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Abstract—Group interactions are prevalent in a variety of areas.
Many of them, including email exchanges, chemical reactions, and
bitcoin transactions, are directional, and thus they are naturally
modeled as directed hypergraphs, where each hyperarc consists
of the set of source nodes and the set of destination nodes. For
directed graphs, which are a special case of directed hypergraphs,
reciprocity has played a key role as a fundamental graph statistic
in revealing organizing principles of graphs and in solving graph
learning tasks. For general directed hypergraphs, however, even
no systematic measure of reciprocity has been developed.

In this work, we investigate the reciprocity of 11 real-world
hypergraphs. To this end, we first introduce eight axioms that any
reasonable measure of reciprocity should satisfy. Second, we pro-
pose HYPERREC, a principled measure of hypergraph reciprocity
that satisfies all the axioms. Third, we develop FERRET, a fast and
exact algorithm for computing the measure, whose search space
is up to 10147× smaller than that of naive computation. Fourth,
using them, we examine 11 real-world hypergraphs and discover
patterns that distinguish them from random hypergraphs. Lastly,
we propose REDI, an intuitive generative model for directed
hypergraphs exhibiting the patterns. The code and the datasets
are available at https://github.com/kswoo97/hyprec.

Index Terms—Reciprocity, Directed Hypergraph, Generator

I. INTRODUCTION

Beyond pairwise interactions, understanding and modeling
group-wise interactions in complex systems have recently
received considerable attention [1]–[4]. A hypergraph, which
is a generalization of a graph, has been used widely as an
appropriate abstraction for such group-wise interactions. Each
hyperedge in a hypergraph is a set of any number of nodes,
and thus it naturally represents a group-wise interaction.

Many group-wise interactions are directional, and they are
modeled as a directed hypergraph, where each hyperarc consists
of the set of source nodes and the set of destination nodes.
Examples of directional group-wise interactions include email
exchanges (from senders to receivers), chemical reactions [5],
road networks [6], and bitcoin transactions [7]; and they are
modeled as directed hypergraphs for various applications [5],
[6]. See Figure 1 for an example of hypergraph modeling.

Reciprocity [8], [9], which quantifies how mutually nodes
are linked, has been used widely as a basic statistic of directed
graphs, which are a special case of directed hypergraphs where
every arc has exactly one source node and one destination
node. Reciprocity helps understanding of a graph, especially
potential organizing principles of it, and has proved useful for
various tasks, including anomaly detection [10], and analysis
of the spread of a computer virus through emails [8].

Nodes (Authors) Head Sets and Tail Sets (Papers)

Paper 𝑻𝟏 by 𝒗𝟓 & 𝒗𝟔
Paper 𝑯𝟏 by 𝒗𝟏 & 𝒗𝟐
Paper 𝑻𝟐 by 𝒗𝟐, 𝒗𝟑, & 𝒗𝟒
Paper 𝑯𝟐 by 𝒗𝟔, 𝒗𝟕, & 𝒗𝟖
Paper 𝑻𝟑 by 𝒗𝟕 & 𝒗𝟖
Paper 𝑯𝟑 by 𝒗𝟒

Hyperarcs (Papers)

𝒆𝟏 : 𝑻𝟏 cites 𝑯𝟏

𝒆𝟐 : 𝑻𝟐 cites 𝑯𝟐

𝒆𝟑 : 𝑻𝟑 cites 𝑯𝟑

𝒗𝟏, ⋯, 𝒗𝟖

(a) Example Citation Dataset

𝒆𝟏 𝒆𝟐 𝒆𝟑

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒

𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖

(b) Model

Fig. 1. A citation dataset modeled as a directed hypergraph with 8 nodes and
3 hyperarcs. Nodes correspond to authors. Hyperarcs correspond to citations.
The head set and tail set of each hyperarc correspond to sets of papers.

