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Abstract
This study evaluates the performance of a deep learning model, Deep-learning-based Rain Nowcasting and Estimation 
(DEEPRANE), for very short-term (1–6 h) rainfall forecasts in South Korea. Rainfall forecasts and in-situ observations from 
June–September 2020, when record-breaking summer rainfall was observed in South Korea, are particularly considered. 
It is found that DEEPRANE adequately predicts moderate rainfall events (MREs; ≥ 1 mm h−1) and strong rainfall events 
(SREs; ≥ 10 mm h−1) with critical success indices of 0.6 and 0.4 at the 1-h lead time, respectively. The probability of detection 
scores of MRE forecasting is higher than the false alarm rates at all lead times, suggesting that DEEPRANE MRE forecast 
can be useful even at a long lead time. However, for SRE forecasting, the probability of detection scores becomes smaller 
than the false alarm rates at a lead time of 2 h. Localized heavy rainfall events (LHREs, ≥ 30 mm h−1) are also reasonably 
well predicted only at a lead time of 2 h. Irrespective of their patterns, the forecast scores systematically decrease with lead 
time. This result indicates that DEEPRANE SRE forecast is useful only for nowcasting. DEEPRANE generally shows better 
performance in the early morning hours when rainfall events are more frequent than in other hours. When considering syn-
optic conditions, better performance is found when rainfall events are organized by monsoon rainband rather than caused by 
extratropical or tropical cyclones. These results suggest that DEEPRANE is especially useful for nowcasting early-morning 
rainfall events which are embedded in the monsoon rainband.
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1  Introduction

Rainfall forecasts with accurate, reliable location informa-
tion and timing are crucial for preventing life and financial 
losses. In June–September 2020, extraordinary heavy rain-
fall events have repeatedly occurred over East Asia (e.g., 
Hirockawa et al. 2020; Liu et al. 2020; Araki et al. 2021; 
Park et al. 2021a). South Korea was not exceptional. The 

2020 summer rainfall in South Korea broke a record dating 
back to 1971 and resulted in destructive floods and thou-
sands of flood victims across the country (Park et al. 2021a). 
Through these events, the importance of short-term rainfall 
forecasts for protecting public safety was highlighted.

The numerical weather prediction (NWP) model is a 
widely-used tool for rainfall forecasting (e.g., Shahrban 
et al. 2016; Pu and Kalnay 2018). With recent advances in 
computer technology, NWP models have been improved in 
terms of the dynamic core, physics parameterization, and 
data assimilation, resulting in considerable improvement in 
rainfall forecasts (e.g., Shuman 1989; Harper et al. 2007; 
Shahrban et al. 2016; Pu and Kalnay 2018). However, very 
short-term rainfall forecasts, which are generally considered 
to have lead times of 1–6 h, still remain challenging. For 
example, Shrestha et al. (2013) used four NWP models to 
evaluate rainfall forecasts over the Ovens catchment in south-
east Australia. They reported large wet or dry biases, depend-
ing on the model resolution, which ultimately degraded the 
rainfall forecasting performance for short lead times on an 
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hourly scale. Wang et al. (2016) applied a storm-scale NWP 
model to five heavy rainfall events in summer over Jiangsu, 
China, in 2015. Their NWP model overestimated rainfall 
amounts at all lead times and failed to produce optimal fore-
casts at short lead times, i.e., 1–2 h. Yu et al. (2017) evalu-
ated two NWP models for three summertime rainfall events 
over Sancheong Basin in South Korea. They reported high 
performance for wide-area rainfall such as that from tropi-
cal cyclones (TCs) but limited forecasting skill for localized 
rainfall, for example, along a quasi-stationary monsoon front.

Various attempts have been made to improve very short-
term rainfall forecasts. Lin et  al. (2005) and Sun et  al. 
(2014), for example, reported that radar-based short-term 
statistical rainfall forecasts could outperform the NWP 
model at lead times of 2–3 h. Yoon (2019) proposed the use 
of blending techniques in statistical and NWP model-based 
rainfall forecasts. Another approach is artificial-intelligence-
based forecasting (e.g., Shi et al. 2015; Agrawal et al. 2019; 
Ayzel et al. 2020). Shi et al. (2015) first used a deep learn-
ing model for radar-based short-term rainfall forecasting. 
Agrawal et al. (2019) demonstrated that a deep learning 
model, based on the U-Net convolutional neural network 
(CNN), has the potential to improve very short-term rainfall 
forecasts, specifically, nowcasting up to 2 h ahead, compared 
to the National Oceanic and Atmospheric Administration 
numerical 1-h High-Resolution Rapid Refresh model. Ayzel 
et al. (2020) reported that RainNet, which was inspired by 
U-Net-based deep learning models, significantly outper-
forms the benchmark models in terms of the forecast accu-
racy at lead times of up to 1 h for 11 summer rainfall events 
over Germany. Ravuri et al. (2021) proposed a deep genera-
tive model of radar for probabilistic nowcasting with lead 
times of 5–90 min. These studies suggest that deep learning 
models can be useful for predicting very short-term rainfall 
events and offer an alternative to the NWP model.

