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Abstract—Many real-world data from various domains can
be represented as tensors, and a significant portion of them is
large-scale. Thus, tensor compression is crucial for their storage
and transmission. Recently, deep-learning-based methods have
emerged to enhance compression performance. However, they
require considerable compression time to fulfill their perfor-
mance. In this work, to achieve both speed and performance,
we develop ELICIT, an effective and lightweight lossy tensor
compression method. When designing ELICIT, we avoid deep
auto-regressive neural networks and index reordering, which
incur high computational costs of deep-learning-based tensor
compression. Specifically, instead of using the orders of indices
as parameters, we introduce a feature-based model for indices,
which enhances the model’s expressive capacity and simplifies
the overall end-to-end training procedure. Moreover, to reduce
the size of the parameters and computational cost for inference,
we adopt end-to-end clustering-based quantization, as an alter-
native to deep auto-regressive architecture. As a result, ELICIT
becomes easy to optimize with enhanced expressiveness. We prove
that it (partially) generalizes deep-learning-based methods and
also traditional ones. Using eight real-world tensors, we show
that ELICIT yields compact outputs that fit the input tensor
accurately. Compared to the best competitor with similar fitness,
it offers 1.51-5.05× smaller outputs. Moreover, compared to
deep-learning-based compression methods, ELICIT is 11.8-96.0×
faster with 5-48% better fitness for a similarly sized output. We
also demonstrate that ELICIT is extended to matrix completion
and neural network compression, providing the best trade-offs
between model size and application performance.

Index Terms—Tensor, Data Compression, Matrix Completion,
Neural-network Compression

I. INTRODUCTION

Many real-world data from various domains are natu-
rally represented as tensors. Examples include predicates in
knowledge bases structured as (subject, verb, object) [1], e-
commerce purchases in the format of (user, item, time), and
traffic histories structured as (source, destination, time). Neural
network parameters are also structured in tensor formats. For
instance, the weights of a fully-connected layer are represented
as a matrix (i.e., 2-order tensor), and the weights of a 2D
convolutional layer are in the format of a 4-order tensor.

These real-world tensors can be large-scale, and their sizes
have been expanding over time. For instance, e-commerce
purchase histories for hundreds of millions of users have
accumulated, and large language models (LLMs) [2], [3],
whose parameters are composed of tensors, typically have
more than billions of parameters.

As the size increases, the expenses of storing and trans-
mitting tensors also increase; consequently, tensor compres-
sion becomes increasingly essential to mitigate these costs.

Especially, since tensors are widely used for various types
of data, general tensor compression methods that do not
rely on specific data property assumptions are increasingly
important. For instance, video compression methods, which
heavily depend on the continuity of video data [4], [5], cannot
be applied to tensors in the above examples.

Decomposition-based methods [6]–[10] have commonly
been employed for lossy compression of general tensors.
For matrices (i.e., 2-order tensors), truncated singular value
decomposition (T-SVD) [6] has been widely adopted, and
for tensors, CP [8] and Tucker [7] Decompositions have
been popular. These methods are not only useful for tensor
compression but have also been used for other applications,
including tensor completion [11]–[13] and neural-network
compression [14]–[16]. Recently, several deep-learning-based
tensor-compression methods [17], [18] have been proposed to
achieve better compression performance.

NEUKRON [17] and TENSORCODEC [18] extend the Kro-
ncker graph model [19] and Tensor-Train Decomposition
(TTD) [9], respectively, and they are dependent on the order
of mode indices (e.g., rows and columns). Moreover, they
commonly employ a deep auto-regressive neural network to
keep the number of parameters manageable. While these meth-
ods achieve unprecedented compression performance, they
suffer from long compression time attributed to their re-
liance on heavyweight neural networks and order optimization.
Specifically, their compression time can be up to five orders
of magnitude slower than decomposition-based methods, as
demonstrated in Section VI.

Are deep learning techniques really indispensable for
achieving superior compression performance? Can we accel-
erate tensor compression while maintaining or even improving
compression performance? In this work, we propose ELICIT
(Effective and Lightweight Lossy Compression of Tensors) as
an answer to these questions. In the development of ELICIT,
we refrain from using deep auto-regressive neural networks
and order optimization, which incur high computational costs
of the aforementioned deep-learning-based tensor-compression
methods. Specifically, ELICIT is based on a feature-based
model for indices that is independent of the orders of indices.
Moreover, ELICIT reparameterizes the model with a man-
ageable number of parameters through end-to-end clustering-
based quantization, instead of relying on deep auto-regressive
neural networks. As a result, ELICIT becomes easily opti-
mized in an end-to-end manner using gradient descent with
enhanced expressiveness. Specifically, we prove that its design



TABLE I
FREQUENTLY-USED SYMBOLS.

Symbol Description

X ∈ RN1×···×Nd tensor where d is the order of X
X (i1, · · · , id) (i1, · · · , id)-th entry of X

[n] = {1, · · · , n} set of consecutive integers from 1 to n

X̃ approximated tensor of X

r number of latent features
F(j)(ij) ∈ [0, 1]r feature vector of index ij of the j-th mode
F

(j)
k (ij) ∈ [0, 1] k-th feature of index ij of the j-th mode

F(i1, · · · , id) ∈ [0, 1]r×d feature matrix of X (i1, · · · , id)
Fk(i1, · · · , id) ∈ [0, 1]d k-th feature vector of X (i1, · · · , id)

sl ∈ {0, 1}d l-th reference state
vk,l ∈ R value of sl for k-th feature

g(·) reduce function for approximation

q quantization level
c
(j)
k,l ∈ [0, 1] l-th candidate for k-th feature and j-th mode

(partially) generalizes the aforementioned deep-learning-based
methods [17], [18] and also CP Decomposition [8]. Further-
more, we extend ELICIT’s applicability to matrix completion
and neural-network compression.

We evaluate ELICIT using eight real-world tensors from
various application domains. Our extensive experiment results
reveal the following advantages of ELICIT:
• Compact and Accurate: It consistently achieves a better

trade-off between compressed size and approximation error
than all considered competitors. Specifically, ELICIT com-
presses tensors to sizes 1.51-5.05× smaller than competitors
while achieving similar fitness. It also achieves 5-48% better
fitness than competitors with similar output sizes.

• Fast: While giving similar outputs with better fitness,
ELICIT is 11.8-96.0× faster than deep-learning methods.

• Applicable: It is successfully applied to matrix completion
and neural network compression, providing a better trade-off
between model size and application performance, compared
to state-of-the-art competitors for these applications.

Reproducibility: The code and datasets used in the paper and
the supplementary material are available at https://github.com/
jihoonko/icdm24-elicit.

II. PRELIMINARIES

In this section, we introduce some important notations and
concepts. Then, we formulate the tensor compression problem.
Some frequently-used symbols are listed in Table I.