However, reciprocity has remained unexplored for directed
hypergraphs, and to the best of our knowledge, even no
principled measure of reciprocity has been defined for directed
hypergraphs. One straightforward approach is to compute the
reciprocity after replacing a given directed hypergraph into
a directed graph by clique expansion (i.e., replacing each
hyperarc with the directed bi-clique from its source nodes
to its destination nodes), as suggested in [11]. However, clique
expansion may incur considerable information loss [5], [12],
[13]. Thus, multiple directed hypergraphs whose reciprocity
should differ, if they are determined by a proper measure, may
become indistinguishable after being clique-expanded.

In this work, we investigate the reciprocity of real-world
hypergraphs based on the first principled notion of reciprocity
for directed hypergraphs. Our contributions toward this goal
are summarized as follows:

• Principled Reciprocity Measure: We design HYPERREC,
a probabilistic measure of hypergraph reciprocity. We prove
that HYPERREC satisfies eight axioms that any reasonable
measure of hypergraph reciprocity should satisfy.

• Fast and Exact Search Algorithm: The size of search space
for computing HYPERREC is exponential in the number of
hyperarcs. We develop FERRET, a fast and exact algorithm
for computing HYPERREC, whose search space is up to
10147× smaller than that of naive computation.

• Observations in Real-world Hypergraphs: Using HYPER-
REC and FERRET, we investigate 11 real-world directed
hypergraphs, and discover two reciprocal patterns pervasive
in them, which are verified using a null hypergraph model.

• Realistic Generative Model: To confirm our understanding
of the patterns, we develop REDI, a directed-hypergraph
generator based on simple mechanisms on individual nodes.
Our experiments demonstrate that REDI yields directed
hypergraphs with realistic reciprocal patterns.

https://github.com/kswoo97/hyprec


II. BASIC CONCEPTS AND RELATED WORK

We introduce some basic concepts and related studies.

A. Basic Concepts

A directed hypergraph G = (V,E) consists of a set
of nodes V = {v1, · · · , v|V |} and a set of hyperarcs
E = {e1, · · · , e|E|} ⊆ {⟨H,T ⟩ : H ⊆ V, T ⊆ V }. For
each hyperarc ei = ⟨Hi, Ti⟩ ∈ E, Hi indicates the head
set and Ti indicates the tail set. In Figure 1, the hyperarc
e1 = ⟨H1, T1⟩ ∈ E is represented as an arrow that heads to
H1 = {v1, v2} from T1 = {v5, v6}. It is assumed typically
and also in this work that, in every hyperarc, the head set and
the tail set are disjoint (i.e., Hi ∩ Ti = ∅,∀i = 1, · · · , |E|).
The in-degree din(v) = |{ei ∈ E : v ∈ Hi}| of a node v ∈ V
is the number of hyperarcs that include v as a head. Similarly,
the out-degree dout(v) = |{ei ∈ E : v ∈ Ti}| of v ∈ V is the
number of hyperarcs that include v as a tail.

From now on, we will use the term hypergraph to indicate
a directed hypergraph and use the term undirected hypergraph
to indicate an undirected one. We will also use the term arc
to indicate a hyperarc when there is no ambiguity.

B. Related Work
Reciprocity of Directed Graphs: Reciprocity of directed
graphs (i.e., a special case of directed hypergraphs where
all head sets and tail sets are of size one) is a tendency of two
nodes to be mutually linked [8], [9]. This is formally defined
as |E↔|/|E|, where |E| is the number of edges in a graph,
and |E↔| is the number of edges whose opposite directional
arc exists. The notion was extended to weighted graphs [10],
[14], and using them, the relationship between degree and
reciprocity was investigated [10]. Moreover, the preferential
attachment model [15] was extended by adding a parameter
that controls the probability of creating a reciprocal edge for
generating reciprocal graphs [16].
Patterns and Generative Models of Hypergraphs: Hyper-
graphs have been used widely for modeling group-wise
interactions in complex systems, and considerable attention has
been paid to the structural properties of real-world hypergraphs,
with focuses on node degrees [2], [3], singular values [2],
[3], diameter [2], [3], density [3], the occurrences of motifs
[17], [18], the repetition of hyperedges [19], [20], and the
overlap of hyperedges [4]. Many of these patterns can be
reproduced by hypergraph generative models that are based on
intuitive mechanisms [2]–[4], [19]. Such models can be used
for anonymization and graph upscaling in addition to testing
our understanding of the patterns [21]. All the above studies
are limited to undirected hypergraphs, while this paper focuses
on directed hypergraphs.
Directed Hypergraphs and Reciprocity: Directed hyper-
graphs have been used for modeling chemical reactions [5],
knowledge bases [22], road networks [6], bitcoin transactions
[7], etc. To the best of our knowledge, there has been only one
attempt to measure the reciprocity of directed hypergraphs [11],
where a hypergraph G is transformed into a weighted digraph
Ḡ by clique expansion, for the digraph [8], [9] reciprocity