Several deep learning algorithms have been proposed to 
improve very short-term rainfall forecasts in Asia. Yen et al. 
(2019), in an evaluation of rainfall forecasting in southern 
Taiwan, proposed the Deep Echo State Network algorithm. 
Zhang et al. (2021) proposed a dual-input dual-encoder 
recurrent neural network, the Rainfall Nowcasting Network. 
Their deep learning model yields better threat scores in rain-
fall forecasts of 0.25 mm per 30 min in southeastern China at 
a lead time of 2 h than the Weather Research and Forecasting 
model. However, all of these studies indicate that further 
research is necessary to generalize and improve deep learn-
ing models in East Asia because East Asian summer mon-
soon rainfalls are complex in nature due to the topography, 
subseasonal variation, and other factors.

Although deep-learning-based rainfall forecasting has 
been attempted, such approach is still lacking in South Korea 
where more than half of the annual precipitation is concen-
trated in the monsoon season with complex meteorological 

factors (Park et al. 2021b; 2021c). Yoon et al. (2020) devel-
oped a CNN algorithm based on U-Net and SegNet by train-
ing with radar image data. However, they used spatially 
limited radar data covering only part of South Korea. The 
forecast lead time was also limited to only 1 h. Kim and 
Hong (2022) attempted very short-term prediction of the 
radar-based rainfall distribution and intensity using con-
volutional long-short-term memory and demonstrated its 
effectiveness compared to Korea's operational prediction 
model. However, the forecast lead time was still limited to 
a maximum of 2.5 h, which is insufficient to prepare for 
heavy-rainfall-related natural hazards.

Ko et al. (2022) recently proposed a novel deep learning 
model for very short-term rainfall forecasts, DEEP-learn-
ing-based RAin Nowcasting and Estimation (DEEPRANE), 
which is optimized for summer monsoon rainfalls in Korea, 
so-called Changma rainfalls. They particularly proposed a 
pre-training scheme and a new loss function and demon-
strated their effectiveness in improving accuracy in rainfall 
forecasts, compared to models without a pre-training scheme 
and/or with conventional loss functions. They also proposed 
that DEEPRANE may be useful for real-time rainfall fore-
casts at lead times of up to 6 h.

As a companion work to Ko et al. (2022), the present study 
aims to thoroughly evaluate the performance of DEEPRANE 
in very short-term rainfall forecasting in summer monsoon 
season in South Korea. We evaluate the forecast skill of 
DEEPRANE at different lead times (1 to 6 h), and its regional, 
subseasonal, and diurnal dependences for two classes of rain-
fall events: moderate rainfall events (MREs, ≥ 1 mm h−1) and 
strong rainfall events (SREs, ≥ 10 mmh−1). The June–Sep-
tember 2020 season, when record-breaking summer rain-
fall was reported in South Korea (Park et al. 2021a), is of 
particular interest. The performance of DEEPRANE is 
also tested for five types of localized heavy rainfall events 
(LHREs; ≥ 30 mm h−1) in June–September 2020.

The rest of this paper is organized as follows. Section 2 
briefly describes the model and method used in this study. 
Section 3 presents the performance of the deep learning 
model, DEEPRANE, and its regional, subseasonal, and 
diurnal dependences. In Section 4, an overview of LHRE 
classification and the performance of DEEPRANE for each 
type are presented. The summary and discussion are pre-
sented in Section 5.

2 � Model and Method

2.1 � Deep Learning Model

This study uses DEEPRANE, in which a deep learning 
model is equipped with a pre-training scheme and a new 
loss function (Ko et al. 2022). This model is based on U-Net 
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(Ronneberger et al. 2015), which is a widely-used deep 
CNN. Therefore, the model consists of a contracting path, 
which reduces the resolution of the input images, and an 
expanding path, which expands again the contracted images, 
as illustrated in Fig. 1. In the contracting path, i.e., down-
sampling steps, the resolution of the input data is halved 
by merging each four incident pixels, while the number of 
latent features per pixel, which means the dimension of the 
vector representing each pixel, is doubled. In the expanding 
path, i.e., upsampling steps, the resolution of the input data 
is doubled, while the number of latent features per pixel 
is halved. In addition, skip connections are used between 
the contracting path and expanding path. These connections 
match the downsampling steps and upsampling steps one-to-
one so that the intermediate output of each downsampling 
step, which indicates the vector representation of each pixel, 
is additionally considered to determine the output of the cor-
responding upsampling step.

Compared to the conventional U-Net, this model has 
two improved components (Ko et al. 2022). One is the pre-
training process before fine-tuning to optimize the param-
eters for predicting the radar reflectivity used for rainfall 

forecasts. In the pre-training process, the model is trained for 
unsupervised tasks and/or supervised tasks with abundant 
labels. Through this process, the model is initialized with 
pre-trained parameters before the fine-tuning process. To 
pre-train as many parameters as possible, the same model 
architecture for pre-training and fine-tuning is used except 
for the last classifier part. The classifier part cannot be pre-
trained since the number of output classes (i.e., the dimen-
sionality of the classifier) in the pre-training process differs 
from that in the fine-tuning process. Ko et al. (2022) demon-
strated that deep-learning-based rainfall forecasts obtained 
using the pre-training scheme significantly improve the criti-
cal success index (CSI) and F1 scores at lead times of 1–6 h 
compared to those without it.

