regression
on a log-log scale of these odds ratios, we find that the 𝑅2 scores,
indicative of fit quality, are close to 1. These power-law-like dis-
tributions of odd ratios, in turn, imply that both node degrees and
hyperedge sizes adhere to log-logistic distributions. Table 2 shows
𝑅2 scores above 0.8 across all real-world hypergraphs (see Figure 2),
with similar slopes within dataset domains.

4.3 D3: Additional Power-law Patterns

We present three new power-law patterns in egonets within real-
world hypergraphs. An egonet for a central node 𝑣 is the set of
hyperedges containing 𝑣 , i.e., Ẽ{𝑣} := {𝑒 ∈ E : 𝑣 ∈ 𝑒}.
Clustering Coefficients.We investigate the count of intersecting
hyperedge pairs relative to the central node’s degree in egonets,
focusing on pairs that share nodes beyond the central node. Specif-
ically, we compute |{{𝑒𝑖 , 𝑒 𝑗 } : (𝑒𝑖 ∩ 𝑒 𝑗 ) \ {𝑣} ≠ ∅ ∧ 𝑖 ≠ 𝑗 ∧ 𝑒𝑖 ∈
Ẽ{𝑣} ∧ 𝑒 𝑗 ∈ Ẽ{𝑣} }| divided by 𝑑𝑣 . Since this is related to the clus-
tering coefficient in bipartite graphs [38, 42, 44], reflecting 4-cycle
statistics for nodes, we refer to this as the clustering coefficient

(clustering coef.). As shown in Table 2 and Figure 2, the distribution
of intersecting hyperedge pairs relative to the central node’s degree
follows a power-law pattern. It fits well with linear regression on a
log-log scale with high 𝑅2 scores close to 1.0 and slopes around 2.0,
indicating a consistent intersection rate across egonets.
Density and Overlapness of Egonets. We further examine the
relationship between the numbers of hyperedges and nodes within
egonets. As illustrated in Table 2 and Figure 2, this relationship fits
well with a linear regression model in a log-log scale, exhibiting a
slope greater than 1. Given that the density [18, 27] of an egonet
is defined as the ratio of the number of hyperedges to the number
of nodes (i.e., |Ẽ{𝑣} |/|

⋃
𝑒∈ Ẽ{𝑣} 𝑒 |), our findings suggest the egonet

density tends to grow with more nodes. Similarly, the sum of hyper-
edge sizes in relation to the node count within egonets also reveals
a power-law pattern; and the overlapness of egonets [27], defined
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Table 2: Discoveries D1-D3: Evaluation of Power-law Fitness. For each dataset, we report the goodness of fit to power laws

using the 𝑅2
score of linear regression on a log-log scale, with the slope of the regression line. For the probability distributions

regarding D1, we also compute log-likelihood ratios (LR) comparing fits to power-law or log-normal distributions against fits

to exponential distributions. 𝑅2
scores over 0.8, slopes with p-values under 0.05, and positive LRs are highlighted in bold.

Dataset

D1. Power-law Dist. D2. Log-logistic Dist. D3. Power-law Patterns

Pairdegree Intersection Singular Value Degree Size Clustering Coef. Density Overlapness

𝑅2 Slope LR 𝑅2 Slope LR 𝑅2 Slope LR 𝑅2 Slope 𝑅2 Slope 𝑅2 Slope 𝑅2 Slope 𝑅2 Slope

email-Enron 0.8 -1.1 13 0.9 -5.1 22 1.0 -0.4 44 1.0 1.3 1.0 3.6 1.0 2.0 0.1 0.5 0.2 0.6

email-Eu 0.9 -1.4 1 0.9 -3.4 212 0.9 -0.4 158 1.0 0.7 0.9 2.0 0.9 1.8 0.8 1.2 0.8 1.3

contact-primary 0.9 -1.4 2 0.9 -8.8 8 0.9 -0.2 107 1.0 2.6 1.0 9.7 0.8 1.9 0.8 1.0 0.8 1.0

contact-high 0.8 -0.9 24 0.9 -7.7 20 0.9 -0.3 120 1.0 1.5 0.9 10.0 0.9 2.1 0.8 1.5 0.8 1.5

NDC-classes 0.6 -0.8 6 0.8 -4.7 6 0.9 -1.0 26 1.0 0.7 1.0 3.1 0.9 1.9 0.2 0.6 0.6 1.0

NDC-substances 0.8 -1.7 6 1.0 -3.9 40 1.0 -0.5 144 1.0 0.9 0.9 1.8 0.6 1.6 0.5 0.8 0.9 1.2

tags-ubuntu 0.8 -1.4 35 0.9 -6.8 17 1.0 -0.6 184 1.0 0.9 1.0 2.2 0.9 1.8 1.0 1.5 1.0 1.5

tags-math 0.8 -1.1 36 0.9 -8.1 5 1.0 -0.7 176 1.0 0.8 1.0 2.4 1.0 1.8 0.9 1.8 0.9 1.7

threads-ubuntu 0.9 -2.6 3 1.0 -9.5 3 1.0 -0.4 148 1.0 1.1 1.0 5.1 0.8 1.4 1.0 1.0 1.0 1.1

threads-math 0.9 -2.4 15 1.0 -10.2 16 1.0 -0.4 241 1.0 1.0 1.0 4.9 0.9 1.6 1.0 1.0 1.0 1.1

coauth-geology 1.0 -3.2 54 1.0 -4.5 13 1.0 -0.1 165 0.9 1.9 1.0 3.1 0.9 1.7 0.9 1.0 1.0 1.1

(a) Degree (b) Size (c) Clustering Coef. (d) Desity (e) Overlapness

Figure 2: Discoveries D2 and D3: Real-world Hypergraphs Follow Log-logistic Distributions and Exhibit Power-law Patterns.

(a)-(b): The odds ratios in relation to node degrees and hyperedge sizes are linear on a log-log scale, indicated by 𝑅2
scores over

0.9. (c)-(e): The distributions of clustering coefficients, egonet density, and overlapness are also well-fitted by linear regression

on a log-log scale. These distributions are from the email-Eu dataset.

as the ratio of the sum of hyperedge sizes to the node count (i.e.,
(∑

𝑒∈ Ẽ{𝑣} |𝑒 |)/|
⋃
𝑒∈ Ẽ{𝑣} 𝑒 |), tends to increase with more nodes.

5 Proposed Hypergraph Generator

Inspired by the previously described power-law patterns in real-
world hypergraphs and the Kronecker graph model [29], we in-
troduce HyRec, a tractable and realistic hypergraph generative
model that produces multiple power-law patterns.

5.1 Description of HyRec

We define the Kronecker product of two hypergraphs as the Kro-
necker product of their incidence matrices (see Section 3). For hy-
pergraphs G andH with incidence matrices 𝐼 (G) and 𝐼 (H), their
Kronecker product G ⊗H is the hypergraph with incidence matrix
𝐼 (G) ⊗ 𝐼 (H). Based on this, we presentHyRec, a hypergraph model
using the Kronecker product. Given an initiator hypergraph G and
order 𝐾 , HyRec(G, 𝐾) := G [𝐾 ] is the hypergraph with 𝐼 (G) [𝐾 ] ,
i.e., the 𝐾-th Kronecker power of 𝐼 (G), as its incident matrix.