measure is applied. However, as discussed in Section I, clique
expansion may cause substantial information loss [12], and
thus multiple directed hypergraphs whose reciprocities should
differ, if they are determined by a proper measure, can be
transformed into the same directed graphs by clique expansion.

III. DIRECTED HYPERGRAPH RECIPROCITY

In this section, we present eight necessary properties of
an appropriate hypergraph reciprocity measure in the form of
axioms. Then, we present our reciprocity measure, namely
HYPERREC, which satisfies all the axioms. Lastly, we propose
an algorithm FERRET for fast computation of HYPERREC.

A. Framework and Axioms

We present our framework for measuring hypergraph reci-
procity. Then, we suggest eight axioms that any reasonable
reciprocity measure must satisfy.
Framework for Hypergraph Reciprocity: Given a hyper-
graph G, we measure its reciprocity at two levels:
• How much each arc (i.e., group interaction) is reciprocal.
• How much the entire hypergraph G is reciprocal.

For a target arc, which we measure reciprocity for, multiple
arcs should be involved in measuring its reciprocity inevitably.
For example, in Figure 1, arc e2’s head set and tail set overlap
with e1 and e3’s tail set and head set, respectively, and thus we
should consider both e1 and e3 in measuring e2’s reciprocity.
In graphs, however, only the arc with the opposite direction is
involved in the reciprocity of an arc. This unique characteristic
of hypergraphs poses challenges in measuring reciprocity. The
reciprocal set Ri of a target arc ei is the set of reciprocal arcs
that we use to compute the reciprocity of ei, We use r(ei, Ri)
to denote the reciprocity of an arc ei, where the domain is
E × 2E .1 In graphs, a traditional reciprocity measure [8] is
defined as the proportion of arcs between nodes that point
both ways, and if we assign 1 to such an arc and 0 to the
others as reciprocity, the proportion is equivalent to the average
reciprocity of arcs. Similarly, we regard, as the reciprocity of
a hypergraph G, the average reciprocity of arcs, i.e.,

r(G) :=
1

|E|
∑|E|

i=1
r(ei, Ri). (1)

Axioms: What are the characteristics required for r(ei, Ri) and
r(G)? We introduce eight axioms that any reasonable measure
of r(ei, Ri) (AXIOMS 1-5) and r(G) (AXIOMS 6-8) should
satisfy. In AXIOMS 1-4, we compare the reciprocity of two
target arcs ei and ej whose reciprocal sets are Ri and Rj ,
respectively. Moreover, in AXIOM 2-4, we commonly assume
two target arcs ei and ej are of equal size (i.e., |Hi| = |Hj | and
|Ti| = |Tj |). Here, we say two arcs ei and ek ∈ Ri inversely
overlap if and only if Hi ∩ Tk ̸= ∅ and Ti ∩Hk ̸= ∅. Below,
the statements in AXIOMS 1-4 are limited to the examples
in Figure 2 for simplicity. The statements in AXIOMS 1-4,
however, are generalized and formalized in [23].

1Note that all arcs in Ri are used in computing the reciprocity of ei, and
thus it does not correspond to a search space.