The other component is a new loss function based on 
the CSI scores for fine-tuning, which could mitigate the 
performance degradation due to class imbalance in rainfall 
data. When typical classification loss functions (e.g., the 
cross-entropy loss) are used, classifiers are easily biased 
toward non-rainfall and light rainfall events during train-
ing since most rainfall events belong to the non- and light-
rainfall classes. Thus, it is one of the challenges in improving 

Fig. 1   Configuration of the deep-learning model, DEEPRANE, used in 
this study, where U-Net is tailored for the problems of the short-term 
rainfall forecast. This model consists of seven steps for downsampling 
(blue arrows) and upsampling (red arrows), respectively, to make the 

width and height of the coarsest feature map roughly. Input process has 
seven channels corresponding to radar images and additional six chan-
nels for encoding the target time. Note that the input and output dimen-
sions are 1468 × 1468 and 706 × 706, respectively, at 1 km resolution
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predictive performance for the heavy rainfall class which has 
a smaller proportion than non- and light-rainfall classes. To 
mitigate the issue, Ko et al. (2022) proposed a new loss func-
tion using the true positives (Hit in Table 1), false positives 
(False alarm), and false negatives (Miss) which are used to 
calculate the CSI score, based on the output probability dis-
tributions over the rain classes from the U-Net model. They 
showed that the new loss function allows the deep learning 
model to achieve better predictive performance at relatively 
long lead times, 3–6 h, than the widely used cross-entropy 
loss (Cox 1958) and focal loss (Lin et al. 2017). A detailed 
description of DEEPRANE can be found in Ko et al. (2022).

2.2 � Model Design

Figure 1 shows the configuration of DEEPRANE. The input 
process consists of seven channels for the input radar reflec-
tivity images and six additional channels for encoding the 
target times. For each timestamp t, seven latest consecutive 
radar images at 10-min intervals (i.e., radar images with 
timestamps t − 60, t − 50,… , t ) are used for the first seven 
channels. Six additional binary channels are then used to 
encode a target time t∗ among {t + 60, t + 120,… , t + 360} . 
The input and output dimensions are set to 1468 × 1468 and 
706 × 706, respectively, for radar images with 1-km resolu-
tion. The final output of the model is a probability distribu-
tion for the three rainfall classes, < 1 mm h−1, 1–10 mm h−1, 
and > 10 mm h−1, for each pixel according to different lead 
times from 1 to 6 h.

As shown in Fig. 1, DEEPRANE processes the inputs 
using four main operations: i.e., 3 × 3 convolution, copy and 
crop, max pooling, and up-convolution. The 3 × 3 convolu-
tion operations compute output feature maps using a rectan-
gular receptive field of size 3 × 3 around each pixel of the 
input feature maps. The copy and crop operations combine 
information from the output after each up-convolution oper-
ation in expansive paths and the corresponding intermediate 
feature map in contracting paths. Since the sizes of feature 
maps are different and the latter feature maps are always big-
ger, DEEPRANE crops the latter feature maps after align-
ing the centers of the feature maps. The max pooling and 

up-convolution operations change the size of intermediate 
feature maps. In contracting paths, max pooling operations 
are used to halve the size of feature maps by splitting the fea-
ture maps into 2 × 2 blocks and picking the maximum value 
in each block. In expanding paths, up-convolution operations 
are used for up-sampling feature maps so that the sizes of the 
feature maps are doubled.

To train the model, the radar reflectivity images around 
South Korea (roughly 120–138°E and 29–42°N) at 10 min 
intervals are collected for the period of 2014–2020 (Fig. 2a). 
The rainfall observations at approximately 714 automatic 
weather stations (AWSs) are also collected during the 
same period (Fig. 2b). All available datasets for the period 
of 2014–2018 are used for pre-training. Then, only the 
June–September rainfall datasets are used for fine-tuning 
to optimize the model parameters for summer rainfalls in 
Korea. Ko et al. (2022) applied this optimized model to the 
2019 summer season for validation, and then tested it for 
four heavy rainfall events in 2020. They reported CSI scores 
of 0.61 to 0.35 in the summer rainfall forecasts for MREs 
with > 1 mm h−1 at lead times of 1 to 6 h in validation. The 
corresponding CSI scores for SREs with > 10 mm h−1 range 
from 0.39 to 0.12.