5.2 Theoretical Characteristics of HyRec

In this section, we derive several theoretical characteristics of
HyRec, including multinomial distributions across various struc-
tural measures and evolutionary patterns that mirror those in real-
world hypergraphs. This tractability is valuable, allowing for easier
analysis and a better understanding of HyRec’s behavior. It also
facilitates parameter fitting (see Section 6.2).

Structural Patterns. We prove that HyRec creates hypergraphs
with several statistics following multinomial distributions. As dis-
cussed in Appendix B.2, multinomial distributions resemble log-
logistic and power-law distributions, which are commonly observed
in real-world hypergraphs (refer to Section 4).

Theorem 1. HyRec(G, 𝐾) has multinomial distributions of (1)
degrees, (2) hyperedge sizes, (3) pair degrees, and (4) intersection sizes.
Proof. Refer to Appendix B.3 for the proof. ■

Theorem 2. In HyRec(G, 𝐾), both singular values and singular
vectors of its incidence matrix follow multinomial distributions.
Proof. Refer to Appendix B.4 for the proof. ■

Evolutionary Patterns. We prove the evolutionary patterns of
HyRec, focusing on changes in density and (effective) diameter as
the exponent 𝐾 of the Kronecker power increases, which can be
considered as the hypergraph’s growth over time.

Theorem 3. InHyRec(G, 𝐾) where 𝐼 (G) ∈ {0, 1}𝑁1×𝑀1 exhibits
a 1 : log𝑀1

log𝑁1
power-law relationship between the number of nodes and

the number of hyperedges as 𝐾 increases.
Proof. Refer to Appendix B.5 for the proof. ■

Theorem 4. If the initiator hypergraph G has a diameter 𝐷 , the
diameter of HyRec(G, 𝐾) is exactly 𝐷 .
Proof. Refer to Appendix B.6 for the proof. ■

Theorem 5. If the initiator hypergraph G has a diameter𝐷 , then
the effective diameter of HyRec(G, 𝐾) converges to 𝐷 as 𝐾 increases.
Proof. Refer to Appendix B.7 for the proof. ■
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5.3 Stochastic HyRec: Stochastic Version

We have so far applied the Kronecker power approach to a binary
initiator matrix, which always produces the same hypergraph, limit-
ing variability, a key property for (hyper)graph models in tasks like
statistical testing [35]. To address this, we introduce a stochastic
version of HyRec. Starting with an initiator matrixΘ ∈ [0, 1]𝑁1×𝑀1 ,
we compute Θ[𝐾 ] , where each (𝑖, 𝑗)-th entry represents the prob-
ability of the 𝑖-th node being part of the 𝑗-th hyperedge. We then
sample a hypergraph G̃ by independently performing Bernoulli
trials on each entry of Θ[𝐾 ] , generating a binary incidence matrix
𝐼 (G̃) of G̃. In Online Appendix [8], we illustrate how different initia-
tor matrices, including those modeling community and core-fringe
structures, lead to hypergraphs with diverse properties.

6 SingFit: Fitting to Real-World Hypergraphs

In the preceding analysis, we demonstrate that HyRec can replicate
many properties of real-world hypergraphs. But how canwe generate
a Kronecker hypergraph that closely resembles a specific real-world
hypergraph? Specifically, how can we identify an initiator matrix
(i.e., Θ) that captures the underlying mechanisms? To answer this,
we explore fitting the initiator matrix to the target hypergraph.
Throughout this section, we focus on the stochastic version of
HyRec, referred to simply as HyRec.

6.1 Challenges in Fitting HyRec

Fitting an initiator matrix poses the following challenges:
C1. Computational Cost of Alignment. Identifying correspon-
dences between nodes or hyperedges of input and generated hyper-
graphs requires considering all possible ( |V|! × |E|!) permutations
of nodes and hyperedges. Thus, directly aligning incidence matrices
faces computational challenges.
C2. Non-Differentiability of Generation.The stochastic version
of HyRec uses probability matrices (i,e., Θ[𝐾 ] ) to generate hyper-
graphs, independently drawing each entry to form binary matrices
(i.e., 𝐼 (G̃)). This process causes a discrepancy between the charac-
teristics (e.g., singular values) of probability matrices and those of
binarized matrices. Additionally, the non-differentiable nature of
the sampling process poses challenges for parameter fitting.
C3. Density of Probability Matrix. Naively sampling a hyper-
graph G̃ from the probability matrix Θ[𝐾 ] leads to high computa-
tional and memory overhead, as Bernoulli sampling must be applied
to every possible connection between nodes and hyperedges, re-
sulting in a complexity of 𝑂 ( |V| · |E |).

6.2 Strategies for Overcoming Fitting

Challenges with SingFit

We propose SingFit, an initiator-matrix fitting algorithm that ad-
dresses the above challenges with three solutions.
S1: Singular-Value Matching.To avoid high alignment costs (Chal-
lenge C1), we aim to match statistics that do not require aligning
nodes and hyperedges between input and generated hypergraphs.
One of the statistics is the incidence-matrix singular values of the
input hypergraph G and the generated hypergraph G̃ (singular
values are invariant to the row and column orders), quantified by

the following loss function:

L𝜎 =
∑︁ |𝜎 (G) |

𝑖=1

(
𝜎 (G)𝑖 − 𝜎 (G̃)𝑖

)2
/|𝜎 (G)| (1)

Here, 𝜎 (·) is a function that computes the singular values of the
incident matrix of a given hypergraph, sorted in descending order.
The symbol |𝜎 (G)| represents the number of singular values, i.e.,
the rank of the incident matrix of G.

To further improve the model’s ability, we include additional
loss terms Ld and Ls to learn the distributions of node degrees
and hyperedge sizes. These terms are computed similarly to L𝜎
by replacing 𝜎 (·) in Eq. (1) with d (·) and s(·), which denote the
node degrees and hyperedge sizes, respectively, sorted in descend-
ing order. |d (G)| and |s(G)| represent the numbers of nodes and
hyperedges respectively. Note that the values are sorted and re-
main independent of node and hyperedge alignments. The final loss
function is: L = L𝜎 + 𝜆dLd + 𝜆sLs , where 𝜆d and 𝜆s are positive
weights controlling the influence of Ld and Ls respectively. Our
preliminary experiments reveal that these additional terms are es-
pecially effective for hypergraphs with small hyperedges, including
those from the contact or tag domains.
S2: Differentiable Sampling with Gumbel-Softmax.To address
the discrepancy between the probability matrixΘ[𝐾 ] and the binary
incidence matrix 𝐼 (G̃), which is generated after fitting (Challenge
C2), we propose using Gumbel-Softmax [20]. This simulates the
generation process during fitting, aligning the model’s output with
the target binary structure while remaining differentiable.

