
Beyond Neighbors: Distance-Generalized Graphlets
for Enhanced Graph Characterization

Yeongho Kim

KAIST

Seoul, Republic of Korea

yeongho@kaist.ac.kr

Yuyeong Kim

KAIST

Seoul, Republic of Korea

youyoung@kaist.ac.kr

Geon Lee

KAIST

Seoul, Republic of Korea

geonlee0325@kaist.ac.kr

Kijung Shin

KAIST

Seoul, Republic of Korea

kijungs@kaist.ac.kr

Abstract

Graphs are widely used to model complex systems across various

domains, including social networks and biological systems. A key

task in graph analysis is identifying recurring structural patterns,

known as graphlets, which capture connectivity among a fixed-size

subset of nodes. While graphlets have been extensively applied

in tasks such as measuring graph similarity and identifying com-

munities, conventional graphlets focus only on direct connections

between nodes. This limitation overlooks potential insights from

more distant relationships within the graph structure.

In this paper, we introduce (𝑑, 𝑠)-graphlets, a generalization of

size-𝑠 graphlets that incorporates indirect connections between

nodes up to distance 𝑑 . This new formulation provides a more fine-

grained and comprehensive understanding of local graph structures.

To efficiently count (𝑑, 𝑠)-graphlets in a graph, we present EDGE,

an exact counting algorithm that employs optimized combinatorial

techniques to significantly reduce computational complexity com-

pared to naive enumeration. Our empirical analysis across diverse

real-world datasets demonstrates that (𝑑, 𝑠)-graphlets provide supe-
rior graph characterization, outperforming conventional graphlets

in a graph clustering task. Moreover, our case studies show that

(𝑑, 𝑠)-graphlets uncover non-trivial insights that would remain

undiscovered when using conventional graphlets.

CCS Concepts

• Information systems→ Data mining.

Keywords

Graphlet, Distance Generalization, Network Analysis

ACM Reference Format:

Yeongho Kim, Yuyeong Kim, Geon Lee, and Kijung Shin. 2025. Beyond

Neighbors: Distance-Generalized Graphlets for Enhanced Graph Character-

ization. In Proceedings of the ACM Web Conference 2025 (WWW ’25), April
28-May 2, 2025, Sydney, NSW, Australia. ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3696410.3714558

1 INTRODUCTION

Graphs are widely used to model complex systems across various

domains, from social networks to biological systems. A key task

in understanding and predicting the behaviors of these systems is

This work is licensed under a Creative Commons Attribution 4.0 International License.

WWW ’25, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1274-6/25/04

https://doi.org/10.1145/3696410.3714558

identifying recurring structural patterns, which can provide insights

into their underlying dynamics.

Among the various approaches, graphlets [47, 48] describe con-
nectivity patterns among a small set of nodes (typically 3, 4, or 5

nodes). Graphlets capture local structures within a graph, and real-

world graphs can often be distinguished by their domain, or from

random graphs, based on the occurrence patterns of the graphlets.

In practice, the occurrences of each graphlet within a given graph

are counted [51], and these counts are then used to measure graph

similarity [54], detect anomalies [6, 26], classify nodes [17, 31], or

identify communities [8, 35, 70].

While graphlets are defined to capture connectivity patterns

based only on direct connections in a general context of graph

analysis, both traditional and recent studies have highlighted the

potential of exploring relationships beyond direct connections. The

significance of relationships between nodes that are not directly

connected (i.e., at a distance of 2 or larger) has long been recog-

nized in social science to enhance the contextual interpretation of

nodes [37]. More recently, incorporating non-neighboring nodes

has been shown to offer key benefits across multiple domains, in-

cluding improved feature representation in machine learning tasks,

with applications in biology [4], recommendation systems [16], and

general graph machine learning [23, 62, 67, 69].