2.3 � Evaluation Matrix and Rainfall Events

This study uses AWS hourly rainfall data for summer 
(June–September) 2020 to evaluate the performance of 
DEEPRANE trained by radar reflectivity images. For one-to-
one comparison, the nearest grid of the DEEPRANE output 
(1-km resolution) is interpolated to each AWS location. Four 
verification indices, which are the probability of detection 
(POD), false alarm rate (FAR), CSI, and bias score (BS), 
are computed, as summarized in Tables 1 and 2. Here, POD 
denotes the fraction of correctly forecasted rainfall events to 
the observed events. A perfect score is 1, and the range is 0 
to 1. The FAR is the fraction of incorrectly forecasted rain-
fall events to all forecasted rainfall events, ranging from 0 to 
1, with a perfect score of 0. The CSI measures the fraction 
of correctly forecasted rainfall events to the total observed 
events except for correct negatives. This score is unaffected 
by the number of non-event forecasts and is therefore widely 
used to verify weather forecasts. It ranges from 0 to 1 with 
a perfect score of 1. The BS is estimated as the ratio of the 
total number of forecasted rainfall events to the observed 
rainfall events. A perfect score is 1, and its range is 0 to ∞.

We evaluate two rainfall classes: MREs, with rainfall inten-
sity greater than 1 mm h−1, and SREs, with intensity greater 
than 10 mm h−1. Note that MREs include SREs to get more 
samples. The performance of DEEPRANE is quantified for 
these two rainfall classes at lead times of 1 to 6 h and their 
regional, subseasonal, and diurnal dependences using the evalu-
ation matrix described above. A performance diagram (Roebber 

Table 1   A 2 × 2 contingency table showing four possible outcomes 
between forecasts and observations

Event forecast Event Observed

Yes No Total

Yes H
(Hit)

F
(False alarm)

H + F

No M
(Miss)

C
(Correct negative)

M + C

Total H + M F + C H + F + M + C
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2009), which enables comprehensive performance evaluation 
by representing four verification indices in a single diagram, is 
also used. The bootstrapping method, which repeats 1000 re-
samplings and evaluations from the verification data, is applied 
to estimate the sampling uncertainty from the verification value 
in the performance diagram (Roebber 2009).

The LHREs, with rainfall intensity greater than 
30 mm h−1 corresponding to the localized heavy rainfall 

Fig. 2   (a) An example of radar reflectivity image used in training. (b) 
Spatial distribution of AWS observations in South Korea and topog-
raphy (m). (c) An example of KMA precipitation reanalysis data 

(KMAPR). Note that radar reflectivity is a snapshot with a 10-min 
interval and KMAPR is the 1-h accumulated precipitation produced 
by synthesizing the AWS precipitation and radar reflectivity

Table 2   Four verification indices based on a 2 × 2 contingency table 
used in this study

Abbreviation Full name Formulation Perfect score

POD Probability of detection POD =
H

H+M

1
FAR False alarm rate FAR =

F

H+F

0

CSI Critical success index CSI =
H

H+M+F

1

BS Bias score BS =
H+F

H+M

1
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advisory standard of KMA, are also considered separately. 
All events satisfying this criterion are counted without con-
sidering event separation, indicating that multiple LHREs 
can occur under the same synoptic condition. This allows a 
total of 429 LHREs in the evaluation period.

The LHREs are further classified using the self-organ-
ization map (SOM) algorithm to evaluate the forecasting 
skills of LHREs depending on their types. The SOM is a sort 
of unsupervised neural network algorithm that compresses 
high-dimensional data into a manageable low-dimensional 
array of nodes based on the Euclidean distance by iterative 
training (Kohonen 1998; 2013) and has been used to inves-
tigate the complex characteristics of warm-season heavy 
rainfall in South Korea (Jo et al. 2020; Park et al. 2021b).

As a clustering property, we use the KMA hourly pre-
cipitation reanalysis (KMAPR) data corresponding to the 
LHREs. The KMAPR data are produced by synthesizing the 
precipitation data recorded at AWS stations and radar reflec-
tivity (Fig. 2c; Roh et al. 2012; Jo et al. 2020). It provides 
high-resolution (5 km × 5 km) rainfall maps covering South 
Korea and its immediate surroundings every hour, allowing 
categorization of LHREs (e.g., Jo et al. 2020). Node arrange-
ment is the most important parameter in SOM algorithm. 
After sensitivity tests with varying size of nodes, we find 
that 1 × 5 is most proper to summarize 429 LHREs. Other 
SOM parameters specified in this study follow the sugges-
tion of Liu et al. (2016) and summarized in Table S1.

3 � Moderate Rainfall Event (MRE) and Strong 
Rainfall Event (SRE) Forecastings

3.1 � Regional Features

Figures 3A and 4a show the spatial distributions of MRE 
and SRE frequencies during June–September 2020 in South 
Korea. The validation results of DEEPRANE at lead times 
of 1, 3, and 6 h are also presented in Figs. 3b–g and 4b–g. 
The southern inland and northeast coastal regions, which 
are mountainous (see Fig. 2b), experienced more frequent 
MREs and SREs, possibly because of topographic forcing 
on the upwind side (Figs. 3a and 4a). In these regions, more 
than 350 MREs and 50 SREs (approximately 1.5 to 2 times 
more frequent than other regions) were observed. Compared 
to MREs, SREs were more concentrated in the western half 
of the country.