A. Notations

Tensor: A tensor X ∈ RN1×···×Nd is a multi-dimensional
array of real numbers, where d denotes the order of X , i.e.,
the dimension of the array. A matrix A ∈ RN1×N2 is the
special case of a tensor where d = 2. We use X (i1, · · · , id)
to represent the value in the (i1, · · · , id)-th position of X .
Frobenius norm: The Frobenius norm ∥X∥F of X is defined
as the squared root of the squared sum of all the entries in X .
Approximation error: The approximation error of the com-
pressed model Θ on the input tensor X is defined as ∥X −
X̃∥2F , where X̃ ∈ RN1×···×Nd is the approximation of X from
Θ. The fitness of X̃ on X is defined as 1−∥X −X̃∥F /∥X∥F .
Note that maximizing the fitness is equivalent to minimizing
the approximation error.

B. Problem Formulation

We define the lossy tensor compression problem as follows:

Problem 1. (Lossy Compression of a Tensor)
• Given: a tensor X ∈ RN1×···×Nd ,
• Find: the compression model Θ (which leads to X̃)
• to Minimize: (1) the number of the parameters of Θ

(2) the approximation error ∥X − X̃∥2F .

III. RELATED WORK

In this section, we review previous studies for compressing
matrices and tensors. Their applications to matrix com-
pletion and neural-network compression are reviewed in
Appendix A of [20].
Compression via Low-rank Decomposition: Truncated Sin-
gular Value Decomposition (T-SVD) [6], [21] is one of the
most popular decomposition methods for lossy matrix com-
pression. For the input matrix A ∈ Rm×n and a desired
rank r < rank(A), T-SVD compresses A into UΣV⊤ where
Σ ∈ Rr×r is the diagonal matrices whose diagonal entries are
top-r largest singular values, and U ∈ Rm×r and V ∈ Rn×r

consist of the corresponding left singular vectors and right
singular vectors, respectively. T-SVD provides the optimal
rank r approximation to A in terms of the Frobenius norm.

While T-SVD is specifically designed for matrices (or 2-
order tensors), CP Decomposition (CPD) [8] and Tucker De-
composition (TKD) [7] are designed for higher-order tensors,
extending the concept of SVD to tensors. Given the tensor
X ∈ RN1×···×Nd and a specified rank r, CPD compresses
X into the sum of r rank-1 tensors, where each of these
tensors is represented as the outer product of d vectors, each
with dimensions N1, · · · , Nd. TKD factorizes X into a small
core tensor T ∈ Rr1×···×rd and factor matrices U1, · · · ,Ud,
where rk is the rank of k-th mode and Uk has dimensions
Nk × rk. Tensor-train Decomposition (TTD) [9] overcomes
several drawbacks [9], [22], [23] of CPD and TKD. TTD
compresses X by approximating each (i1, · · · , id)-th entry
in X by the product of a sequence of matrices assigned to
each mode index. Tensor Ring Decomposition (TRD) [10] also
approximates X by computing the traces of the inner products
of the small matrices.
Compression via Co-clustering: ACCAMS [13] employs an
approximation technique involving the combination of small
co-clusters to approximate matrices. Specifically, for each
iteration, it identifies co-clusters in a given input matrix A,
and then it assigns a value to each entry depending on which
co-cluster the entry is located. It repeats the procedure, and for
approximation, it uses the summation of the assigned values
during iterations. Similarly to T-SVD, it is specialized for
matrices and cannot be applied to higher-order tensors. From
a feature-based clustering perspective, ELICIT and ACCAMS
share some similarities, as further discussed in Appendix D.
Compression using Deep Learning: Deep-learning-based
methods have been recently proposed for better compression
performance. For compressing sparse reorderable tensors,
NEUKRON [17] generalizes the Kronecker model [19] for
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enhanced expressiveness. It further introduces an index
reordering technique, leveraging min-hashing on the input
tensor, for better performance. However, it is designed for
non-negative sparse tensors, showing lower performance
on dense tensors with positive and negative values. To
address the issue, Kwon et al. [18] extended TTD with an
index reordering algorithm suitable for such general tensors.
Notably, both generalized models are reparameterized as
the output of deep auto-regressive neural networks (spec.,
LSTM) to reduce the number of parameters (i.e., size of
compressed outputs). While these methods exhibit exceptional
compression performance, compared to the aforementioned
traditional methods, they are time-consuming for compression
and leave room for improvement in terms of expressive
power, as discussed in detail in Sections IV-A and IV-E.
Completion using Deep Learning: While they are not ini-
tially designed for compression, we can adapt deep-learning-
based tensor completion models for compression by fitting
them to training data, without regularization. For efficiency
with fewer parameters, CostCo [24] approximates each entry
using two 1D convolutional layers and fixed-size features for
each mode index. M2DMTF [25] decomposes tensors similarly
to TKD but determines each factor matrix for each mode using
individual neural networks with fewer parameters, while TKD
uses a single relatively large factor matrix, instead.

IV. PROPOSED METHOD

In this section, we present ELICIT, our proposed model for
Effective and Lightweight Lossy Compression of Tensors.
A. Motivations

Deep-learning-based methods, specifically NEUKRON [17]
and TENSORCODEC [18], exhibit remarkable tensor compres-
sion performance (i.e., balance between compressed size and
approximation error). However, they possess several limita-
tions due to their model design and training procedure.
L1. Limited Expressiveness of Order-dependent Models.

The models rely on the order of mode indices (e.g., rows
and columns) within the input tensor. Essentially, they
recursively divide mode indices into equal-sized groups
based on their orders (see Appendix B of [20] for details).
However, dividing mode indices into equally sized groups
may not be optimal (e.g., consider dividing locations in
NYC in the NYC dataset; see Section VI-A).

L2. High Computational Cost of Heavyweight Design. They
reparameterize their models using deep auto-regressive
neural networks, particularly LSTM. While this is effec-
tive in reducing the overall parameter size (i.e., the size
of compressed outputs), it requires heavy computational
costs during training.

L3. Complexity of Order Optimization. Since the models
are dependent of the orders of mode indices, it is crucial to
optimize the orders for enhanced approximation. However,
order optimization is notoriously challenging, since the
orders cannot be optimized concurrently with other pa-
rameters. Thus, they must undergo separate optimization,
resulting in inefficiency.