Motivated by these insights, in this paper, we introduce (𝒅, 𝒔)-
graphlets, a novel generalization of size-𝑠 graphlets that accounts

for indirect connections between nodes up to distance𝑑 . We first de-

fine 𝑑-edges, which generalize edges by representing relationships

between non-neighboring nodes at a distance of 𝑑 . Using these

higher-order connections, we define (𝑑, 𝑠)-graphlets to describe

local connectivity patterns, incorporating all 1-edges to 𝑑-edges

while distinguishing connections based on their distances. This ex-

tension allows for a more fine-grained and comprehensive analysis

of local graph structures, revealing patterns that would otherwise

remain undiscovered with conventional graphlets. An example is

shown in Figure 1, where (𝑑, 𝑠)-graphlets effectively capture and

distinguish local structural patterns, while conventional graphlets

fail to differentiate or identify them.

Our comprehensive analysis using 13 real-world datasets from 5

different domains reveals that (𝑑, 𝑠)-graphlets are highly effective at
capturing local structural patterns. Specifically, the counts of each

(𝑑, 𝑠)-graphlet (spec., counts relative to those of null models) show

better domain-based differentiation between graphs, compared to

conventional graphlets. This enhanced characterization highlights

the importance of modeling relationships beyond immediate neigh-

bors for a more accurate analysis of local graph structures.

As a means to count the occurrences of each (𝑑, 𝑠)-graphlet in a

graph, we develop EDGE (Exact Counting ofDistance-Generalized

3119

https://orcid.org/0009-0006-1722-6817
https://orcid.org/0000-0003-2440-9874
https://orcid.org/0000-0001-6339-9758
https://orcid.org/0000-0002-2872-1526
https://doi.org/10.1145/3696410.3714558
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3696410.3714558
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696410.3714558&domain=pdf&date_stamp=2025-04-22

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yeongho Kim, Yuyeong Kim, Geon Lee, and Kijung Shin

Q19
(2)

1

3

4

5

6

7

8

9

11

10

12

Q5
(2)

(2, 4)-Graphlets

1-edges 2-edges

Size-4 Graphlets

Undistinguishable
& Unidentifiable

2

13

14
Q1
(2)

?

Figure 1: A sample graph and three sets of 4-node subgraphs,

where black solid lines indicate direct connections. In (2-

4) graphlets, a red dotted line between two nodes indicates

that their distance is 2, and the absence of any line means

that their distance is greater than 2. Graphlets, which only

account for direct connections between nodes, (1) cannot

distinguish between two subgraphs {1, 4, 7, 8} and {9, 10, 11,

12}, and (2) cannot describe subgraphs with disconnected

nodes, such as {2, 3, 5, 6}. Our proposed (𝑑, 𝑠)-graphlets address
these limitations by considering relationships that extend

beyond direct connections (distance ≥ 2), allowing for more

fine-grained and comprehensive local structure analysis.

Graphlets), an algorithm for exactly counting instances of each

(2, 3)-, (3, 3)-, and (2, 4)-graphlets. To avoid exhaustive enumera-

tion, EDGE categorizes (𝑑, 𝑠)-graphlets into non-deducible, semi-

deducible and deducible (𝑑, 𝑠)-graphlets based on structural prop-

erties. It selectively enumerates instances of non/semi-deducible

(𝑑, 𝑠)-graphlets, and using their counts, rapidly computes the count

of deducible (𝑑, 𝑠)-graphlets through combinatorial methods with-

out enumeration. Moreover, EDGE employs a specialized directed

acyclic graph that models relationships between nodes up to dis-

tance 𝑑 , further enhancing its speed and scalability.

To summarize, our contributions are:

• Concept.We present a novel extension of graphlets that captures

relationships between non-neighboring nodes (Section 4).

• Algorithm. We develop an efficient algorithm for exactly count-

ing the occurrences of each (𝑑, 𝑠)-graphlet. EDGE is up to 14.86×
faster than a naive counting method (Section 5).

• Discoveries.We show that (𝑑, 𝑠)-graphlets exhibit strong charac-
terization power in distinguishing real-world graphs (Section 6).

Reproducibility. Our code and datasets are available at https:

//github.com/thisis05/EDGE.

2 RELATEDWORK

In this section, we review previous work relevant to our study.