For MRE forecasting, DEEPRANE shows CSI scores 
greater than 0.6 at all AWS stations at a lead time of 1 h 
(Fig. 3b). These skill scores are higher than those of the 
deep learning algorithm of Yoon et al. (2020) for MRE 
forecasting. Although the CSI scores tend to decrease 
with increasing lead time, they are still 0.4 or higher at 
a lead time of 6 h (Fig. 3c and d). This result indicates 

that DEEPRANE can adequately predict MREs and their 
regionality. The BS results indicate that DEEPRANE 
tends to over-predict MREs by 1.2 to 1.6 times at all lead 
times. The over-prediction becomes larger with increasing 
lead time (Figs. 3e–g). This overprediction may be partly 
related to the model being set up to an aggressive blurring 
so that the loss function based on the CSI score could be 
optimized in the training process.

For SRE forecasting, the CSI scores have spatiotem-
poral distributions similar to those for MRE forecasting. 
However, they show poorer performance than MRE fore-
casting at all lead times. At a lead time of 1 h, the CSI 
scores are 0.3–0.5 (Fig. 4b). They decrease rapidly with 
lead time. At lead times of 3 h or longer, CSI scores of 
0.1–0.3 are found at most AWS stations (Figs. 4c and d). 
Such a poor performance is due in part to the significant 
over-prediction at lead times of 3 h and longer (Figs. 4f 
and g). At these lead times, the BS score exceeds 2 at 
many metropolitan stations (northwestern part of South 
Korea), suggesting stronger over-prediction in this region. 
Note that the BS at a lead time of 1 h ranges from 0.5 to 
0.8 at most AWS stations (Fig. 4e). This indicates that the 
performance of DEEPRANE is sensitive to the lead time 
when forecasting SREs, and DEEPRANE is applicable 
only for very short-term SRE forecasting.

This result is consistent with previous studies (e.g., 
Agrawal et al. 2019; Ayzel et al. 2020; Han et al. 2020) 
that reported that deep learning models have limitations 
in predicting the occurrence number and timing of SREs 
at relatively long lead times. Such limitations are largely 
attributable to the use of insufficient samples based on only 
radar data to train the algorithm (e.g., Schultz et al. 2021; 
Kim and Hong 2022). As summer 2020 was very unusual 
with record-breaking heavy rainfall in South Korea (Park 
et al. 2021a), a poorer performance of DEEPRANE for SRE 
forecasting which was trained with the 2014–2018 dataset 
is rather natural. This issue could be resolved by increasing 
the sample size based on various input data, such as radar, 
satellite, and NWP simulation data, in a future study.

3.2 � Subseasonal and Diurnal Features

Figures 5A and d show the subseasonal variation of MREs 
and SREs aggregated across all AWS stations on a given 
day. The CSI and BS of DEEPRANE are also presented 
for MRE (Figs. 5b and c) and SRE forecastings (Figs. 5e 
and f) as a function of lead time. The days with no rainfall 
events, i.e., no rain across the country, are indicated by gray 
shading in the validation plots. The summer 2020 rainfall 
in South Korea resulted from consecutive rainfall systems 
under varying synoptic conditions (Park et al. 2021a). The 
rainfall events in mid-June–late July (red shading in Figs. 5a 
and d) were dominated by extratropical cyclones (ETCs) 
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Fig. 3   Spatial distribution of (a) the frequency (unit: number) of 
moderate rainfall events (MREs; ≥ 1 mm h−1) observed during June–
September 2020 in South Korea. (b–d) CSI and (e–g) BS of DEEP-
RANE rainfall forecasts at lead times of 1, 3, and 6 h. Note also that 

there are several observation points with CSI score of “-999” value 
in (d). These points have no hit (H = 0) which denotes no correctly 
forecasted rainfall events (Table 1). To avoid dividing by zero when 
calculating CSI score, we replaced it with a value of “-999”



	 S.-G. Oh et al.

1 3 Korean Meteorological Society

approaching from eastern China. The subsequent rainfall 
events in late July–mid-August (green shading) were mainly 
caused by quasi-stationary monsoon rainbands (MRBs), 
whereas those in late August–early September (yellow shad-
ing) were triggered by TCs.

For both MRE and SRE forecastings, DEEPRANE shows 
better performance during the MRB period than during the 
ETC and TC periods. The MRE forecasting during the MRB 
period (August 1 to 15) exhibits relatively high CSI scores 
of 0.5–0.6 even at a lead time of 6 h (Fig. 5b) with BSs of 

Fig. 4   Same as Fig. 3 but for strong rainfall events (SREs; ≥ 10 mm h−1). Note that the color bar range in (a) is smaller than that in Fig. 3a
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1.4–1.8 (Fig. 5c). For SRE forecasting, the CSI scores of 
0.4–0.5 are maintained for 2 h (Fig. 5e). The skill scores 
then rapidly decrease with BSs greater than 2 at lead times 
of 3 h and longer (Fig. 5f). By contrast, during the ETC and 
TC periods, DEEPRANE tends to under-predict both MREs 
and SREs. The under-prediction is evident even at short lead 
times, i.e., 1–2 h, in SRE forecasting especially during the 
TC period (Fig. 5f). This result implies that relatively low 
performance of DEEPRANE in SRE forecasting compared 
to MRE forecasting results in part from migrating weather 
systems, i.e., ETCs and TCs, instead of slowly moving sys-
tems, i.e., MRBs.