Formally, a differentiable binary matrix 𝑋 is derived from a
probability matrix 𝑋 of the same size as follows:

𝑝𝑖, 𝑗 =

exp
(

log(𝑋𝑖,𝑗 )+𝑔 (1)𝑖,𝑗
𝜏

)
exp

(
log(1−𝑋𝑖,𝑗 )+𝑔 (0)𝑖,𝑗

𝜏

)
+ exp

(
log(𝑋𝑖,𝑗 )+𝑔 (1)𝑖,𝑗

𝜏

) , (2)

𝑋𝑖, 𝑗 = 𝑝hard + 𝑝𝑖, 𝑗 − sg
(
𝑝𝑖, 𝑗

)
, (3)

where 𝑝hard ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑖, 𝑗 ). Here, 𝑝𝑖, 𝑗 represents the probability
of sampling the (𝑖, 𝑗)-th element, while 𝑔 (0)

𝑖, 𝑗
and 𝑔 (1)

𝑖, 𝑗
are indepen-

dent samples from the 𝐺𝑢𝑚𝑏𝑒𝑙 (0, 1) distribution. The softmax tem-
perature 𝜏 controls how close 𝑝𝑖, 𝑗 is to binary values. The stop gra-
dient operator sg(·) ensures 𝑋𝑖, 𝑗 is binary during the forward pass,
while allowing gradients to flow through 𝑝𝑖, 𝑗 via ▽𝑋𝑋𝑖, 𝑗 = ▽𝑋𝑝𝑖, 𝑗 .
Thus this solves Challenge C2.
S3: Acceleration Using Kronecker Product Properties. To ad-
dress the high computational costs of handling the probability ma-
trixΘ[𝐾 ] (ChallengeC3), we leverage Kronecker product properties
of distributions of singular values, node degrees and hyperedge
sizes. These structural properties of Kronecker hypergraphs can be
expressed as Kronecker powers of the corresponding properties of
the initiator hypergraph, as demonstrated in the proofs of Theo-
rem 1 (see Appendix B.3) and Theorem 2 (see Appendix B.4). This
allows us to approximate these properties sampled fromΘ[𝐾 ] using
unit sampling, where we decompose the Kronecker power to the
𝐾 into 𝐿 units with smaller exponents and compute the properties
sampled from these smaller units.
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Algorithm 1: Initiator Fitting of HyRec: SingFit
Input : (1) Incidence matrix of hypergraph G ∈ R𝑁 ×𝑀 ,

(2) Size of the initiator matrix 𝑁1 and𝑀1,
(3) Number of units 𝐿,
(4) Number of iterations 𝐸

Output : Initiator Θ ∈ R𝑁1×𝑀1

1 𝐾 =
⌈
max(𝑙𝑜𝑔𝑁1𝑁, 𝑙𝑜𝑔𝑀1𝑀 )

⌉
2 S←

( ⌊
𝐾+(𝐿−1)

𝐿

⌋
,

⌊
𝐾+(𝐿−2)

𝐿

⌋
, · · · ,

⌊
𝐾
𝐿

⌋ )
⊲
∑𝐿
𝑙=1

⌊
𝐾+(𝐿−𝑙 )

𝐿

⌋
= 𝐾

3 �̃� ← I1×1

4 for each index (𝑖, 𝑗 ) ∈ {1, · · · , 𝑁1} × {1, · · · , 𝑀1} do
5 Θ𝑖,𝑗 ← 𝑠𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 (Θ𝑖𝑛𝑖𝑡

𝑖,𝑗
) where Θ𝑖𝑛𝑖𝑡

𝑖,𝑗
∼ U(0, 1)

6 for each epoch 𝑒 = 1, · · · , 𝐸 do

7 for each unit 𝑙 = 1, · · · , 𝐿 do

8 for each index (𝑖, 𝑗 ) ∈ {1, · · · , 𝑁𝑆𝑙1 } × {1, · · · , 𝑀
𝑆𝑙
1 } do

9 Compute �̃�𝑖,𝑗 from Θ
[S𝑙 ]
𝑖,𝑗

according to Eq. (2)
10 𝑝hard ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (�̃�𝑖,𝑗 )
11 Θ̂

[S𝑙 ]
𝑖,𝑗
← 𝑝hard + �̃�𝑖,𝑗 − sg

(
�̃�𝑖,𝑗

)
⊲ Eq. (3)

12 �̃� ← �̃� ⊗ 𝜎 (Θ̂[S𝑙 ] ) ⊲ 𝜎 ( ·) computes singular values
13 d̃ ← d̃ ⊗ d (Θ̂[S𝑙 ] ) ⊲ d ( ·) computes node degrees
14 s̃← s̃ ⊗ s (Θ̂[S𝑙 ] ) ⊲ s ( ·) computes hyperedge sizes

15 Update Θ by ▽ΘL𝜎 + 𝜆d · ▽ΘLd + 𝜆s · ▽ΘLs ⊲ Eq. (1)

16 return Θ

While this unit-sampling approach applies to all three properties,
for clarity, we describe it formally using singular values as an exam-
ple. When 𝐼 (G) can be decomposed using SVD as 𝐼 (G) = U1Σ1V⊤1 ,
the singular values Σ𝐾 of 𝐼 (G) [𝐾 ] , are expressed as:

Σ𝐾 = (Σ1 ⊗ Σ1 ⊗ · · · ⊗ Σ1)︸                     ︷︷                     ︸
𝐾 times

= Σ[𝐾 ]1 (∵ 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝐵.4)

= (Σ1 ⊗ · · · ⊗ Σ1)︸              ︷︷              ︸
S1 times

⊗ (Σ1 ⊗ · · · ⊗ Σ1)︸              ︷︷              ︸
S2 times

⊗ · · · ⊗ (Σ1 ⊗ · · · ⊗ Σ1)︸              ︷︷              ︸
S𝐿 times

= Σ[S1 ]
1 ⊗ Σ[S2 ]

1 ⊗ · · · ⊗ Σ[S𝐿 ]1 (where
∑︁𝐿

𝑖=1
S𝑖 = 𝐾)

= ΣS1 ⊗ ΣS2 ⊗ · · · ⊗ ΣS𝐿 .

Here, 𝐿 is the number of units each with size S𝑖 . Thus, we approxi-
mate the singular values Σ𝐾 sampled from Θ[𝐾 ] by calculating the
singular values ΣS𝑖 sampled from smaller Θ[S𝑖 ] and then compute
their Kronecker products. If S𝑖 = 𝐾/𝐿 for all 𝑖 , this substantially re-
duces the computational complexity from𝑂 (min(𝑁 2

1 𝑀1, 𝑁1𝑀2
1 )
𝐾 )

to 𝑂 (𝐿 ·min(𝑁 2
1𝑀1, 𝑁1𝑀2

1 )
𝐾/𝐿) (refer to Section 7.4 for empirical

results and Appendix C for complexity analysis). The same ap-
proach can be applied to compute node degrees and hyperedge
sizes; see our finding in the proof of Theorem 1 (Appendix B.3).