Local structural patterns and graphlets.Mining local structural

patterns from graphs is a common approach for understanding

the underlying dynamics of complex systems [19, 28, 65]. A key

challenge is identifying structural properties that distinguish real-

world graphs from random ones, as these distinctions provide valu-

able insights into the behavior and organization of such systems.

Among various analytic tools for graph analysis, graphlets [47, 48]

have been effective in characterizing network structures. As funda-

mental building blocks of graphs, the counts of graphlets serve as

characteristic measures used to assess graph similarity [54], detect

anomalies [6, 26], classify nodes [17, 31], and identify communi-

ties [8, 35, 70]. Recently, graphlets have also been leveraged to en-

hance the graphmachine learning techniques [15, 18, 31]. Graphlets

have been extended in various directions by incorporating node or

Table 1: Frequently-used notations.

Notation Definition

𝐺 = (𝑉 , 𝐸) a graph with nodes 𝑉 and edges 𝐸

𝛿 (𝑢, 𝑣) distance between nodes 𝑢 and 𝑣

𝐸 (𝑑) set of 𝑑-edges (the distance between nodes is 𝑑)

𝐸 (≤𝑑) set of {1, 2, · · · , 𝑑}-edges (i.e., {𝐸 (1) , · · · , 𝐸 (𝑑) })
𝑁
(𝑑)
𝑢 set of 𝑑-neighbors of node 𝑢

®𝑁 (𝑑)𝑢 set of out-going 𝑑-neighbors of node 𝑢

𝐺 (𝑑) = (𝑉 , 𝐸 (≤𝑑)) 𝑑-graph of the graph 𝐺

®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) 𝑑-DAG (directed acyclic graph) of the graph 𝐺

C(𝑔;𝐺) (or C(𝑔)) count of (𝑑, 𝑠)-graphlet 𝑔 in a graph 𝐺

edge labels [25, 53], node attributes [55], edge weights [61], hyper-

edges [29, 30], and multi-layer structures [10, 50]. These existing

concepts commonly focus only on direct node connections.

Graphlet counting algorithm. Various methods have been pro-

posed to count graphlets in a graph. Early approaches enumerate all

connected subgraphs with a small number of nodes [39, 41, 63, 64].

To improve scalability, later methods take an analytical approach,

and specifically they deduce the count of some graphlets based on

the counts of others [1, 2, 27, 38, 46]. For example, PGD [1, 2] and

ESCAPE [46] decompose graphlets into smaller primitives and use

their counts to derive the count of the larger ones using combinato-

rial arguments, significantly improving the scalability of graphlet

counting and the size of the graphlets that can be counted.

Distance generalization in general graph analysis.Many prior

studies have emphasized the potential of exploring relationships be-

tween nodes that are not directly connected by edges [14, 16, 37, 49,

62]. Incorporating relationships between nodes without direct con-

nections (i.e., those at a distance greater than 1) has been shown to

enhance the performance on various tasks in domains including nat-

ural language processing [9, 21, 49], biology [4], recommendation

systems [16], and general graphmachine learning [23, 45, 62, 67, 69].

One of the earliest such generalizations is 𝑑-clique [5, 37], where

every pair of nodes in the clique is within a distance of 𝑑 . Similarly,

a 𝑑-club [5, 42] is defined as a maximal subset of nodes in which

the induced subgraph has a diameter of at most 𝑑 . More recently,

𝑘-cores have been generalized to (𝑘,𝑑)-cores [14, 20, 36, 56], which
ensure that each node has at least 𝑘 other nodes within a distance

of 𝑑 . These generalizations have revealed interesting patterns that

emerge beyond direct relationships.

3 NOTATIONS & BASIC CONCEPTS

In this section, we discuss the notations and basic concepts that

will be used to describe our concepts (Section 4) and algorithms

(Section 5). Refer to Table 1 for the frequently-used notations.

Graphs and distances. A graph 𝐺 = (𝑉 , 𝐸) consists of a set of

nodes𝑉 and a set of edges 𝐸. Throughout this work, “graph” refers

to an undirected graph unless stated otherwise. The distance 𝛿 (𝑢, 𝑣)
between two nodes 𝑢, 𝑣 ∈ 𝑉 is defined as the length of the shortest

path connecting them. Specifically, if 𝑢 and 𝑣 are directly connected

by an edge (i.e., {𝑢, 𝑣} ∈ 𝐸), the distance between them is 1. If no

path exists between two nodes, their distance is considered infinite.