Figure 6 shows the diurnal variation of MREs and SREs 
aggregated across all AWS stations during summer 2020. 
The corresponding CSI and BS of DEEPRANE are also 

displayed as a function of lead time. The monsoon rainfall 
climatology is characterized by a distinct diurnal variation 
with an early morning peak (approximately 4–8 local time) 
and a late afternoon–early evening peak (approximately 
15–20 local time; Jung and Suh 2005; Lee and Seo 2008; 
Oh and Suh 2018; Jo et al. 2020). The early morning peak 
is typically associated with nocturnal cloud-top radiative 
cooling, whereas the late afternoon–early evening peak 
is caused by daytime surface heating by solar insolation 
(Jung and Suh 2005; Zhou et al. 2008). In summer 2020, 
the morning peak was pronounced in both MREs and 
SREs, while the late afternoon–early evening peak was 
not evident.

The DEEPRANE shows better performance in the 
early morning hours than in other hours for both MRE 

Fig. 5   Sub-seasonal variation of (a) MREs and (d) SREs, respec-
tively, and DEEPRANE forecast skills in terms of (b, e) CSI and (c, 
f) BIAS scores according to the lead time. The periods separated by 
distinct synoptic weather systems, i.e., monsoon rainband (MRB), 
extratropical cyclone (ETC), and tropical cyclone (TC), are roughly 

indicated by shading in (a) and (d). Note that the ranges of the x-axis 
for the event frequency in (a) and (d) are different. The days with no 
observed and forecasted events, i.e., no rain day across South Korea, 
are shaded in gray in (b, c, e, f)
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and SRE forecastings. The CSI scores of MRE forecast-
ing are greater than 0.40 in the early morning hours at 
lead times of 1–5 h (Fig. 6b), although the BSs are large 
(Fig. 6c). Likewise, the CSI scores of early-morning SRE 
forecasting are greater than 0.30 at lead times of up to 2 h 
and maintained above 0.20 until a 5-h lead time (Fig. 6e). 
The better performance in the early morning than in the 
afternoon may result from more samples to train the model 
as the early-morning rainfall events are most frequent (Oh 
and Suh 2018; Jo et al. 2020). This result indicates that 
DEEPRANE may provide more reliable forecast informa-
tion for rainfall events triggered by nocturnal radiative 
cooling.

Figure 7a presents the overall CSI score versus lead 
time. Here, the total number of samples used at each lead 
time is 2,064,240 (122 days × 24 h × 705 AWS stations). 
As mentioned above, the CSI scores range from 0.60 to 
0.38 for MRE forecasting and from 0.40 to 0.10 for SRE 
forecasting. They decrease with increasing lead time. 
A qualitative comparison with the deep-learning-based 
rainfall nowcasting in previous studies (e.g., Ravuri et al. 
2021) reveals that DEEPRANE works well even at long 
lead times.

The POD and FAR are further illustrated in Fig. 7b. For 
a reliable forecast, the former should be higher than the lat-
ter. The POD score of MRE forecasting decreases from 0.81 

Fig. 6   Same as Fig. 5 but for the diurnal variation for all MREs and SREs in June–September 2020
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to 0.60 as the lead time increases from 1 to 6 h. The FAR 
score shows the opposite pattern, increasing from 0.30 to 
0.58. Here it is important to note that POD scores are always 
higher than FAR scores. As shown in the performance dia-
gram (Fig. 7c), with increasing lead time, the MRE forecast-
ing scores decrease but they are distributed relatively closer 
to the upper right (POD > FAR), with BS ranging from 1.2 to 
1.5. In addition, the sampling uncertainty is also reasonably 
small (see crosshairs within each symbol in Fig. 7c). This 
result indicates that DEEPRANE-based very short-term 
MRE forecasting could be useful even at lead times of up to 

6 h. However, this is not the case for SRE forecasting. The 
POD score decreases from 0.50 to 0.30, while its FAR score 
increases from 0.40 to 0.81 with lead time. The POD becomes 
smaller than the FAR at lead times of 2 h or longer (Fig. 7b), 
resulting in most SRE forecasting scores being distributed 
relatively closer to the lower left in the performance diagram 
except for it at 1 h lead time (Fig. 7c). In addition, BS is 
also showing relatively greater sensitivity depending on the 
lead time than that of MRE forecasting. This result indicates 
that DEEPRANE-based SRE forecasting at these lead times 
should be used with caution.

Fig. 7   An integrated validation 
of the DEEPRANE forecasts 
during June–September 2020 
over South Korea. (a) CSI 
and (b) POD and FAR scores 
according to the lead times. (c) 
Performance diagram. Note that 
the dashed lines indicate BIAS 
scores and solid contours are 
CSI. Sampling uncertainty is 
represented by the crosshairs 
about the verification point and 
is estimated using bootstrapping 
method
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4 � Localized Heavy Rainfall Event (LHRE) 
Forecasting

This section focuses on the evaluation of DEEPRANE for 
LHREs. The LHREs were observed roughly 429 times 
in South Korea in summer 2020. Figure 8a presents the 
time series of the observed 1-h maximum rainfall amounts 
among 705 AWSs in June–September 2020 over South 
Korea. The KMAPR-based spatial distribution of rain-
fall amount averaged across all LHREs is also illustrated 
in Fig. 8b. They are concentrated mainly in the south-
ern inland region, the western coastal and middle inland 
regions, and the northeast coastal region.