Algorithm 1: Overview of ELICIT and qELICIT
Input: a tensor X ∈ RN1×···×Nd

Output: the trained parameters of ELICIT (or qELICIT)
1 I ← [N1]× · · · × [Nd]
2 Θ ← initialized parameters of a ELICIT (or qELICIT) model
3 while not converged do
4 Generate a random permutation π of I
5 for i ← 1 to |I| step b do
6 e ← 0
7 for j ← i to min{i+ b− 1, |I|} do
8 x̃ ← APPROXIMATE(π(j),Θ) ▷ Algorithm 2
9 e← e+ (X (π(j))− x̃)2

10 Update Θ to minimize e, i.e., Θ ← Θ− α · ∂e
∂Θ

11 return Θ

Consequently, the deep-learning-based methods are time-
consuming for compression, being much slower than
decomposition-based methods (refer to Section VI-C). To
address these limitations, we design ELICIT based on the
following ideas. Related to L1, we model mode indices
as latent features (called feature-based index model), which
enables ELICIT to be independent of their orders. Moreover,
since the features are interpreted as groups of mode indices
with arbitrary sizes, our model can generalize the order-based
models that divide the indices into equal-sized groups, offering
enhanced expressiveness (refer to Section IV-E). Related to
L2, we quantize the index features through end-to-end clus-
tering with few parameters (called clustering-based quantiza-
tion), which further reduces compression size while avoiding
the high costs incurred by LSTM-based reparameterization.
Consequently, related to L3, we can easily optimize all
learnable parameters using gradient descent, which eliminates
the need for separate order optimization, leading to faster
compression. Based on these ideas, our goal is to achieve
(a) an improved balance between compressed size and
approximation error, and (b) reduced compression time.
B. Feature-based Index Model and Overview

In this subsection, we introduce the feature-based index
model of ELICIT, and based on it, we outline ELICIT.
Feature-based Index Model: For each of the d modes of the
input tensor X , ELICIT uses latent features to model each
index and the corresponding tensor entries. By incorporating
learnable latent features, we aim to capture hidden patterns
within the data and thus efficiently compress tensors. In
ELICIT, each index ij of the j-th mode has an r-dimensional
continuous latent feature vector F(j)(ij) ∈ [0, 1]r, and its k -th
entry F

(j)
k (ij) denotes the k-th latent feature of index ij . For

brevity, we will refer to latent feature as feature henceforth
in this paper. The features of entries are determined based
on the features of indices. Specifically, X (i1, · · · , id) has its
feature matrix F(i1, · · · , id) whose j-th column is F(j)(ij),
for every j ∈ [d]. The k-th feature vector Fk(i1, · · · , id) of
X (i1, · · · , id) is defined as the k-th row of F(i1, · · · , id),
which is (F

(1)
k (i1), · · · ,F(d)

k (id)).
Example 1 (Feature Design). Suppose we model the (1, 2)-
th entry of the matrix (2-order tensor) in Figure 1, where
r = 2. In this example, index 1 of the first mode has a feature



F(1)(1) = (1, 1), and index 2 of the second mode has a feature
F(2)(2) = (0, 1). Thus, the first feature vector F1(1, 2) and the
second feature vector F2(1, 2) for the (1, 2)-th entry become
(1, 0) and (1, 1), respectively.

This feature-based model is simple but theoretically gen-
eralizes the models used in the deep-learning-based methods
[17], [18], as elaborated in Section IV-E.
Feature-based Approximation: For each entry, its approxi-
mation by ELICIT is obtained from its features. Specifically,
for each feature index k, there is a differentiable function
fk : Rd → R that maps the k-th feature vector of each entry
to a real value, and ELICIT finally approximates each entry
using the outputs of f1, · · · , fr and a function g : Rr → R
that reduces the r values to a scalar output. To encourage
the features to better model indices, we make these functions
exhibit a reasonable characteristic: the more similar the two
feature vectors are, the more similar the outputs become. In the
extreme, if the feature vectors of the two entries are the same,
the outputs corresponding to the two entries should also be the
same. Thus, if the outputs for the entries whose index of the
j-th mode is i1 and those for the entries whose index of the
j-th mode is i2 are similar to each other, the features F(j)(i1)
and F(j)(i2) are also likely to be similar to each other.
Learning of Features: In ELICIT, the features are contin-
uous, and all the computation process for approximation
is differentiable. Therefore, when fitting the parameters of
ELICIT to the input tensor, they can be updated simultane-
ously through gradient descent-based update iterations, as out-
lined in Algorithm 1. That is, the training procedure is much
simpler, compared to those of the previous deep-learning-
based methods (refer to Section IV-A). In our experiments,
we used mini-batch training with the Adam optimizer.
Roadmap: In Section IV-C, we provide the details of the ap-
proximation process of ELICIT. We theoretically analyze the
(1) time complexity, (2) space complexity, and (3) compressed
output size of ELICIT in Section IV-D. In Section IV-E,
we demonstrate the theoretical expressive power of ELICIT,
through comparisons with existing methods.

C. Approximation Process of ELICIT

In ELICIT, there are some reference states and the cor-
responding values for approximating each entry. Specifically,
there are 2d distinct reference states, s1, · · · , s2d ∈ {0, 1}d,
shared across all the features. Each l-th reference state sl is
represented as the d dimensional binary vector representing
l − 1, which can be obtained by Eq. (1), and there is a value
vk,l ∈ R corresponding to sl for each feature index k ∈ [r].

sl =
(
s
(1)
l , · · · , s(d)l

)
=

(⌊
l − 1

2d−1

⌋
mod 2,

⌊
l − 1

2d−2

⌋
mod 2, · · · ,

⌊
l − 1

20

⌋
mod 2

)
. (1)

1) Handling binary features: For simplicity, we first as-
sume that each mode index has a single binary feature, which
is the special case of our feature design. In this case, for every
index i1, · · · , id of the tensor, there exists a unique l ∈ [2d]
such that the feature vector F1(i1, · · · , id) is identical to the

Algorithm 2: Approximation Process of (q)ELICIT
▷ The red and green lines are executed only in qELICIT and

ELICIT, respectively. The black lines are executed in both
algorithms.

Input: (a) a position (i1, · · · , id) ∈ [N1]× · · · × [Nd]
(b) the feature matrix F(i1, · · · , id) of (i1, · · · , id)-th position
(c) the set of candidate values {c(j)k,l : (j, k, l) ∈ [d]× [r]× [2q]}
(d) the corresponding values v1,1, · · · , v1,2d , · · · , vk,1, · · · , vk,2d

of the reference states s1, · · · , s2d
(e) the reduce function g
Output: the approximated (i1, · · · , id)-th entry X̃ (i1, · · · , id)

1 for j ← 1 to d do
2 for k ← 1 to r do
3 l∗ ← argminl∈[2q ]

{∣∣∣c(j)k,l − F
(j)
k (ij)

∣∣∣} ▷ Section IV-C4

4 P
(j)
k ←

(
F

(j)
k (ij) + c

(j)
k,l∗

)
− F̃

(j)
k (ij)

5 P
(j)
k ← F

(j)
k (ij)

6 for k ← 1 to r do
7 xk ← 0 ▷ Section IV-C2
8 for l ← 1 to 2d do
9 w ← 1

10 for j ← 1 to d do
11 w ← w ·

(
(2P

(j)
k − 1)s

(j)
l + (1−P

(j)
k )

)
12 xk ← xk + w · vk,l
13 return g(x1, · · · , xr) ▷ Section IV-C5

l-th reference state sl. In this case, the approximated value
becomes the corresponding value v1,l of sl (see Example 2).
This process is equivalent to accessing a memory address to
retrieve its value in low-level programming.