(a) AXIOM 1 (b) AXIOM 2A (c) AXIOM 2B

(d) AXIOM 3A (e) AXIOM 3B (f) AXIOM 4

Left side in each subfigure

𝑒𝑖 (target arc)

𝑒𝑖1
′ (or 𝑒𝑖

′) 

𝑒𝑖2
′

Other arcs

𝑒𝑗 (target arc)

𝑒𝑗
′

Other arcs

Right side in each subfigure

Fig. 2. Examples for AXIOMS 1-4. In each subfigure, the reciprocity of the arc ei on the left side should be smaller than that of the arc ej on the right
side. This inequality holds by HYPERREC (see Section III-B) in all subfigures. Specifically, if α = 1, r(ei) & r(ej) are 0.0000 & 0.3605 in (a), 0.2697 &
0.5394 in (b), 0.4444 & 0.5394 in (c), 0.3167 & 0.6466 in (d), 0.3233 & 0.6466 in (e), and 0.2347 & 0.2500 in (f).

Axiom 1 (Existence of Inverse Overlap). In Figure 2(a),
r(ei, Ri) < r(ej , Rj) should hold. Roughly, an arc with at
least one inverse-overlapping reciprocal arc is more reciprocal
than an arc with no inverse-overlapping reciprocal arcs.

Axiom 2 (Degree of Inverse Overlap). In Figures 2(b-c),
r(ei, Ri) < r(ej , Rj) should hold. Roughly, an arc that
inversely overlaps with reciprocal arcs to a greater extent
(with a larger intersection and/or with a smaller difference) is
more reciprocal.

Axiom 3 (Number of Reciprocal Arcs). In Figures 2(d-e),
r(ei, Ri) < r(ej , Rj) should hold. Roughly, an arc requiring
fewer reciprocal arcs to inversely overlap to the same extent
is more reciprocal.

Axiom 4 (Bias). In Figure 2(f), r(ei, Ri) < r(ej , Rj) should
hold. Roughly, when two arcs inversely overlap equally with
their reciprocal sets, an arc whose reciprocal arcs are equally
reciprocal to all nodes in the arc is more reciprocal than one
with reciprocal arcs biased towards some nodes in the arc.

Axiom 5 (Upper and Lower Bounds). The reciprocity of any
arc should be within a fixed range. Specifically, for every
ei ∈ E and Ri ∈ 2E , r : E × 2E 7→ [0, 1] should hold.

Now, we present the axioms defined at the hypergraph level.

Axiom 6 (Inclusion of Graph Reciprocity). The graph reci-
procity [8] should be included as a special case. That is, if G
is a graph (i.e., |Hi| = |Ti| = 1,∀i ∈ {1, · · · , |E|}), then the
following equality should hold:

r(G) = |E↔|/|E|, (2)

where E↔ is the set of arcs between nodes that point each
other in both directions.

Axiom 7 (Upper and Lower Bounds). The reciprocity of any
hypergraph should be within a fixed range. Specifically, for
any hypergraph G, r : G 7→ [0, 1] should hold.

Axiom 8 (Surjection of Reciprocity). The maximum reciprocity,
which is 1 by AXIOM 7, should be reachable from any hyper-
graph by adding specific arcs. That is, for every G = (V,E),
there exist G∗ = (V,E∗) with E∗ ⊇ E such that r(G∗) = 1.

B. Proposed Measure of Hypergraph Reciprocity: HYPERREC

We propose HYPERREC, a principled hypergraph-reciprocity
measure based on transition probability.

Transition Probability: For a target arc ei = ⟨Hi, Ti⟩ and its
reciprocal arcs Ri, the transition probability ph(v) from a
head set node vh ∈ Hi to each node v is the probability of a
random walker transiting from vh to v when she moves to a
uniform random tail-set node of a uniform random arc among
the reciprocal arcs incident to vh. There might be some head
set nodes that are not incident to any reciprocal arc. We assume
that, from such a node, the random walker always transits to
the virtual sunken node vsunk /∈ V . An example of how the
transition probability is computed is given in [23].

Then, for each head set node vh ∈ Hi of a target arc
ei, a transition probability distribution over V ∪ {vsunk}
is defined, and we use ph to denote it. We also denote an
optimal transition probability distribution by p∗h, which is a
transition probability distribution when the perfectly reciprocal
arc e∗i = ⟨H∗

i = Ti, T
∗
i = Hi⟩ is assumed as the reciprocal arc

of ei, i.e., Ri = {e∗i }. The following equality always holds:

p∗h(v) =

{
1

|Ti| if v ∈ Ti,

0 otherwise.