The LHREs in 2020 are classified into five types using the 
SOM method (see Section 2d for details). Their occurrence 
days are indicated in Fig. 8a with the spatial distribution 
of each LHRE type in Figs. 8b–g. Most frequent LHREs 
are cluster 2 (C2 hereafter; Fig. 8d). They are the isolated 
LHREs (Jo et al. 2020) caused by very localized rainstorms 

with no synoptic-scale systems. They occurred sporadi-
cally throughout summer 2020 (Fig. 8a) and accounted for 
approximately 65% of the total LHREs (Fig. 8d). This result 
is consistent with Jo et al. (2020). The C1 and C3 are LHREs 
organized by MRBs in the southern and central regions of 
the Korean Peninsula, respectively (Figs. 8c and e). They 
occurred in early to mid-August (Fig. 8a; see also Fig. 5a), 
accounting for approximately 6.8% (C1) and 12.3% (C3) 
of total LHREs. The C4 and C5 consist of LHREs mainly 
resulting from ETCs (or extratropical transitions of TCs) 
and TCs, respectively (Figs. 8f and g). Although most of 
C4 LHREs occurred from mid-June to late July, C5 LHREs 
occurred in early September. They accounted for approxi-
mately 10.5% (C4) and 5.1% (C5) of total LHREs.

The performance of DEEPRANE in predicting the spa-
tial distribution of LHREs is first examined for the repre-
sentative cases in Fig. 9. The details for each case selected, 
such as case number, date, maximum rainfall, and synoptic 
system, are summarized in Table S2. As shown in the first 

Fig. 8   (a) Time series of the observed 1-h accumulated rainfall in 
June–September 2020 over South Korea. The maximum rainfall 
amounts among 705 stations operated in 2020 are shown. The local-
ized heavy rainfall events (LHREs; ≥ 30  mm  h−1) are colored by 
referring their cluster number. (b–f) Spatial distribution of rainfall 

(mm h−1) averaged for all LHREs and each cluster obtained from 
the self-organizing map (SOM) analysis. The MRB, ETC, and TC 
are monsoon rainband, extratropical cyclone, and tropical cyclones, 
respectively
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Fig. 9   a) Spatial distribution of the (first column) observed and (second to 
fourth columns) predicted rainfalls at lead times of 1, 3, and 6 h, for the 

selected LHRE. The details of the selected case, such as case number, date, 
maximum rainfall, synoptic condition, etc., are summarized in Table S3
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column of Fig. 9, the spatial distribution of hourly rainfall 
well matches with each LHRE cluster shown in Figs. 8c–g. 
The spatial distribution of DEEPRANE forecasts at a 1-h 
lead time is quantitatively similar to the observations regard-
less of LHRE type (see the second column of Fig. 9). This 
result indicates that DEEPRANE can accurately predict 
LHREs in advance of 1 h. However, DEEPRANE tends to 
over-predict LHREs with increasing lead time, as in MRE 
and SRE forecastings. The location of LHREs is also inac-
curately predicted at long lead times. For instance, C4 
LHRE (Fig. 9d) is predicted not only in Seoul/Gyeonggi 
region but also in the southeastern coastal region at a lead 
time of 6 h. The significant over-prediction in the north-
east regions is also evident in C2 LHRE at a lead time of 
6 h (Fig. 9b). This result is consistent with a case study by 
Kim and Hong (2022). They showed that the deep learning 
model has a relatively poor skill in very localized rainfall 

events compared to MRB- and TC-related rainfall events. 
The poor forecasting skill of C2-related rainfall events can 
be attributable to the short lifetime and small spatial scale 
(e.g., Lee et al. 1998; Lee and Kim 2007). It is noteworthy 
that DEEPRANE reasonably well predicts C1 LHRE in the 
southwestern coastal and inland regions even at a lead time 
of 6 h. This result is consistent with good forecasting skill 
during the MRB period, as shown in Fig. 5.

All LHREs are comprehensively evaluated in a perfor-
mance diagram (Fig. 10) in the same manner as in Fig. 7. 
With increasing lead time, CSI score sharply decreases with 
BS ranging from 0.5 to 3.0 (Figs. 10a and c). For all LHRE 
clusters, POD is greater than 0.5 at lead times of up to 3 h, 
and is higher than FAR at lead times of up to 2 h (Figs. 10b 
and c). This result demonstrates that DEEPRANE LHRE 
forecasting can be meaningful up to lead times of at least 
2 h. More importantly, the performance of DEEPRANE is 

Fig. 10   Same as Fig. 7 except 
for DEEPRANE LHRE fore-
cast. In (a) and (b), the scores 
are calculated using all LHREs. 
In (c), each LHRE cluster is 
presented above the circle 
symbol
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comparatively for each LHRE cluster at lead times shorter 
than 3 h (Fig. 10c). This result suggests that DEEPRANE 
has meaningful performance for predicting LHREs at shorter 
lead times, irrespective of LHRE type.