6.3 Description of SingFit

Algorithms 1 and 2 outline the fitting and generation procedures,
respectively. The process involves sampling (i.e., binarizing) unit
matrices across 𝐿 iterations, where 𝐿 = 1 represents the naive ap-
proach using the full probabilistic matrix. When fitting the initiator,
we employ the Gumbel-Softmax technique for sampling, which
enables gradient calculation. Singular values are computed from
these sampled matrices and combined using Kronecker products

Algorithm 2: Hypergraph Generation in HyRec
Input : (1) Initiator matrix Θ ∈ R𝑁1×𝑀1 ,

(2) order 𝐾 ,
(3) Number of units 𝐿

Output :A generated hypergraph G̃
1 S←

( ⌊
𝐾+(𝐿−1)

𝐿

⌋
,

⌊
𝐾+(𝐿−2)

𝐿

⌋
, · · · ,

⌊
𝐾
𝐿

⌋ )
2 for each unit 𝑙 = 1, · · · , 𝐿 do

3 for each index (𝑖, 𝑗 ) ∈ {1, · · · , 𝑁𝑆𝑙1 } × {1, · · · , 𝑀
𝑆𝑙
1 } do

4 Θ̂
[S𝑙 ]
𝑖,𝑗
∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (Θ[S𝑙 ]

𝑖,𝑗
)

5 G̃ ← G̃ ⊗ Θ̂[S𝑙 ]

6 return G̃

to produce the complete singular value set. Node degrees and hy-
peredge sizes are computed similarly. For the generation phase,
when the sampled unit incidence matrices are sparse, we focus on
‘1’ entries to improve computational and memory efficiency. Refer
to Section 7.4 for efficiency-related experiments.

7 Experimental Results

In this section, we review our experiments, whose results demon-
strate the effectiveness of HyRec.

7.1 Experimental Settings

Competitors.We consider 5 baseline generators: HyperCL [27],
HyperFF [23], HyperPA [13], HyperLAP [27], and THera [21],
with their features summarized in Table 1. Further details on their
settings can be found in Appendix D.
Evaluation. We evaluated HyRec’s performance in replicating
9 real-world patterns (spec., those discussed in Section 4 and
the effective diameters of hypergraphs [24]). We consider the 11
real-world hypergraphs from six domains (email, contact, drug,
tags, threads, and co-authorship) described in Appendix A. We
evaluate the goodness of fit using the Kolmogorov-Smirnov (D-
statistic) for the probability density distributions of degree, size, pair
degree, and intersection size; Root Mean Square Error (RMSE) for
singular values, clustering coefficients, density, and overlapness4;
and relative difference for the effective diameter which is a scalar
value. Hypergraphs are generated once per model, per parameter
set in the search space, and per dataset. We rank each generator’s fit
for each pattern and average these rankings across the 11 datasets.
Parameter Settings. In all experiments, we use at least two units
(i.e., 𝐿 ≥ 2) and maintain the same number of units (𝐿) for both
training and generation. The initial matrix size (𝑁1 ×𝑀1) is deter-
mined using the logarithm of the original incidence matrix with
base 𝐾 , where the order 𝐾 is chosen between 2 and 50 to minimize
the size difference between the generated and target hypergraphs.
Refer to Appendix D for further details and the parameter settings
of the competitors.
4When computing RMSE of 𝑦 values (e.g., singular values or intersecting pairs in
egonets), we consider only the intersection of the 𝑥 values (e.g., ranks or central
node’s degree in egonets) from the generator outputs and the ground-truth dataset.
For clustering coefficients, density, and overlapness, this process is applied after a
logarithmic binning of 𝑥 values.
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Table 3: HyRec Fits Real-World Hypergraphs.

(a) HyRec obeys the patterns in Section 4. HyRec (green) closely resembles the properties of real-world hypergraphs (black).

Degree Size Pair Degree Intersection Singular Value Clustering Coef. Density Overlapness
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(b) HyRec is accurate and parsimonious. Across eleven datasets, HyRec ranks within the top three for most properties and ranks second on average. It
has the second-fewest input parameters, following HyperFF, which ranks last. Note that the top-performing model requires three orders of magnitude

more parameters than HyRec. The best, second-best, and third-best performance are highlighted in blue, green, and yellow, respectively.
# Input Parameters Average Ranking (Across 11 Hypergraph Datasets)

Min Max Degree Size

Pair

Intersect.

Singular Clustering

Density Overlapness

Effective

Average

Deg. Value Coef. Diam.

HyperCL 11,028 2,852,295 1.455 1.000 3.455 4.909 2.364 4.545 3.636 4.364 3.455 3.242
HyperFF 2 2 4.909 4.818 5.000 4.273 5.182 4.182 4.273 3.909 3.818 4.485
HyperPA 11,028 2,852,295 3.000 3.727 3.000 4.273 4.545 4.636 4.000 4.273 3.545 3.889
HyperLAP 11,028 2,852,295 2.636 1.000 2.636 1.636 3.182 1.364 3.273 2.727 4.727 2.576

THera 10,889 1,591,170 4.909 4.091 3.091 2.364 4.545 2.636 3.273 3.182 3.909 3.556

HyRec 15 882 4.091 4.818 3.818 3.545 1.182 3.636 2.545 2.545 1.545 3.081

(a) Fitting (b) Extrapolating

Figure 3: HyRec Demonstrates Superior Performance with

Fewer Input Parameters.HyRec performswell in fitting and

extrapolating real-world hypergraphs with a relatively small

number of input parameters (in terms of the number of

scalars), proving its efficiency and effectiveness. The rank-

ings are averaged over all 9 patterns and 11 real-world hy-

pergraphs, with lower values indicating better performance.

7.2 Fitting to Real-World Hypergraphs

In this subsection, we present visual and statistical analyses demon-
strating that HyRec excels in accurately fitting the distribution
patterns of real-world hypergraphs while requiring minimal input
parameters. Table 3(a) visually confirms that HyRec produces dis-
tributions closely resembling real-world hypergraphs. Table 3(b)
reports the average rankings of generators in matching each of
the nine properties across eleven real-world datasets. HyRec ranks
within the top three for six properties, demonstrating strong align-
ment with most properties. Although HyRec underperforms some

baselines in terms of node degrees and hyperedge sizes, it is impor-
tant to note that these baselines (except for HyperFF) directly rely
on detailed node-degree and hyperedge-size distributions as inputs,
making their strong performance on these properties unsurprising.
This adds complexity, as they require detailed statistics for every
generation. In contrast, HyRec uses only an initiator matrix fitted
by SingFit and a few scalars while offering both tractability and
extrapolation ability, as shown in Table 1. HyperPA is inapplicable
when the node count is too small (email-Enron) and runs out of
memory when the hypergraph size is too large (coauth-geology),
resulting in it ranking last in these cases. Notably, as illustrated in
Figure 3, HyRec provides the best balance between performance
and input parameter size (in terms of the number of scalars).We also
analyze how HyRec’s performance is affected by hyperparameters
(e.g., the initiator matrix size and the unit number) in Appendix E.

7.3 Extrapolating Real-World Hypergraphs

In this subsection, we demonstrate both visually and statistically
that HyRec exhibits strong extrapolation ability in forecasting the
evolution of hypergraph properties. We fit HyRec using the hy-
peredges up until the first 50% of the nodes appear, and we test it
against the full original hypergraph. The same protocol is applied to
HyperPA, HyperFF, and THera, but by their design, HyperLAP and
HyperCL cannot predict beyond the input data. Table 4(a) visually
confirms that HyRec is able to closely mirror a given hypergraph
(past) and accurately predict its future. Table 4(b) and Figure 3
present that HyRec ranks first on average while requiring two or-
ders of magnitude fewer input parameters (in terms of the number
of scalars) than the second-best one. HyRec also achieves the best
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Table 4: HyRec Extrapolates Real-World Hypergraphs.