Proposed Measure: Based on the above concepts, we propose
HYPERREC (Hypergraph Reciprocity) as a principled measure
of hypergraph reciprocity. We notice that reciprocal arcs in a
graph lead to paths of length two that start and end at the same
node. Thus, intuitively, in a hypergraph, a target arc should
become more reciprocal if its reciprocal arcs allow for heading
back to the head-set nodes of the target arc more “accurately”.
In order to measure numerically the accuracy for a target arc
ei, we compare the transition probability distribution ph from
each head-set node vh ∈ Hi with the optimal distribution p∗h.

While any distance function L can be used to quantify the
difference between ph and p∗h, we use the Jensen-Shannon
Divergence (JSD) [24] since it is a symmetric measure that
can handle zero mass in both distributions. Based on L, we
define HYPERREC of an arc ei whose reciprocal set is Ri as

r(ei, Ri) :=

(
1

|Ri|

)α (
1−

∑
vh∈Hi

L(ph, p∗h)
|Hi| · Lmax

)
, (3)



where α ∈ (0, 1] is a constant controlling the degree of
penalization of a large reciprocal set, and Lmax is the maximum
value of the distance measure L, which is log 2 for the
JSD. Note that r(ei, Ri) becomes larger if L(ph, p∗h) becomes
small, implying that an arc is more reciprocal if its transition
distribution becomes closer to the optimal distribution.
Composing Reciprocal Sets: The value of r(ei, Ri) is depen-
dent on how we select the reciprocal set Ri from the set E
of all arcs. For each target arc ei, we propose to choose non-
empty Ri ⊆ E that maximizes the reciprocity r(ei, Ri) of ei,
i.e.,

Ri := argmax
R′

i⊆E,R′
i ̸=∅

r(ei, R
′
i). (4)

In summary, according to HYPERREC, the reciprocity of an
arc ei ∈ E is

r(ei) := max
Ri⊆E,Ri ̸=∅

r(ei, Ri), (5)

and by Eq. (1), the reciprocity of G is r(G) := 1
|E|

∑|E|
i=1 r(ei).

Axiomatic Analysis: HYPERREC satisfies all proposed AX-
IOMS regardless of the value of α > 0, as stated in Theorem 1.

Theorem 1 (Soundness of HYPERREC). HYPERREC always
satisfies AXIOMS 1-8.

Proof. The numerical values for the examples in Figure 2,
which can be found in the caption, imply AXIOMS 1-4. Proofs
of AXIOMS 5-8 can be found in [23].

C. Exact and Rapid Search for Reciprocal Sets

We propose FERRET (Fast and Exact Algorithm for Hyper-
graph Reciprocity), an approach for rapidly searching for the
reciprocal set Ri of Eq. (4). We prove the exactness of FERRET
and demonstrate its efficiency in real-world hypergraphs.
Procedure: Pseudocode of FERRET is given in [23]. For each
arc ei, we first retrieve the set Ωi of inverse-overlapped arcs (see
Section III-A for the definition) and check whether ei is (1) non-
reciprocal, (2) perfectly reciprocal, or (3) partially reciprocal.
Reciprocity for the first two cases is 0 and 1, respectively. For
a partially reciprocal case, we group the arcs in Ωi using a
mapping table Φi where the key of each arc ek ∈ Ωi is the
head-set and tail-set nodes of ei that it covers (i.e., ⟨H ′

i, T
′
i ⟩

where H ′
i ← Hi∩Tk and T ′

i ← Ti∩Hk). For each group with
the same key ⟨H ′

i, T
′
i ⟩, we choose an arc with the minimum

number of head set nodes. Then, we create a new search space
Ψi containing only the chosen arcs. After that, every subset
Ri of Ψi is considered to maximize Eq. (3), and we return the
maximum value as the reciprocity r(ei) of ei.
Theoretical Properties and Evaluation: As stated in Theo-
rem 2, FERRET finds the best reciprocal set, as in Eq. (4), i.e.,
it computes the reciprocity of each arc exactly, as in Eq. (5).