Example 2 (Approximating Entries with Binary Features).
Suppose we approximate the (1, 2)-th entry of the 2-order
tensor in Figure 1. Since F1(1, 2) is identical to s3 = (1, 0),
X̃ (1, 2) becomes v1,3 = 3.

However, the above process for binary features cannot be
directly applied to continuous features, which are used by
ELICIT, as described below. Specifically, when the continuous
feature vector is given, there may be no reference state iden-
tical to the feature vector. For example, there is no reference
state identical to F1(3, 4) = (0.4, 0.7) of the 2-order tensor
in Figure 1. Thus, the above process needs to be extended to
continuous features to be used in ELICIT.

2) Handling continuous features: Below, we describe how
to extend the approximation process to continuous features.
To address the aforementioned challenge, for the (i1, · · · , id)-
th entry, we use the weighted sum of v1,l for every l ∈ [2d]
instead. The weight w(i1,··· ,id),l ∈ R of each v1,l is determined
by the difference between the reference point sl and the fea-
ture vector F1(i1, · · · , id). Specifically, we use the following
equations to compute the approximation result X̃ (i1, · · · , id):

y(i1,··· ,id),l,j :=

{
F

(j)
1 (ij), if s(j)l = 1

1− F
(j)
1 (ij), otherwise

w(i1,··· ,id),l :=
∏d

j=1
y(i1,··· ,id),l,j ,

X̃ (i1, · · · , id) :=
∑2d

l=1
w(i1,··· ,id),lv1,l.

Note that the computed weights have the following properties:

• Since F
(j)
1 (ij) ∈ [0, 1], each weight w(i1,··· ,id),l is also in



0

1

1 0

0.4 0.7

𝐅1 1, 2

𝐅1 3, 4

Section IV-C1) Single Binary Feature

Retrieving Features (Section IV-B)

0 0𝒔1

0𝒔2

1 0𝑣1,1 𝑣2,1

Approximation (Section IV-C)

1 2𝑣1,2 𝑣2,2

1st 2nd

1

1𝒔3

1𝒔4

3 5𝑣1,3 𝑣2,3

4 0𝑣1,4 𝑣2,4

1-0.4

0.4
× 0.71-0.7 =

0.18 0.42

0.12 0.28

𝑤 3,4 ,1 𝑤 3,4 ,2

𝑤 3,4 ,3 𝑤 3,4 ,4

Reference States and Their

Values for Each Feature

Section IV-C2) Single Continuous Feature

෩𝓧 3, 4 = 0.18𝑣1,1 + 0.42𝑣1,2
+0.12𝑣1,3 + 0.28𝑣1,4 = 2.08

෩𝓧 1, 2 = 0 ⋅ 𝑣1,1 + 0 ⋅ 𝑣1,2
+1 ⋅ 𝑣1,3 + 0 ⋅ 𝑣1,4 = 3

Section IV-C3) Multiple Continuous Features

R
e

trie
v
e

0 0.1

0.4 0.5

1 0

1 1

1st 2nd

𝐅 1 (1)

𝐅 1 (4)

0.5

1

1st

2nd

0

1

1

0.3

0.7

0.2

𝐅 2 (1) 𝐅 2 (4)⋯

⋯

𝓧 ∈ ℝ4×4

Generalization

1-0.5

0.5
× 0.21-0.2 =

0.4 0.1

0.4 0.1

𝑤 3,4 ,1 𝑤 3,4 ,2

𝑤 3,4 ,3 𝑤 3,4 ,4

෩𝓧 3, 4 = 𝑔 2.08, 2.2 = 4.28

0.4 ⋅ +0.1 ⋅ +0.4 ⋅ +0.1 ⋅ = 2.2

𝐅2 3, 4 = ,0.5 0.2 𝑔 = 𝑠𝑢𝑚(⋅)

0 2 5 0
𝑣2,1 𝑣2,2 𝑣2,3 𝑣2,4

Fig. 1. The approximation process of ELICIT. To approximate each entry, it first retrieves the feature vectors of the entries from the features of the indices.
Next, it computes the weighted sums of the values assigned to the reference states, based on the features of the entry. The weighted sums are reduced by the
reduce function g(·) to compute the approximation result.

[0, 1]. Moreover,
∑2d

l=1 w(i1,··· ,id),l is always 1, and it can
be easily shown by the distributive property.

• The closer the feature vector F1(i1, · · · , id) is to sl, the
larger the corresponding weight w(i1,··· ,id),l becomes.

• If the features are binary, as in Section IV-C1, w(i1,··· ,id),l =
1 if F1(i1, · · · , id) = sl and 0 otherwise.

By the last property, the above process generalizes the process
for binary features.

Example 3 (Approximating Entries with Continuous Fea-
tures). Suppose we approximate the (3, 4)-th entry of the 2-
order tensor in Figure 1. Since F1(3, 4) = (0.4, 0.7), the
weights w(3,4),1, w(3,4),2, w(3,4),3, w(3,4),4 for s1, s2, s3, s4
are (1 − 0.4) · (1 − 0.7) = 0.18, (1 − 0.4) · 0.7 = 0.42,
0.4 · (1−0.7) = 0.12, and 0.4 ·0.7 = 0.28, respectively. Thus,
X̃ (3, 4) is 0.18v1,1 + 0.42v1,2 + 0.12v1,3 + 0.28v1,4 = 2.08.

Advantages: This design generalizes the design for binary
features, enhancing expressiveness. Its differentiable process
allows ELICIT to be easily optimized via gradient descent,
addressing Limitation L3 (see Section IV-A) of prior methods.

3) Handling multiple features (i.e., r > 1): To further
enhance expressiveness, the final version of ELICIT uses
multiple features. For each feature index k, ELICIT computes
the output for a target entry using the above process. After
collecting r outputs from each feature, a function g reduces
these values into a scalar, and any differentiable g (e.g.,
sum(·)) can be employed for this purpose. We provide specific
details about its design in Section IV-C5.

Example 4 (Approximating Entries with Multiple Features).
Suppose we approximate the (3, 4)-th entry of the 2-order
tensor in Figure 1, where r = 2 and g = sum(·). As in Ex-
ample 3, we can obtain 2.08 from F1(3, 4) = (0.4, 0.7). Sim-
ilarly, from F2(3, 4) = (0.5, 0.2), we can obtain the weights
(w(3,4),1, w(3,4),2, w(3,4),3, w(3,4),4) = (0.4, 0.1, 0.4, 0.1) and
the output 0.4v2,1 + 0.1v2,2 + 0.4v2,3 + 0.1v2,4 = 2.2. Thus,
X̃ (3, 4) becomes g(2.08, 2.2) = 2.08 + 2.2 = 4.28.