(a) HyRec predicts hypergraph growth accurately. After fitting to a past snapshot of the NDC-substances dataset, HyRec (green) accurately predicts the
properties of its future snapshot (which is the entire dataset).

Degree Size Pair Degree Intersection Singular Value Clustering Coef. Density Overlapness
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(b) HyRec is accurate in extrapolation, even with a small number of input parameters. HyRec performs overall best in extrapolation, and notably
it requires two orders of magnitude fewer parameters than the second-best model (THera). Note that HyperCL and HyperLAP are inapplicable to

extrapolation. The best, second-best, and third-best performance are highlighted in blue, green, and yellow, respectively.
# Input Parameters Average Ranking (Across 11 Hypergraph Datasets)

Min Max Degree Size

Pair

Intersect.

Singular Clustering

Density Overlapness

Effective

Average

Deg. Value Coef. Diam.

HyperFF 2 2 2.818 2.909 3.273 2.818 2.909 1.818 2.909 2.909 3.091 2.828
HyperPA 466 1,167,675 2.636 1.818 3.273 3.182 3.636 2.818 3.000 3.091 2.273 2.859
THera 349 537,114 3.000 2.273 1.636 1.909 1.636 2.909 2.000 2.182 2.091 2.182

HyRec 12 396 1.545 2.545 1.818 2.091 1.818 2.455 2.091 1.818 2.545 2.081

Table 5: HyRec’s Efficiency Gains with Increased Units.

Number of Avg. Unit Fitting Time Generation Time

Units (L) Matrix Size (|Θ[S𝑖 ] |) (ms) (ms)

L = 1 85,766,121 378.983 157,656.327
L = 2 9,261 23.697 19,619.597
L = 3 441 28.730 5,369.581
L = 4 231 42.813 10,151.488
L = 5 105 48.959 7,815.624

performance for extrapolation based on a snapshot with the first
25% of nodes, as shown in Online Appendix [8].

7.4 Efficiency in Fitting Large Hypergraphs

In this subsection, we show that unit sampling (described in Sec-
tion 6.2) significantly improves the efficiency of SingFit, achieving
near-linear scalability in fitting and linear scalability in generation.
Table 5 shows that increasing the number of units (i.e., 𝐿) in the
contact-primary dataset reduces the total size of unit matrices and
the runtime for both fitting and generation.5 In this experiment, the
initiator matrix is fixed at 3 × 7, with a Kronecker power of order 6.
These results align with the complexity analysis provided in Ap-
pendix C (Tables 7 and 8). Moreover, in Appendix F, we highlight
the speed of our generation method in comparison to competitors,
demonstrating its efficiency even for large hypergraphs.
5Since units are processed serially (while operations within each unit are parallelized),
the total time may increase slightly with more units.

8 Conclusions

In this study, we uncover eight power-law-related patterns in real-
world hypergraphs and introduce HyRec, a generative model lever-
aging the Kronecker product to replicate these patterns. We math-
ematically demonstrate that HyRec captures both structural and
evolutionary patterns. Additionally, we develop SingFit, a fast and
space-efficient algorithm for fitting HyRec to given hypergraphs.
Our experiments on eleven real-world hypergraphs confirm the
model’s efficacy in fitting and forecasting hypergraph properties.
Our contributions are summarized as follows:

• Discoveries: Identification of eight power-law-related patterns
in real-world hypergraphs (Figures 1-2 and Table 2).
• Model: Design of HyRec, a tractable and realistic (Figure 3 and
Tables 3-4) generative model supported by SingFit.
• Proofs: Mathematical validation that HyRec adheres to these
identified patterns (Theorems 1 and 2).

For reproducibility, our code and data are available at https:
//github.com/young917/HyRec.
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Appendix

A Datasets

We consider eleven real-world hypergraphs from six different do-
mains [2]: (a) Emails [22, 30, 43] with nodes as email accounts
and hyperedges as emails (i.e., the sender and receivers); (b) Con-
tacts [34, 41] with nodes as people and hyperedges as group inter-
actions; (c)Drugs (NDC)with nodes as drug substances and classes
and each hyperedge as the group contained in a drug; (d) Tagswith
nodes as tags and hyperedges as questions attached with relevant
tags; (e) Threads with nodes as users and each hyperedge as the
group discussing in a thread; (f) Co-authorship [40] with nodes as
authors and each hyperedge as the coauthors of a publication. We
use all hyperedges in each dataset, without filtering out duplicates
or large-scale hyperedges. Their statistics are given in Table 6.

Table 6: Summary of Real-world Hypergraphs.

Dataset # Nodes # Hyperedges Max. Degree Max. Size

email-Enron 143 10,885 1,327 37
email-Eu 1,005 25,148 8,664 40

contact-primary 242 106,879 2,234 5
contact-high 327 172,035 4,495 5

NDC-classes 1,161 49,726 5,358 39
NDC-substances 5,556 112,919 6,693 187

tags-ubuntu 3,029 271,233 21,004 5
tags-math 1,629 822,059 71,046 5

threads-ubuntu 125,602 192,947 2,332 14
threads-math 176,445 719,792 12,511 21

coauth-geology 1,261,129 1,591,166 1,153 284
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B Theoretical Proofs of HyRec

In this section, we provide themathematical proofs for the theorems
introduced in Section 5, establishing the theoretical characteristics
of HyRec.

B.1 Notations

We begin with introducing several notations.
• 𝑣𝑖 : node in G for the 𝑖-th row of its incidence matrix 𝐼 (G).
• 𝑒𝑖 : hyperedge for the 𝑖-th column of 𝐼 (G).
• 𝑣𝑖, 𝑗 : node in G ⊗ H for the ((𝑖 − 1)𝑁2 + 𝑗)-th row of its inci-
dence matrix 𝐼 (G ⊗ H) where 𝐼 (G) ∈ {0, 1}𝑁1×𝑀1 and 𝐼 (H) ∈
{0, 1}𝑁2×𝑀2 .
• 𝑒𝑖, 𝑗 : hyperedge for the ((𝑖 − 1)𝑀2 + 𝑗)-th column of 𝐼 (G ⊗ H).
• 𝑣𝑖1,· · · ,𝑖𝐾 : node inHyRec(G, 𝐾) for the

( ∑𝐾
𝑘=1

(
(𝑖𝑘−1)·𝑁𝐾−𝑘

)
+1

)
-

th row of its incidence matrix 𝐼 (G) [𝐾 ] where 𝐼 (G) ∈ {0, 1}𝑁×𝑀 .
• 𝑒𝑖1,· · · ,𝑖𝐾 : hyperedge for the

( ∑𝐾
𝑘=1

(
(𝑖𝑘−1)·𝑀𝐾−𝑘 )+1

)
-th column

of 𝐼 (G) [𝐾 ] .