Theorem 2 (Exactness of FERRET). For every ei ∈ E,
maxRi⊆E r(ei, Ri) is identical to the maxRi⊆Ψi r(ei, Ri).

Proof. Proof can be found in [23].

After the reduction above, the size of the search space for
Ri becomes O(2|Ψi|) in general, and as desribed in [23], it
becomes O(|Ψi|) for the case where every arc’s tail set size is
1 (i.e., |Ti| = 1,∀i ∈ {1, · · · , |E|}). Although the complexity
is still exponential, we demonstrate that the search space is
reasonably small and thus a search can be performed within
a reasonable time period (spec., at most 3.5 hours) for all
considered real-world hypergraphs. Further analysis of the
search space and running time can be found in [23].

IV. DATASETS AND OBSERVATIONS

In this section, we investigate the reciprocal patterns of
real-world hypergraphs using HYPERREC and FERRET. After
introducing used real-world hypergraph datasets and null
hypergraphs, we discuss our observations at two different
levels: hypergraphs and arcs. The significance of the patterns
are verified by a comparison with the null hypergraphs.

A. Datasets

Datasets: We use 11 real-world hypergraphs from five different
domains. Refer to [23] for the sources, preprocessing methods,
and basic statistics of the hypergraphs.
• Metabolic (iAF1260b and iJO1366): Each network models

chemical reactions among various genes. Nodes correspond
to genes, and arcs indicate reactions.

• Emails (email-enron and email-eu): Each node is an email
account, and each arc consists of two ordered sets of senders
and receivers of an email.

• Citations (DBLP-data mining and DBLP-software). Each
node is a researcher, and each head set and tail set indicates
a paper. Arcs represent citations, as in Figure 1.

• Question and Answering (math-overflow and stack-
exchange server fault). Each node is a user, and each arc
corresponds to a post. The questioner of a post becomes the
head of an arc and the answerers compose its tail set.

• Bitcoin Transactions (bitcoin-2014, 2015, 2016). Each node
is an address in bitcoin transactions, and each arc is a
transaction among users.

B. Observations
We investigate the reciprocal patterns of real-world hyper-

graphs at two different levels: hypergraphs and arcs. In order to
demonstrate that discovered characteristics are distinguishable
from random behavior, we measure the same statistics and
patterns in randomized hypergraphs, which we call null
hypergraphs. Details of the null hypergraphs can be found in
[23]. Due to the space limit, we report the results in only one
dataset from each domain. Results that are not shown in this
paper can be found in the [23].
L1. Hypergraph Level: Since hypergraph reciprocity r(G) =
1

|E|
∑

ei∈E r(ei) is robust to the choice of α, as shown in [23],
we fix α to a value near zero for the investigation below. As
shown in Table I, the hypergraph reciprocity is several orders
of magnitude greater in real-world hypergraphs than in the
corresponding null hypergraphs. Moreover, the differences are
statistically significant, as shown in [23].



TABLE I
OBSERVATIONS 1 AND THE SUPERIORITY OF REDI. RECIPROCITY IN (A) REAL-WORLD HYPERGRAPHS, (B) NULL HYPERGRAPHS, (C) THOSE GENERATED

BY REDI (SECTION V), AND (D) THOSE GENERATED BY A BASELINE GENERATOR IS REPORTED. AS THE ARC-LEVEL DIFFERENCE, WE REPORT THE
D-STATISTIC (THE LOWER THE BETTER) BETWEEN EACH DISTRIBUTION OF ARC-LEVEL RECIPROCITY AND THAT IN THE CORRESPONDING REAL-WORLD

HYPERGRAPH. VALUES BELOW 10−6 ARE ALL MARKED WITH ∗ . IN EACH COLUMN, THE HYPERGRAPH RECIPROCITY CLOSEST TO THAT IN THE
REAL-WORLD HYPERGRAPH AND THE MINIMUM D-STATISTIC ARE UNDERLINED. NOTE THAT REAL-WORLD HYPERGRAPHS ARE MORE RECIPROCAL THAN

NULL HYPERGRAPHS, AND OUR PROPOSED GENERATOR, REDI, SUCCESSFULLY REPRODUCES THE RECIPROCITY IN REAL-WORLD HYPERGRAPHS.