5 � Summary and Discussion

This study evaluates the performance of the deep learning 
model DEEPRANE (Ko et al. 2022) for very short-term rain-
fall forecasts during the summer monsoon season in South 
Korea. The June–September 2020, when record-breaking 
summer rainfall occurred, is particularly tested. The DEEP-
RANE can adequately predict MREs (rainfall ≥ 1 mm h−1), 
with CSI scores of 0.6 to 0.4 at lead times of 1 to 6 h, respec-
tively. However, the model tends to over-predict intensity 
of MREs by 1.2 to 1.6 times, increasing with lead time. 
For SREs (rainfall ≥ 10 mm h−1), CSI scores of 0.3–0.5 are 
found at a lead time of 1 h. However, they rapidly decrease 
with lead time. The rainfall amounts are also significantly 
over-predicted at lead times of 2 h or longer. When synop-
tic conditions are considered, higher performance is found 
when MREs and SREs are associated with MRBs. The rain-
fall events associated with ETCs or TCs are rather poorly 
predicted. The DEEPRANE also shows better performance 
in the early morning hours, when rainfall events are more 
frequent than at other times of day.

The MRE forecasting is meaningful for 6 h as POD is higher 
than FAR. However, SRE forecasting is meaningful only at a 
lead time of 1 h. This result indicates that although DEEPRANE 
is useful for SRE nowcasting, it should be used with caution at 
lead times of 2 h and longer. When considering LHREs (rain-
fall ≥ 30 mm h−1), DEEPRANE provides meaningful forecast at 
lead times of up to 2 h irrespective of LHRE types.

Here it should be stated that this study is not the first 
to attempt deep-learning-based rainfall forecasts in South 
Korea. Yoon et al. (2020), for instance, have tested very 
short-term rainfall forecasts in South Korea using a deep 
learning model. The present study extended the spatial 
coverage and forecasting lead times of Yoon et al. (2020) 
by using a new model DEEPRANE. The predictability of 
LHRE and its dependency to LHRE type are also evaluated. 
Although a direct comparison is not possible, DEEPRANE 
in this study, which has a CSI score of 0.60 at the lead time 
of 1 h for the MRE forecast, shows better performance than 
Yoon et al. (2020) with a CSI score of 0.33. It also shows 
a reliable performance of LHREs above a CSI of 0.14 at 
longer lead times of 4–6 h than the model developed by 
Kim and Hong (2022) with a CSI of 0.09 at a lead time of 
2.5 h, allowing more time to protect against LHRE-related 
natural hazards. These results indicate that DEEPRANE has 
potential for use as an alternative to the current NWP-based 
operational short-term forecast.

Several issues need to be addressed to improve DEEP-
RANE. The DEEPRANE has a relatively poorer perfor-
mance for SRE (and LHRE) forecasting than MRE fore-
casting, in particular when transient weather systems such as 
ETCs and TCs are active. The model also tends to over-pre-
dict rainfall amounts at long lead times. These are common 
in deep-learning-based models (e.g., Agrawal et al. 2019; 
Ayzel et al. 2020; Han et al. 2020).

A relatively poor prediction skill of SREs at long lead 
times can be largely attributed to the insufficient sample 
size used based on only radar data for model training. The 
diversity, as well as the quantity of training data, is also 
critical to improve deep-learning performance across dif-
ferent conditions, such as extreme events (O et al. 2020; 
Meyer and Pebesma 2021). To resolve this issue, additional 
input data (i.e., satellite image, NWP simulation, etc.) could 
be used. Moraux et al. (2021) for instance utilized thermal 
infrared satellite imagery to train a deep learning model. 
They showed that the addition of satellite images provides 
more accurate rainfall detection and estimation than those 
obtained when only radar images are used. The NWP model 
output could be also useful to increase the sample size. The 
long-term NWP model simulation, which well captures 
ETCs and TCs, would be particularly useful for training 
the model (e.g., Han et al. 2020; Kashinath et al. 2021). In 
addition, the consideration of various variables (i.e., tem-
perature, moisture, geopotential height, etc.) could poten-
tially improve the rainfall forecasts (Liyew and Melese 2021; 
Endalie et al. 2022).

Another possible approach to improve DEEPRANE is to 
detect synoptic weather pattern in advance and apply it to 
rainfall forecasts. Kumler-Bonfanti et al. (2020) attempted to 
detect ETCs and TCs using the U-Net models trained from 
NWP and satellite water vapor data. They showed that the 
deep learning models can extract cyclone location informa-
tion faster than conventional methods with relatively high 
accuracy. With improved ETC and TC forecasts, a short-
term rainfall forecasting could be improved.

Finally, it may be worthwhile to attempt combining infor-
mation (Xiao et al. 2018; Mohammed and Kora 2021) pre-
dicted by various deep-learning models (e.g., CNN, SegNet, 
LSTM, U-Net, etc.), like multi-model ensembles often used 
in climate models, making probabilistic rainfall forecasting, 
which is more beneficial for longer lead times.
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