B.2 Preliminary: Multinomial Distributions

Multinomial distributions are a generalization of binomial distri-
butions. The parameters of a multinomial distribution are (1) 𝑘 for
the number of event types, (2) 𝑛 for the number of (independent)
trials, and (3) 𝑝𝑖 for the probability for the 𝑖-th event occurring
at each trial, for each 𝑖 ∈ {1, · · · , 𝑘}, where ∑𝑘

𝑖=1 𝑝𝑖 = 1. After 𝑛
independent trials, the probability for the 𝑖-th event occurring ex-
actly 𝑐𝑖 times for every 𝑖 ∈ {1, · · · , 𝑘}, where 𝑐1, · · · , 𝑐𝑘 ≥ 0 and∑𝑘
𝑖=1 𝑐𝑖 = 𝑛, is

𝑛!
𝑐1!· · ·𝑐𝑘 !𝑝

𝑐1
1 · · · 𝑝

𝑐𝑘
𝑘
. It is a well-known fact that, with a

careful choice of the parameters, multinomial distributions behave
similarly to log-logistic and power-law distributions [4, 10, 29].

B.3 Proof of Theorem 1

Theorem. HyRec(G, 𝐾) has multinomial distributions of (1)
degrees, (2) hyperedge sizes, (3) pair degrees, and (4) intersection sizes.

Proof. By Theorem 5 in [29], we can easily show that (1) de-
grees and (2) hyperedge sizes follow multinomial distributions.
Regarding (3) pair degrees, let 𝑆1 denote the multiset6 {𝜔𝑖,𝑖′ : 𝑖, 𝑖′ ∈
{1, · · · , 𝑁1} ∧ 𝑖 ≠ 𝑖′} of node pair degrees in G1 and 𝑆2 denote the
multiset {�̄� 𝑗, 𝑗 ′ : 𝑗, 𝑗 ′ ∈ {1, · · · , 𝑁2} ∧ 𝑗 ≠ 𝑗 ′} of node pair degrees
in G2, where 𝐼 (G1) ∈ {0, 1}𝑁1×𝑀1 and 𝐼 (G2) ∈ {0, 1}𝑁2×𝑀2 . If a
pair of nodes 𝑣𝑖 and 𝑣 ′𝑖 in G1 has pair degree 𝜔𝑖,𝑖′ , and a pair of
nodes 𝑣 𝑗 and 𝑣 ′𝑗 in G2 has pair degree �̄� 𝑗, 𝑗 ′ , then a pair of nodes
𝑣𝑖, 𝑗 and 𝑣𝑖′, 𝑗 ′ in G1 ⊗ G2 has pair degree 𝜔𝑖,𝑖′�̄� 𝑗, 𝑗 ′ . Thus, after the
𝐾 − 1 kronecker product operations, HyperK(G1, 𝐾) has the multi-
set of node pair degrees {𝜔𝑖1, 𝑗1 · · ·𝜔𝑖𝐾 , 𝑗𝐾 : 𝑖1, · · · , 𝑖𝐾 , 𝑗1, · · · , 𝑗𝐾 ∈
{1, · · · , 𝑁1} ∧ (𝑖1, · · · , 𝑖𝐾 ) ≠ ( 𝑗1, · · · , 𝑗𝐾 )}. Let 𝑠1, · · · , 𝑠𝑙 be the dis-
tinct elements in 𝑆1, and 𝑜𝑘 be the number of occurrences of 𝑠𝑘 in 𝑆1.
Then, the multiset of node pair degrees in HyperK(G1, 𝐾) follows
multinomial distribution where each node pair degree 𝑠𝑐1

1 · · · 𝑠
𝑐𝑙
𝑙

(where 𝑐1, · · · , 𝑐𝑙 are non-negative integers and
∑𝑙
𝑖=1 𝑐𝑖 = 𝐾 ) occurs

with a probability proportional to 𝐾 !
𝑐1!· · ·𝑐𝑙 !𝑜

𝑐1
1 · · ·𝑜

𝑐𝑙
𝑙
. Since (4) inter-

section sizes of a pair of hyperedge 𝑗 and 𝑗 ′ of G1 is the number of
common entries between 𝑗-th column and 𝑗 ′-th column of G1, the
above proof is applied similarly. ■
6A multiset generalizes a set by allowing duplicate elements.

B.4 Proof of Theorem 2

Theorem. In HyRec (G, 𝐾), both singular values and singular
vectors of its incidence matrix follow multinomial distributions

Proof. Let the singular value decomposition (SVD) of the in-
cidence matrix 𝐼 (G) ∈ {0, 1}𝑁1×𝑀1 of the initiator hypergraph
G be UΣV⊤, where U ∈ R𝑁1×𝑅,Σ ∈ R𝑅×𝑅 , and V ∈ R𝑀1×𝑅 . By
the properties of Kronecker product [25], the SVD of 𝐼 (G) [𝐾 ] is
U[𝐾 ]Σ[𝐾 ] (V[𝐾 ] )⊤. Thus, HyRec(G, 𝐾) has multinomial distribu-
tions of both singular values and singular vectors. ■

B.5 Proof of Theorem 3

Theorem. In HyRec(G, 𝐾) where 𝐼 (G) ∈ {0, 1}𝑁1×𝑀1 exhibits
a 1 : log𝑀1

log𝑁1
power-law relationship between the number of nodes and

the number of hyperedges as 𝐾 increases.

Proof. The node count 𝑁 (𝐾) and the hyperedge count 𝐸 (𝐾)
in HyRec(G, 𝐾) become 𝑁𝐾1 and𝑀𝐾

1 , respectively. Consequently,
the relationship between 𝐸 (𝐾) and 𝑁 (𝐾) satisfies 𝐸 (𝐾) = 𝑀𝐾

1 =

(𝑁𝐾1 )
𝑎 = 𝑁 (𝐾)𝑎 where 𝑎 =

𝑙𝑜𝑔𝑀1
𝑙𝑜𝑔𝑁1

. ■

B.6 Proof of Theorem 4

We begin with presenting Lemma 1 and Lemma 2, which are used
for proofs.

Lemma 1. The following claims hold:
• There exists a hyperedge containing 𝑣𝑖, 𝑗 and 𝑣𝑘,𝑙 in G ⊗ G′ if and
only if (a) there is a hyperedge containing both 𝑣𝑖 and 𝑣𝑘 in G, and
(b) there is a hyperedge containing both 𝑣 𝑗 and 𝑣𝑙 in G′.
• The hyperedge 𝑒𝑝,𝑞 in G ⊗ G′ contains 𝑣𝑖, 𝑗 if and only if (a) 𝑒𝑝 in
G contains 𝑣𝑖 , and (b) 𝑒′𝑞 in G′ contains 𝑣 ′

𝑗
.

Proof. The claims are straightforwardly deduced from the defi-
nition of the Kronecker product. ■

Lemma 2. If two hypergraphs G and G′ each have a diameter at
most 𝐷 , then G ⊗ G′ also has a diameter at most 𝐷 .