metabolic email citation q&a bitcoin
iAF1260b iJO1366 enron eu data mining software math server 2014 2015 2016

Real World r(G) 21.455 22.533 59.001 79.416 12.078 15.316 9.608 13.219 10.829 6.923 3.045

Null r(G) 0.306 0.270 14.862 4.633 0.094 0.147 0.018 0.002 0.0001 0.000∗ 0.000∗

D-Stat 0.625 0.642 0.539 0.807 0.355 0.377 0.124 0.160 0.147 0.100 0.050

REDI r(G) 21.727 22.185 59.161 79.489 12.601 14.279 9.427 13.229 10.267 6.587 3.497
(Section V) D-Stat 0.098 0.104 0.053 0.043 0.212 0.151 0.011 0.005 0.045 0.033 0.017

Baseline r(G) 0.412 0.851 23.846 31.190 0.048 0.004 1.622 0.002 0.002 0.002 0.001
(Section V) D-Stat 0.625 0.623 0.403 0.535 0.328 0.367 0.103 0.160 0.147 0.099 0.050

Observation 1. Real-world hypergraphs are more reciprocal
than randomized hypergraphs.

L2. Arc Level: As shown empirically in [23], arc-level reci-
procity is also robust to the choice of α. Thus, we fix α to a
value near zero for the investigation below. At the arc level,
we examine the relations between the degree of arcs and their
reciprocity. We define head set out-degree (dH,out(ei)) and tail
set in-degree (dT,in(ei)) as follows:

dH,out(ei) =
1

|Hi|
∑
v∈Hi

dout(v) dT,in(ei) =
1

|Ti|
∑
v∈Ti

din(v)

(6)
Refer to Section II-A for the definitions of dout(v) and din(v).
Then, we compare the distributional difference of these statistics
(i.e., Eqs. (6)) between the arcs of zero reciprocity and those
of non-zero reciprocity. As shown in Figure 3(a), the degrees
at arcs with non-zero reciprocity tend to be greater than those
at arcs with zero reciprocity. This is intuitive since arcs where
their head sets are frequently being pointed and tail sets
are frequently pointing others tend to have higher chance to
be reciprocal. Such tendency, however, is not clear in null
hypergraphs.

Observation 2. Arcs with non-zero reciprocity tend to have
higher head set out-degree and tail set in-degree than arcs
with zero reciprocity.

V. DIRECTED HYPERGRAPH GENERATION: REDI

In this section, we propose REDI (Reciprocal and Directional
Hypergraph Generator), a realistic generative model of directed
hypergraphs. We first describe REDI. Then, we demonstrate
its successful reproduction of the reciprocal properties of real-
world hypergraphs examined in Section IV. In addition to
testing our understanding of the patterns, REDI can also be
used for anonymization, graph upscaling, etc [21].

A. Model Description

High-level Introduction to REDI: Given some basic hyper-
graph statistics and three hyperparameter values, REDI gen-
erates a directed hypergraph with realistic structural and
reciprocal patterns. REDI is largely based on HYPERPA [2], an
extension of the preferential attachment model [15] to hyper-
graphs. In HYPERPA, each new node forms hyperedges with
groups of nodes that are drawn with probability proportional to

the degree of groups (i.e., the number of hyperedges containing
each group). Introducing the degree of groups, instead of the
degree of individual nodes, tends to lead to more realistic
higher-order structures of generated graphs [2]. REDI extends
HYPERPA, which only can generate undirected hypergraphs, to
generate directed hypergraphs and especially those with realistic
reciprocal patterns. In a nutshell, REDI stochastically creates
reciprocal arcs while controlling the number of reciprocal arcs
and their degree of reciprocity.
Details of REDI: Pseudocode of REDI is provided in [23]. It
requires three hyperparameters: (a) a proportion β1 ∈ [0, 1] of
reciprocal arc, (b) their extent β2 ∈ [0, 1] of reciprocity, and
(c) the number N of initial nodes. In addition, REDI requires
the following statistics that it preserves in expectation: (a) the
number n of nodes, (b) the distributions fHD and fTD of the
head-set and tail-set sizes, and (c) the distribution fNP of the
number of new arcs per node.