Remaining Challenges: However, the compressed output size
of ELICIT increases proportionally to the number of real
values in the feature vectors and reference states, which
significantly affects the trade-off between the compressed size
and the accuracy. Specifically, if we assume the double
datatype for storing the features and values, ELICIT requires∑d

i=1 Ni ·r ·64 bits for feature vectors for all indices and 2d ·r ·
64 bits for all the corresponding values of the reference states.
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Fig. 2. The quantization process of qELICIT. For each feature, qELICIT
finds the closest candidate value. After quantization, it follows the approxi-
mation process of ELICIT.

In most real-world tensors, including the datasets considered
in the paper,

∑d
i=1 Ni is much bigger than 2d, which indicates

that the size of features is the bottleneck of the compressed
output size of ELICIT. Furthermore, the permutation-based
ordering used in NEUKRON and TENSORCODEC only needs∑d

i=1 Ni logNi bits, which is smaller than the total feature
size of ELICIT even where r = 1. Thus, the size of features
needs to be reduced for better compression performance.

4) Clustering-based Quantization: To handle the problem
posed by our feature-based model, we propose clustering-
based quantization on top of ELICIT, which is inspired by
a clustering-based approximation method [26]. Specifically, it
aims to reduce the size of compressed outputs, while minimiz-
ing the performance degradation. We name this enhanced
version qELICIT to distinguish it from ELICIT without
quantization. Note that quantization replaces LSTM-based
reparameterization, which causes Limitation L2 (see Sec-
tion IV-A) of prior methods, with a closely-aligned objective.
Goal: The size of original features for the j-th mode is Nj ·64
bits. We aim to further compress the size to be Nj · (q+o(1))
bits, where q is small enough to be considered as a constant.
Overview: To represent each feature F(j)

k (ij) with q+o(1) bits
in expectation, for each j ∈ [d] and k ∈ [r], we additionally
prepare 2q learnable candidates c

(j)
k,1, · · · , c

(j)
k,2q ∈ [0, 1], where

2q ≪ Nj . After the quantization process, each feature F
(j)
k (ij)

is replaced with c
(j)
k,l where l = argminl∈2q{|c

(j)
k,l−F

(j)
k (i, j)|}.

For each ij , if we store each integer index of the candidates
in log2 Nj bits, instead of real-valued quantization vectors,
the size of the compressed features becomes 2q · 64 +Nj ·
log(2q) = Nj · (q + o(1)) bits by the assumption (i.e., 2q ≪
Nj), which satisfies our goal.
Details: During training, since qELICIT replaces the features
with the closest candidates and then performs approximation,
the original features are not directly used for approximating the
entries. Hence, they are unable to be updated with gradient de-
scent iterations. To tackle the issue, qELICIT uses a “straight-
through” trick when replacing the values. Specifically, when
replacing F

(j)
k (ij), if the closest candidate is c

(j)
k,l , qELICIT



replaces the feature with
(
c
(j)
k,l + F

(j)
k (ij)

)
− F̃

(j)
k (ij), where

F̃
(j)
k (ij) is the fixed constant having the same value with

F
(j)
k (ij). Using this trick, qELICIT can simultaneously update

the features and the candidates with a common goal of maxi-
mizing the fitting performance of qELICIT. Note that, instead
of our quantization scheme, it is possible to apply an off-the-
shelf clustering-based approximation method [26]. However,
this replacement introduces an additional hyperparameter1 and
associated tuning cost, without yielding performance gains, as
demonstrated in Section VI-D.

Example 5 (Approximation Process of qELICIT). Suppose
we approximate the (3, 4)-th entry of the 2-order tensor in
Figure 2, where r = q = 2 and g = sum(·). First,
qELICIT quantizes the feature matrix F(3, 4). To quantize
the feature F

(1)
1 (3), it selects the closest candidate among

{c(1)1,1, c
(1)
1,2, c

(1)
1,3, c

(1)
1,4} = {0.0, 0.3, 0.6, 0.9}. Thus, the quan-

tized feature becomes 0.3. Similarly, F
(2)
1 (4), F

(1)
2 (3), and

F
(2)
2 (4) are quantized to 0.6, 0.5, and 0.1, respectively. The

rest of the process is the same as that of ELICIT.

We found that even if we set q to 4, the accuracy of
qELICIT is not significantly degraded. Thus, we set q to 4
for all experiments, and we further analyze how performance
changes with q in Section VI-F.

5) Reduce Function: Below, we present the details of
the reduce function g. Our preliminary study reveals that
the following reduce function [27], which incorporates non-
linearity, yields superior compression performance, compared
to simpler ones (e.g., sum(·)):

g(x1, x2, · · · , xr) =

⌊r/2⌋∑
k=1

xk

 · tanh

 r∑
k=⌊r/2⌋+1

xk

 .

Since real-world tensors contain values at various scales, in
order to adapt to the scale of the input tensors, we additionally
introduce two learnable parameters: γ for controlling scale,
and β for controlling bias of the output. This leads to the
following function used in ELICIT:

g(x1, x2, · · · , xr) = eγ ·

⌊r/2⌋∑
k=1

xk

 · tanh

 r∑
k=⌊r/2⌋+1

xk

+ β.

(2)
In Section VI-D, we demonstrate the effectiveness of the above
design of g, compared to sum(·) and LSTM(·).
D. Theoretical Analysis

We theoretically analyze the output size, approximation and
training time, and space for training of our full-fledged method
qELICIT. All proofs are provided in Appendix C of [20].

Theorem 1 (Compressed Output Size). The size of the com-
pressed output of qELICIT is r·(q·∑d

i=1 Ni+t(d·2q+2d))+2t
bits, where t is the size of the datatype for a real number.

1If applied to our problem, it treats
(
c
(j)
k,l + F

(j)
k (ij)

)
as a constant and

F̃
(j)
k (ij) as a learnable parameter. As a result, it requires an additional

regularization term for cluster centroids to be updated.

Theorem 2 (Approximation Time for Each Entry). The ap-
proximation for each entry takes O(rd · (2q + 2d)) time.

Theorem 3 (Training Time). The training time complexity of
qELICIT per epoch is O(rd · (2q + 2d) ·∏d

j=1 Nj).

Theorem 4 (Space Usage). The overall memory requirement
of qELICIT during training is O(brd · (2q +2d)+

∏d
j=1 Nj).

E. Comparison with Existing Methods

Below, we show ELICIT (partially) generalizes prior tensor-
compression methods, demonstrating its expressive power.
For a comparison with ACCAMS, see Appendix D of [20].

1) T-SVD [21] and CPD [8]: ELICIT with r features and
g = sum(·) provably generalizes CPD of rank r and T-SVD
of rank r (when the input tensor is of order 2, i.e., a matrix).

Theorem 5. ELICIT with r features and g = sum(·) is a
generalization of CPD of rank r and T-SVD of rank r.

Proof Sketch. This can be demonstrated by constructing
reference states using the rank-1 tensor through a cross-
product of length-2 vectors composed of the min-max values
from each factor in the CP decomposition output. Features are
then set to normalized values after max-min normalization. See
Appendix C of [20] for details.