Proof. Consider two arbitrary nodes 𝑣𝑖 , 𝑣𝑘 in G and two arbi-
trary nodes 𝑣 ′

𝑗
, 𝑣 ′
𝑙
in G′. Let 𝑎 be the distance between node 𝑣𝑖 and

𝑣𝑘 in G, and 𝑏 be the distance between node 𝑣 ′
𝑗
and 𝑣 ′

𝑙
in G′. Then,

there is a path (𝑒𝑝1 , · · · , 𝑒𝑝𝑎 ) between 𝑣𝑖 and 𝑣𝑘 in G, and there is a
path (𝑒′𝑞1 , · · · , 𝑒

′
𝑞𝑏
) between 𝑣 ′

𝑗
and 𝑣 ′

𝑙
in G′. By Lemma 1, in G⊗G′,

the node 𝑣𝑖,𝑘 is contained in the hyperedge 𝑒𝑝1,𝑞1 , and the node
𝑣 𝑗,𝑙 is contained in the hyperedge 𝑒𝑝𝑎,𝑞𝑏 . Additionally, for every
𝑘 ≤ max(𝑎, 𝑏) −1, 𝑒𝑝min(𝑘,𝑎) ,𝑞min(𝑘,𝑏) ∩𝑒𝑝min(𝑘+1,𝑎) ,𝑞min(𝑘+1,𝑏) ≠ ∅ holds.
Therefore, a path (𝑒𝑝min(1,𝑎) ,𝑞min(1,𝑏) , . . . , 𝑒𝑝min(max(𝑎,𝑏),𝑎) ,𝑞min(max(𝑎,𝑏),𝑏) )
exists between 𝑣𝑖,𝑘 and 𝑣 𝑗,𝑙 in G ⊗ G′. Since max(𝑎, 𝑏) ≤ 𝐷 , the
distance between any two nodes in G ⊗ G′ is at most 𝐷 . ■

Theorem. If the initiator hypergraph G has a diameter 𝐷 , the
diameter of HyRec(G, 𝐾) is exactly 𝐷 .

Proof. From Lemma 2, we can easily show the diameter of
HyRec(G, 𝐾) is at most 𝐷 by employing induction on 𝐾 . Since
the diameter of G is 𝐷 , there exists a pair of nodes (𝑣𝑖 , 𝑣 𝑗 ) such
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Table 7: Generation Time and Memory Complexity Compar-

isons between HyRec and its Competitors.

Generator Time Complexity Memory Complexity

HyperCL 𝑂 (𝑙𝑜𝑔2 |V| ·
∑
𝑒∈E |𝑒 |) 𝑂 ( |V| +∑𝑒∈E |𝑒 |)

HyperFF 𝑂 ( |V| ·∑𝑒∈E |𝑒 |) 𝑂 ( |V| +∑𝑒∈E |𝑒 |)
HyperPA 𝑂 (∑𝑒∈E 𝑙𝑜𝑔2

( |V |
|𝑒 |

)
) 𝑂 (∑𝑒∈E 2 |𝑒 | )

HyperLAP 𝑂 (𝑙𝑜𝑔2 |V| ·
∑
𝑒∈E |𝑒 |) 𝑂 ( |V| +∑𝑒∈E |𝑒 |)

THera 𝑂 (𝑙𝑜𝑔2 |V| ·
∑
𝑒∈E |𝑒 |) 𝑂 ( |V| +∑𝑒∈E |𝑒 |)

HyRec 𝑂 (𝐿( |V||E |)
1
𝐿 +∑𝑒∈E |𝑒 |) 𝑂 (( |V||E |)

1
𝐿 +∑𝑒∈E |𝑒 |)

Table 8: Time Complexity of SingFit (Algorithm 1).

SingFit

(Algorithm 1) Time Complexity

Generation
(Line 11) 𝑂 (𝐿( |V||E |)

1
𝐿 )

Computing Singular Values
(Line 12) 𝑂 (𝐿 ·𝑚𝑖𝑛( |E |2 |V|, |E | |V|2)

1
𝐿 )

Computing Degree Distributions
(Line 13) 𝑂 (𝐿 · (∑𝑒∈E |𝑒 |) 1

𝐿 + |V|)

Computing Size Distributions
(Line 14) 𝑂 (𝐿 · (∑𝑒∈E |𝑒 |) 1

𝐿 + |E|)

that the distance between 𝑣𝑖 and 𝑣 𝑗 is exactly 𝐷 . Suppose the di-
ameter of HyRec(G, 𝐾) is at most 𝐷 − 1. Then, there is a path
(𝑒𝑝11,· · · ,𝑝1𝐾 , 𝑒𝑝21,· · · ,𝑝2𝐾 , · · · , 𝑒𝑝𝑙1,· · · ,𝑝𝑙𝐾 ) between 𝑣𝑖,· · · ,𝑖 and 𝑣 𝑗,· · · , 𝑗
inHyRec(G, 𝐾), whose length 𝑙 is at most𝐷−1. SinceHyRec(G, 𝐾)
is equivalent to HyRec(G, 𝐾 − 1) ⊗ G, (𝑒𝑝1𝐾 , 𝑒𝑝2𝐾 , · · · , 𝑒𝑝𝑙𝐾 ) is a
valid path between 𝑣𝑖 and 𝑣 𝑗 in G, and its length is at most 𝐷 − 1,
which is a contradiction. ■

B.7 Proof of Theorem 5

Theorem. If the initiator hypergraph G has a diameter 𝐷 , then
the effective diameter of HyRec(G, 𝐾) converges to 𝐷 as 𝐾 increases.

Proof. Suppose we randomly select a node 𝑎 = (𝑣𝑎1,· · · ,𝑎𝐾 ) and a
node𝑏 = (𝑣𝑏1,· · · ,𝑏𝐾 ) fromHyRec(G, 𝐾), where 𝐼 (G) ∈ {0, 1}𝑁1×𝑀1 .
Since the diameter of G is 𝐷 , there exists a pair of nodes (𝑣𝑖 , 𝑣 𝑗 )
such that the distance between 𝑣𝑖 and 𝑣 𝑗 is exactly 𝐷 , then with
probability 1 − (1 − 1

𝑁 2
1
)𝐾 , there is some index 𝑘 ∈ {1, · · · , 𝐾} s.t

(𝑎𝑘 , 𝑏𝑘 ) = (𝑖, 𝑗). Thus, the probability that the distance between two
nodes in HyRec(G, 𝐾) is exactly 𝐷 is at least 1 − (1 − 1

𝑁 2
1
)𝐾 . Since

there exists 𝐾0 = 3𝑁 2
1 ∈ N⊮ such that 1− (1− 1

𝑁 2
1
)𝐾 > 1− 1

𝑒3 > 0.9
for all 𝐾 > 𝐾0, the effective diameter of HyRec(G, 𝐾) converges to
𝐷 as 𝐾 increases. ■

C Analysis of Time and Memory Complexity

Table 7 summarizes the time andmemory complexities of all models,
including HyRec. In all experiments, we use at least two units (i.e.,
𝐿 ≥ 2). The complexities of competing methods are discussed in
detail in [21], while the formal proofs of HyRec’s time and memory
complexities are provided in Online Appendix [8]. Additionally,
Table 8 outlines the time complexity of SingFit, with further details
available in Online Appendix [8].

D Experimental Settings

D.1 Competitors

We consider 5 baseline generators: HyperCL [27], HyperFF [23],
HyperPA [13], HyperLap [27], and THera [21], with their fea-
tures summarized in Table 1. HyperCL and HyperLAP rely on node
degree and hyperedge size distributions as inputs. HyperPA is lim-
ited to hyperedges of size under 20 and requires distributions for
both hyperedge sizes and the number of new hyperedges for nodes.
THera also demands hyperedge size distributions. HyperFF is based
on the forest fire model controlled by two parameters. While more
generators [1, 7] could be considered for comparison, we focus
on competitive open-source generators that have been shown to
reproduce realistic structural properties.