At each step, REDI introduces a new node vi and creates
k arcs where k is sampled from fNP . Before creating a new
arc, we decide whether it to be reciprocal (with prob. β1) or
ordinary. After deciding the size of a new arc according to
the sizes sampled from fHD and fTD, we decide whether to
include v into the head set (with prob. 0.5) or the tail set.

If a new arc is decided to be ordinary, we include vi in
either the head set or the tail set according to the choice
made beforehand. Subsequently, we fill the new arc with nodes
sampled based on in- and out-degrees of groups (i.e., the
number of arcs that include the group in their head set and
tail set, respectively). Note that the head set and the tail set
should be disjoint for both reciprocal and ordinary arcs.

If a new arc is decided to be reciprocal, we choose an
opponent arc eo uniformly at random among those with vi (or
among all existing arcs if no arc contains vi). Then, we decide
how many nodes are brought from the opponent arc’s head set
and tail set by binomial sampling with probability β2 ∈ [0, 1].
After sampling nodes from the opponent arc with probability
proportional to their degree, we fill the new arc with vi and
those sampled based on in- and out-degrees of groups.

B. Evaluation of REDI

We evaluate how well REDI can reproduces the reciprocal
patterns of real-world hypergraphs discussed in Section IV. For
each real-world hypergraph, we generate 5 hypergraphs using
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Fig. 3. (a) Observation 2. In real-world hypergraphs, the (I) head set out-degree and the (II) tail set in-degree tend to be larger at arcs with non-zero
reciprocity than at arcs with zero reciprocity, while there is no such trend in null hypergraphs. (b) Hypergraphs generated by REDI exhibits Observation 2,
which is a pervasive pattern in real-world hypergraphs, as shown in Figure 3(a).

their statistics and report the average of generated statistics.2 In
addition, we introduce a naive preferential attachment model,
as a baseline model for comparison, to clarify the necessity
of the reciprocal edge generation step. The baseline model is
identical to REDI, except only for that it always decides to
create ordinary arcs, i.e., β1 = β2 = 0.3

Reproducibility of Observation 1: We measure the reci-
procity of generated hypergraphs at the hypergraph and arc
levels and compare it with that of real-world hypergraphs.
As shown in Table I, REDI generates hypergraphs whose
reciprocity is very close to that in the corresponding real-world
hypergraphs both at the hypergraph and arc levels. The baseline
model fails to reproduce high enough reciprocity in most cases.
Reproducibility of Observation 2: Moreover, as shown in
Figure 3(b), in the hypergraphs generated by REDI, arcs with
non-zero reciprocity tend to have higher (I) head set out-degree
and (II) tail set in-degree than arcs with zero reciprocity, just
as in the real-world hypergraphs.

VI. CONCLUSION

In this paper, we perform a systematic and extensive study
of reciprocity in real-world hypergraphs. We propose HYPER-
REC, a probabilistic measure of reciprocity that guarantees
all eight desirable properties (Theorem 1). Our algorithmic
contribution is to develop FERRET, which enables rapid yet
exact computation of HYPERREC (Theorem 2). Using both,
we discover several unique reciprocal patterns (Table I and
Figures 3(a)) that distinguish real-world hypergraphs from
random hypergraphs. Lastly, we design REDI, a simple yet
powerful generator that yields realistic directed hypergraphs
(Table I and Figures 3(b)).
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2The search space of β1 is (a) [0.05, 0.1, · · · , 0.6] for the small datasets
where |V | ≤ 104, and (b) [0.001, 0.0015, · · · , 0.005] for the dense large
datasets where |V | > 104 and |E|/|V | ≥ 3, and (c) [0.01, 0.02, · · · 0.15]
for the other sparse large datasets. The search space of β2 is fixed to ∈
[0.1, 0.1, · · · , 0.5] for all datasets.

3As discussed in detail [23], some minor changes are made in both REDI
and the baseline model, when the statistics from the bitcoin and q&a datasets
are given as their inputs.
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