2) NEUKRON [17] and TENSORCODEC [18]: Their order-
based index models (see Appendix B of [20] for details) are
generalized by the feature-based index model used in ELICIT.

Theorem 6. The feature-based index model of ELICIT is
a generalization of the order-based index models used in
NEUKRON and TENSORCODEC.

Proof Sketch. We can show this by representing each ele-
ment in the encoded sequences of their models in binary and
concatenating the transformed feature to generate the features
of our model. See Appendices B and C of [20] for details.

V. EXTENSION TO OTHER REAL-WORLD APPLICATIONS

Below, we extend ELICIT for two real-world applications:
(1) matrix completion and (2) neural-network compression.

A. Matrix Completion

Problem Formulation: The goal of the matrix completion
problem is to accurately predict the missing entries in the input
matrix based on the observed entries.

Problem 2. (Matrix Completion)
• Given: a masked matrix Ā = M⊙A, where A ∈ RN1×N2

is the ground-truth matrix, M ∈ {0, 1}N1×N2 is a mask
indicating the observability of the entries in A, and ⊙ is an
element-wise multiplication operation,

• Find: the prediction model Θ that generates Â
• to Minimize: prediction error ∥(1−M)⊙ (A− Â)∥2F on

the missing entries, where 1 is the N1×N2 matrix of ones.

Proposed Method: For the matrix completion problem, we
develop qELICIT++, an extended version of qELICIT that
incorporates implicit features motivated from SVD++ [11].
qELICIT++ uses additional parameters to capture implicit



ratings: F′(j)
k (ij) for the implicit feature of index ij in mode

j, and the candidate values c
′(j)
k,1 , · · · , c

′(j)
k,2q for the implicit

feature, for each (j, k) ∈ [2]×[r] and ij ∈ [Nj ]. See Appendix
E-A of [20] for the detailed training and prediction processes.
B. Neural-network Compression
Problem Formulation: This problem aims to minimize the
number of parameters of a neural-network model while mini-
mizing the performance degradation of the compressed model
on the given downstream tasks, formally described as follows:
Problem 3. (Neural-network Compression)
• Given: (1) a neural network fΘ with the trained parameters
Θ, (2) a function p(·) that evaluates the performance of
neural networks,

• Find: a compressed parameter Φ that parameterizes Θ
• to Minimize: (1) the size of Φ, (2) the amount of perfor-

mance degradation, i.e., p(fΘ)− p(fΘ(Φ)).
Proposed Method: We propose TFW-qELICIT, an extended
version of qELICIT inspired by TFWSVD [28]. It first
compresses each tensor-shaped parameter X by setting the
weighted approximation error as the objective function, which
is defined as Lapprox(X̃ ) = ∥WX ⊙ (X − X̃ ) ⊙ (X − X̃ )∥1,
where WX ∈ RN1×···×Nd is the empirical Fisher information.
Afterward, it fine-tunes Φ for the function p(·) to optimize
the performance of the compressed model, following typical
training methods for neural networks. Refer to Appendix E-B
of [20] for the details of WX and the training process.

VI. EXPERIMENTS

We performed experiments to answer the following questions:
Q1. Compression Performance: How compactly and accu-

rately does qELICIT compress tensors, compared to ex-
isting decomposition- and deep-learning-based methods?

Q2. Speed: How fast does qELICIT compress tensors, com-
pared to the existing deep-learning-based methods?

Q3. Ablation Study: How do the techniques utilized in
qELICIT affect its accuracy and compression time?

Q4. Scalability: Is compression and approximation by
qELICIT scalable w.r.t. to the number of entries?

Q5. Hyperparameter Sensitivity: How does the quantization
level q affect the compression performance of qELICIT?

Q6. Application: How effective are the extensions of qELICIT
for matrix completion and neural-network compression?

A. Experimental Settings
Datasets: We used 8 real-world tensors listed in Table II. As
shown in [18], the datasets have various properties, such as
application domains, smoothness, and density. The semantics
of the datasets are provided in Appendix F-A of [20].
Baseline Methods: For deep-learning-based methods, we con-
sidered TENSORCODEC [18], NEUKRON [17], CostCo [24],
and M2DMTF [25], as competitors. Note that the latter two
were originally designed for completion. For decomposition-
based methods, we considered CPD [8], TKD [7], TTD [9],
and TRD [10] as competitors. See Section III for their details.
Implementation: We utilized Tensor Toolbox [29] in MAT-
LAB for the implementation of CPD and TKD. For TTD,

TABLE II
REAL-WORLD DATASETS USED IN THE PAPER. THE DETAILED SEMANTICS

OF THE DATASETS ARE PROVIDED IN APPENDIX F-A OF [20].

Order Name Shape #Entries Description

4 Absorb 192× 288× 30× 120 199.1M Climate
NYC 265× 265× 28× 35 68.8M Traffic volume

3

Action 100× 570× 567 32.3M Video features
Activity 337× 570× 320 61.5M Video features
Airquality 5, 600× 362× 6 12.2M Climate

PEMS 963× 144× 440 61.0M Traffic volume
Stock 1, 317× 88× 916 106.2M Stock
Uber 183× 24× 1, 140 5.0M Traffic volume

TRD, and M2DMTF, we employed the original implemen-
tation in MATLAB provided by the authors. For TENSOR-
CODEC, NEUKRON, and CostCo, we used the implementa-
tion in PyTorch or TensorFlow provided by the authors. We
implemented our methods including qELICIT and its variants
using PyTorch. As demonstrated in Section VI-D, limiting
the feature values to the range [0, 1] slightly slows down
compression speed with marginal differences in compression
performance. Therefore, in our implementation, we allowed
the feature values to take any real value.
Evaluation Protocol: We used fitness, aforementioned in
Section II, to measure the accuracy of a compressed result.
We determined the compression output size for each method
using the double-precision (64-bit) floating format. We per-
formed each experiment 5 times, and reported the average and
standard deviation. Details regarding the hyperparameters and
training protocols are provided in Appendix F-A of [20].
Machines: For deep-learning-based methods except for
M2DMTF, we conducted all experiments on a server with 4
RTX 2080Ti GPUs. For the baselines that do not use GPUs
in their implementation, we ran them on a desktop with an
i5-9600K CPU and 64GB RAM.

B. Q1. Compression Performance

We evaluated the compression performance of qELICIT
compared to its competitors in terms of compression size
and fitness. For each method, we conducted experiments with
at least 4 settings yielding different compressed output sizes
(except for TENSORCODEC on the Uber dataset). To directly
compare qELICIT with the deep-learning-based methods, we
set the compressed output size to be as slightly smaller as
possible. Since the implementation of M2DMTF only supports
3-order tensors, we could not test it on the Absorb and NYC
datasets, which are 4-order tensors.