D.2 Parameter Settings

• HyperCL and HyperLAP: Both models require the distribution
of node degrees and hyperedge sizes.
• HyperFF: 𝑝 ∈ [0.45, 0.48, 0.51] and 𝑞 ∈ [0.2, 0.3].
• HyperPA: It requires the distribution of hyperedge sizes and the
number of new hyperedges per new node.
• THera: Its parameters are 𝐶 ∈ [8, 12, 15], 𝑝 ∈ [0.5, 0.7, 0.9],
𝛼 ∈ [2, 6, 10], and hyperedge size distributions.
• HyRec: The entries of the initiator matrix are parameters. The
size of the initiator incidence matrix, 𝑁1 ×𝑀1, is determined by
𝑁1 =

⌈
|V|1/𝐾

⌉
and 𝑀1 =

⌈
|E |1/𝐾

⌉
. Here 𝐾 is chosen from 𝑘 ∈

[2, 50] to minimize
����⌈|V|1/𝑘 ⌉𝑘 ⌈|E |1/𝑘 ⌉𝑘 − |V||E |����, subject to 1 <⌈

|V|1/𝑘
⌉ ⌈
|E |1/𝑘

⌉
≤ 𝑆 , where 𝑆 ∈ [50, 100, 1000]. The other pa-

rameters are (a) the learning rate𝛼 ∈ [0.001, 0.003, 0.005, 0.008, 0.01],
(b) the Gumbel-Softmax temperature 𝜏 = 0.0005, (c) the number
of units 𝐿 ∈ [2, 3, 4]; and (d) 𝜆𝑑 ∈ [0.0, 0.0001, 0.001, 0.01, 0.1]
and 𝜆𝑠 ∈ [0.0, 2.0], which are the weights for losses.

E Parameter Sensitivity of HyRec

We analyze the effect of hyperparameters on the performance of
HyRec as shown in Figure 4. The hyperparameters include (see
Algorithm 1): (1) the number of parameters, i.e., the size of the
initiator matrix (𝑁1 ×𝑀1), (2) the number of units (𝐿), (3) 𝜆𝑠 , and (4)
𝜆𝑑 . We conduct experiments on three small real-world hypergraphs,
email-Enron, contact-high, andNDC-classes, in terms of the number
of nodes. For each experiment, performance is evaluated based on
the average ranking derived from reproducing nine properties of
the target hypergraph.
Number of Parameters (𝑁1 ×𝑀1). We observe improved perfor-
mance (i.e., lower ranking) as the number of parameters increases.
For the email-Enron dataset, the ranking converges as the number
increases. For the contact-high and NDC-classes dataset, perfor-
mance improves with fewer than 1,000 and 100 parameters, respec-
tively, but declines as the parameter count approaches 10,000. We
hypothesize that too many parameters lead to an excess of zero
entries. The difference between the space 𝑁1 ×𝑀1 and the actual
size of the hypergraph |V| × |E| increases as more parameters are
added, introducing noise. Therefore, while increasing the number
of parameters enhances performance initially, an overabundance
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(a) Number of Parameters (𝑁1 ×𝑀1)

(b) Number of Units (𝐿)

(c) Weight for fitting the size distribution (𝜆𝑠 )

(d) Weight for fitting the degree distribution 𝜆𝑑

Figure 4: The Effect of Hyperparameters on the Performance

of HyRec.

can negatively impact the results. For this specific experiment, we
fix the number of units at 2 and we explore best values for 𝜆𝑑 and
𝜆𝑠 within the search space detailed in Appendix D.2 to find the best
ranking for each parameter count.
Number of Units (𝐿). Using a single unit corresponds to handling
the full Kronecker power, which requires managing all possible con-
nections between nodes and hyperedges. However, utilizing multi-
ple units maintains the performance on the email-Enron dataset and
even improves performance on the contact-high and NDC-classes
dataset, while reducing the computational complexity of HyRec, as
demonstrated in the complexity analysis (Appendix C). Increasing
the number of units beyond a certain point, however, does not
yield further performance gains. We hypothesize this is because
smaller unit sizes result in noisier singular values, reducing their
usefulness. For example, when the number of units exceeds 3 in
email-Enron, the smallest unit size becomes 3 × 5, which may gen-
erate less informative singular values compared to larger units. For
this experiment, we fix the number of parameters at 3×5 and 4×12,
respectively, and search for best values of 𝜆𝑑 and 𝜆𝑠 within the
search space outlined in Appendix D.2, respectively, to determine
the best ranking performance for each unit number.

Figure 5: Generation Time Efficiency of HyRec Compared

to Other Hypergraph Generators Across Synthetic Datasets.

𝜆𝑠 and 𝜆𝑑 . We observe that performance improves up to a certain
point, beyond which it declines as the values of 𝜆𝑠 or 𝜆𝑑 exceed that
point. Specifically,HyRec performs best on the email-Enron dataset
when 𝜆𝑠 = 0.01 but performs best at 𝜆𝑠 = 10.0 on the contact-high
dataset and 𝜆𝑠 = 1.0 on the NDC-classes dataset. Since these hyper-
parameters control the weights for the loss functions that match
the size and degree distributions, respectively, we hypothesize that
matching size distributions is more challenging for the contact-high
dataset, which has a maximum hyperedge size limited to 5, thus
necessitating a higher weight for 𝜆𝑠 . For 𝜆𝑑 , although the optimal
values vary slightly across datasets, they remain relatively consis-
tent compared to the variations in 𝜆𝑠 . This suggests that degree dis-
tribution alignment is less sensitive to hyperparameter tuning than
size distribution alignment. For the specific experimental setup, we
set the parameters to (𝑁1, 𝑀1, 𝐿, 𝜆𝑠 , 𝜆𝑑 ) = (3, 5, 2, 0.01, 0.001) and
(4, 12, 2, 1.5, 0.0) for each dataset, which are the best hyperparame-
ters found within the search space described in Appendix D.2. We
then vary only the target hyperparameter 𝜆𝑠 or 𝜆𝑑 to evaluate the
impact of each on the results.

F Comparison of Generation Time Across

Hypergraph Generators

In addition to the time complexity analysis of generation provided
in Appendix C, we compare the empirical runtime of all methods,
as shown in Figure 5. We use synthetic hypergraphs generated by
HyRec, with an initiator matrix fitted to the email-Eu hypergraph,
and vary the Kronecker power from 5 to 9 (up to 107 hyperedges).
Specifically, HyperFF is set with parameters 𝑝 = 0.51 and 𝑞 = 0.3,
THera with 𝐶 = 8, 𝑝 = 0.7, and 𝛼 = 10, and HyRec with two units
(𝐿 = 2). We set a runtime limit of 5 hours, so generators without
markers in some cases in Figure 5 indicate that they exceeded this
limit. Specifically, HyperFF and HyperPA surpassed the 5-hour
threshold. The results show that HyRec consistently requires less
time than HyperLAP, HyperCL, and HyperPA, and even for the
largest hypergraph with over 106 hyperedges, HyRec achieves
the second-fastest runtime. While THera is the fastest method, it
requires 2,400 times more input parameters (as shown on the right
side of Figure 5), and HyRec outperforms it in the extrapolation
task (refer to Tables 4).
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