For all datasets, qELICIT demonstrated the best trade-
offs between compressed size and fitness, as shown in
Figure 3. Specifically, the compressed output size of qELICIT
was up to 5.05× smaller than that of the most compact
competitor with a comparable fitness. Moreover, its fitness
was up to 48% higher than that of the most accurate com-
petitor with a similarly-sized output. CostCo and M2DMTF,
which are originally designed for completion but adapted for
compression, performed comparably to decomposition-based
compression methods overall and worse in a few cases.

C. Q2. Speed

We measured the compression speed for all tested methods.
For a fair comparison, we set the compressed output sizes to
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Fig. 4. Our qELICIT is significantly faster than the existing deep-learning-
based compression methods (i.e., TENSORCODEC and NEUKRON). For a
similar compression size, compression by qELICIT is up to 96× faster than
compression by TENSORCODEC.

be similar (spec. similar to the smallest output sizes of Tensor-
Codec in Figure 3). Our quantized method qELICIT was
significantly faster than the deep-learning-based compres-
sion methods. As seen in Figure 4, compression by qELICIT
was up to 96× faster than that by TENSORCODEC, the fastest
deep-learning-based compression method, despite the superior
compression performance of qELICIT in Section VI-B.
D. Q3. Ablation Study

We performed an ablation study to demonstrate the impor-
tance of the techniques applied to qELICIT. Specifically, we
considered the following variants of qELICIT:
• ELICIT: a variant of qELICIT without quantization, pre-

sented in Section IV-C.
• qELICIT-f: a variant of qELICIT where feature values are

restricted to the range of [0, 1], as discussed in Section VI-A.
• qELICIT-s: a variant of qELICIT, where g = sum(·).
• qELICIT-i: a variant of qELICIT with the order-based

index model used in NEUKRON and TENSORCODEC.
• qELICIT-l: a variant of qELICIT, where g is parameter-

ized by LSTM, as used in NEUKRON and TENSORCODEC.
We set the hidden dimension of LSTM to 16.

• qELICIT-c: a variant of qELICIT, where we use the
clustering-based quantization approach used in [26], as
discussed in Section IV-C4.
To ensure a fair comparison, we set the compressed output

sizes of qELICIT and its variants to be similar to the largest
compressed size of qELICIT in Section VI-B for each dataset.

Every technique applied to qELICIT enhances com-
pression performance in terms of accuracy and compres-
sion time, as seen in Figure 5. ELICIT, qELICIT-s, and
qELICIT-i showed relatively lower fitness in most of the
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Fig. 5. Every technique used in qELICIT is effective. The full-fledged
version, qELICIT, achieves the best fitness, and it demonstrates the fastest
compression speed among those with high fitness (i.e., qELICIT-{f,c,l}).
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Fig. 6. qELICIT is near-linearly scalable with the number of entries. Both
per-epoch compression time and approximation time increase near-linearly
with the number of entries.

datasets. While qELICIT-f and qELICIT-l achieved similar
fitness to qELICIT in most cases, their compression speed
is significantly slower, except for qELICIT-f on Absorb,
Stock, and Uber datasets. Lastly, qELICIT-c achieved sim-
ilar fitness and compression speed to qELICIT. Note that
qELICIT-c incorporates an additional regularization term, as
we discussed in Section 4.4. Thus, tuning the regularization
coefficient is necessary for qELICIT-c, while the original
qELICIT does not require such a process.
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Fig. 7. Hyperparameter sensitivity. As the quantization level q increases, the
fitness and the size of the compressed output of qELICIT also increase, and
in most datasets, q = 4 offers a good balance between fitness and compressed
size. In the figure, we considered ELICIT without quantization when q = 64.

E. Q4. Scalability
We measured the compression time per epoch and the

approximation time given tensors with different sizes. We
generated 5 synthetic 4-order tensors, varying the length of
each mode in the range of {64, 90, 128, 181, 256}. The largest
generated tensor contains about 4.3B entries and occupies
32 GiB when stored on disk. As seen in Figure 6, both the
compression time per epoch and the approximation time for
the entire tensor were near-linear in the number of entries.

F. Q5. Hyperparameter Sensitivity
To analyze how the hyperparameter q (i.e., quantization

level, or the number of candidates) affects the compression
performance, we measured fitness depending on its value. For
each dataset, we fixed the size r of latent features to the setting
that yielded the largest compressed output size in Section
VI-B, and then we measured the performance of qELICIT by
varying q. As shown in Figure 7, as the level q of quantization
increases, both the fitness and the size of the compressed
output of ELICIT increase. In addition, we observed that
these changes were rapid around q = 4, where it provides
competitive accuracy with sufficiently compact compression.

G. Q6. Applications

We show the effectiveness of our qELICIT extensions,
i.e., qELICIT++ and TFW-qELICIT, to their applications
described in Section V. For all methods using GPUs, we
used a server with an RTX 3090 GPU. For the other methods
that do not use GPUs, we used the desktop aforementioned
in Section VI-A. Since all the competitors used the single-
precision floating point format, unlike the evaluation setup
for tensor compression, we used the same format for our
methods. Detailed settings for these experiments are provided
in Appendices F-B and F-C of [20].

1) Matrix Completion: We compared qELICIT++ with
SVD [12], SVD++ [11], SparseFC [30], GLocal-K [31], and
IGMC [32]. For all methods excluding the auto-encoder-
based methods, we ran experiments with 4 different model
sizes as budgets: {16N, 32N, 64N, 128N} in bytes where
N = N1 +N2, and N1 and N2 are the numbers of rows and
columns of a matrix to be completed, respectively. For GLocal-
K and IGMC, we used budgets in the range of {64N, 128N}
bytes due to their higher model size requirements compared
to the other methods. For all experiments in this subsection,
we used RMSE as the standard evaluation metric for this task.
We split every dataset into train/valid/test sets and performed
Bayesian optimization to tune hyperparameters on the valid set

TABLE III
OUR TFW-ELICIT PROVIDES THE BEST COMPRESSION FOR THE NEURAL

NETWORK BERTBASE ACROSS MOST SUBTASKS, DELIVERING THE
HIGHEST ACCURACY FOR NEARLY THE SAME COMPRESSION SIZE. THE

BEST SCORE IS IN BOLD, AND THE SECOND-BEST SCORE IS UNDERLINED
FOR EACH TASK.

Model (Size) CoLA MNLI MRPC QNLI QQP SST-2 STSB Avg.

BERTbase
(418MiB)

59.1
±1.9

84.7
±0.2

90.5
±0.7

91.7
±0.1

88.1
±0.3

92.8
±0.4

89.4
±0.3 85.2

SVD
(256MiB)

44.4
±1.7

82.9
±0.3

86.8
±0.6

89.7
±0.2

87.5
±0.3

91.3
±0.6

86.9
±0.5 81.3

FWSVD
(256MiB)

50.2
±1.1

83.3
±0.4

88.1
±0.9

90.3
±0.2

87.6
±0.3

91.0
±0.5

88.1
±0.3 82.7

TFWSVD
(134MiB)

4.7
±7.4

79.0
±0.4

83.7
±0.6

86.1
±0.5

85.7
±0.3

87.4
±0.9

84.7
±0.5 73.0

TFWSVD
(175MiB)

42.2
±2.4

81.5
±0.2

86.9
±0.9

88.8
±0.2

86.9
±0.2

89.4
±0.5

87.0
±0.4 80.4

TFWSVD
(256MiB)

53.8
±1.6

83.5
±0.2

89.9
±0.9

90.4
±0.2

87.4
±0.3

90.7
±0.4

88.6
±0.5 83.5

TFW-qELICIT
(116MiB)

55.3
±1.6

83.3
±0.3

89.8
±0.5

90.4
±0.2

87.4
±0.3

91.1
±0.6

88.6
±0.4 83.7

TFW-ELICIT
(256MiB)

57.4
±0.9

83.5
±0.5

90.0
±0.6

90.6
±0.3

87.5
±0.3

91.4
±0.9

88.7
±0.4 84.1

with 200 trials. The split ratio is 7:1:2 for ML-100K, ML-1M,
and ML-10M, and 8:1:1 for douban and flixster.

As shown in Figure 8, under all size budgets, except for the
largest budget on the ML-10M dataset, qELICIT++ outper-
formed its competitors. In addition, qELICIT++ even achieved
lower RMSE than the auto-encoder-based competitors that
used larger size budgets. Refer to Appendix G-A of [20] for
the results with additional budget ranges {256N, 512N} for
GLocal-K and SparseFC.

2) Neural-network Compression: For this task, we com-
pared our TFW-qELICIT with FWSVD [14] and TFWSVD
[28]. We further compared it with TFW-ELICIT, a variant of
TFW-qELICIT without quantization, to check the effective-
ness of the quantization. As in [14], [28], we evaluated the
methods on 7 subtasks in the GLUE benchmark [33].

For training the models, we followed the overall procedure
of [28]. First, we fine-tuned the parameters of BERTbase [34] to
each subtask. From the fine-tuned parameters, we performed
the process described in Algorithm 4 of [20], i.e., after com-
pressing the trained parameters using a compression algorithm,
we fine-tuned the compressed parameters to optimize the
performance of the compressed model. For each subtask, we
used its standard evaluation metric: Matthews correlation for
CoLA, Pearson correlation for STSB, F1 for MRPC and QQP,
and accuracy for MNLI, QNLI, and SST-2.

Table III shows the sizes and average performances along
with standard deviations of the neural-network compression
methods for each subtask. TFW-ELICIT outperformed its
competitors with nearly identical compressed sizes in all sub-
tasks except QQP. Additionally, its quantized version TFW-
qELICIT achieved a compression size of 116MiB, which is
54.7% smaller than 256MiB of TFWSVD, while showing
competitive accuracy. Note that the models compressed by
TFWSVD with sizes smaller than 200MiB performed worse
than those compressed by SVD and FWSVD.
Extra Experiments: Extra results on approximation and com-
pression speed, as well as performance comparisons excluding
the effects of quantization, are in Appendix G of [20].
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Fig. 8. Our qELICIT++ provides the best trade-off between parameter size budget and accuracy in matrix completion. Given the same size budget, it
outperforms all other competitors in terms of RMSE across all settings, except for the largest budget on ML-10M.

VII. CONCLUSION

In this work, we propose ELICIT, an effective and
lightweight lossy tensor compression method. ELICIT
achieves both speed and performance with lightweight yet the-
oretically expressive model design and end-to-end clustering-
based quantization. Using eight real-world tensors and two
real-world applications of tensor compression, we demonstrate
the following strengths of ELICIT (spec., qELICIT):
• Compact and Accurate (Figure 3): While achieving com-

parable fitness, qELICIT compresses tensors 1.51-5.05×
smaller than the most compact competitor.

• Fast (Figure 4): qELICIT is 11.8-96.0× faster with 5-48%
better fitness than the latest deep-learning-based competitors
with similar-size outputs.

• Applicable (Figure 8 and Table III): The variants of
qELICIT for matrix completion and neural-network com-
pression outperform state-of-the-art competitors for these
applications, in terms of the trade-offs between the model
size and application performance.

For reproducibility, the code and datasets used in the paper
are available at https://github.com/jihoonko/icdm24-elicit.
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(IITP) grant funded by the Korea government (MSIT) (No. RS-
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Relational Databases, 90%) (No. RS-2019-II190075, Artificial Intel-
ligence Graduate School Program (KAIST), 10%).

REFERENCES

[1] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge,
A. Carlson, B. Dalvi, M. Gardner et al., “Never-ending learning,”
Communications of the ACM, vol. 61, no. 5, pp. 103–115, 2018.

[2] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava et al., “Llama 2: Open foundation
and fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.

[3] OpenAI, “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774,
2023.

[4] V. Bhaskaran and K. Konstantinides, Image and video compression
standards: algorithms and architectures. Springer Science & Business
Media, 1997.

[5] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S. Wang, “Image
and video compression with neural networks: A review,” IEEE TCSVT,
vol. 30, no. 6, pp. 1683–1698, 2019.

[6] G. W. Stewart, “On the early history of the singular value decomposi-
tion,” SIAM review, vol. 35, no. 4, pp. 551–566, 1993.

[7] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[8] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of “eckart-young”
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[9] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scien-
tific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[10] Q. Zhao, M. Sugiyama, L. Yuan, and A. Cichocki, “Learning efficient
tensor representations with ring-structured networks,” in ICASSP, 2019.

[11] Y. Koren, “Factorization meets the neighborhood: a multifaceted collab-
orative filtering model,” in KDD, 2008.

[12] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[13] A. Beutel, A. Ahmed, and A. J. Smola, “Accams: Additive co-clustering
to approximate matrices succinctly,” in WWW, 2015.

[14] Y.-C. Hsu, T. Hua, S. Chang, Q. Lou, Y. Shen, and H. Jin, “Language
model compression with weighted low-rank factorization,” in ICLR,
2021.

[15] U. Thakker, I. Fedorov, C. Zhou, D. Gope, M. Mattina, G. Dasika,
and J. Beu, “Compressing rnns to kilobyte budget for iot devices using
kronecker products,” ACM JETC, vol. 17, no. 4, pp. 1–18, 2021.

[16] C. Yin, D. Zheng, I. Nisa, C. Faloutsos, G. Karypis, and R. Vuduc,
“Nimble gnn embedding with tensor-train decomposition,” in KDD,
2022.

[17] T. Kwon, J. Ko, J. Jung, and K. Shin, “Neukron: Constant-size lossy
compression of sparse reorderable matrices and tensors,” in WWW, 2023.

[18] ——, “Tensorcodec: Compact lossy compression of tensors without
strong data assumptions,” in ICDM, 2023.

[19] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: an approach to modeling networks.” Journal
of Machine Learning Research, vol. 11, no. 2, 2010.

[20] “Supplementary materials,” 2024. [Online]. Available: https://github.
com/jihoonko/icdm24-elicit

[21] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.
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