Induced subgraphs. Given a set of nodes 𝑆 ⊆ 𝑉 , the induced

subgraph on 𝑆 is the subgraph 𝐺𝑆 = (𝑆, 𝐸𝑆), where 𝐸𝑆 is the set of

all edges between nodes in 𝑆 that are present in the original graph

𝐺 , i.e., 𝐸𝑆 = {{𝑢, 𝑣} ∈ 𝐸 : 𝑢, 𝑣 ∈ 𝑆}.

3120

https://github.com/thisis05/EDGE
https://github.com/thisis05/EDGE

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Graphlets. A graphlet [47, 48] is a subgraph that represents a spe-

cific connectivity pattern among a small number of nodes (typically,

3, 4, or 5 nodes). Formally, it is defined as an equivalence class of in-

duced subgraphs under graph isomorphism.
1
The size of a graphlet

refers to the number of nodes it contains.

Null models. To accurately characterize real-world graphs, we

compare them with random graphs generated by a null model.

We employ the configuration model [43] as the null model, which

preserves the node degree distributions of the input graph.

4 PROPOSED CONCEPTS

In this section, we propose (𝑑, 𝑠)-graphlets, which are tools for

analyzing the local structural characteristics of graphs. We first

introduce several basic concepts and then formally define (𝑑, 𝑠)-
graphlets based on them. See Table 1 for frequently-used notations.

4.1 Preliminary Concepts

We begin by defining some basic concepts that are essential for

defining (𝑑, 𝑠)-graphlets in Section 4.2.

𝑑-edges. Given a graph 𝐺 = (𝑉 , 𝐸), we define a 𝑑-edge as a pair of
nodes whose distance is 𝑑 . Any pair of nodes {𝑢, 𝑣} that forms an

edge in the graph (i.e., {𝑢, 𝑣} ∈ 𝐸) is referred to as a 1-edge. Node

pairs with a distance of𝑑 ≥ 2 form𝑑-edges, which represent indirect
connections between the nodes. We denote the set of 𝑑-edges in 𝐺

by 𝐸 (𝑑) := {{𝑢, 𝑣} ∈
(𝑉
2

)
: 𝛿 (𝑢, 𝑣) = 𝑑}, where 𝛿 (𝑢, 𝑣) denotes the

distance between two nodes𝑢 and 𝑣 . Importantly, the sets 𝐸 (𝑑) ’s are
pairwise disjoint (i.e., 𝐸 (𝑑) ∩𝐸 (𝑑 ′) = ∅ for all 𝑑 ≠ 𝑑′) since 𝛿 (𝑢, 𝑣) is
uniquely defined for each node pair {𝑢, 𝑣}. We denote the union of

all 1-edges through 𝑑-edges as 𝐸 (≤𝑑) = {𝐸 (1) , 𝐸 (2) , · · · , 𝐸 (𝑑) }, and
define the 𝑑-extended graph as𝐺 (𝑑) = (𝑉 , 𝐸 (≤𝑑)) which includes

both direct and indirect connections up to distance𝑑 . Finally, a node

𝑣 is called a 𝑑-neighbor of 𝑢 if {𝑢, 𝑣} is a 𝑑-edge, and we denote the

set of 𝑑-neighbors of 𝑢 as 𝑁
(𝑑)
𝑢 .

𝑑-induced subgraphs. Given a set of nodes 𝑆 ⊆ 𝑉 , the 𝑑-induced

subgraph on 𝑆 is the subgraph𝐺
(𝑑)
𝑆

= (𝑆, 𝐸 (≤𝑑)
𝑆
), where 𝐸 (≤𝑑)

𝑆
con-

sists of all 1-edges, 2-edges, up to 𝑑-edges between nodes in 𝑆 from

the graph 𝐺 . That is, 𝐸
(≤𝑑)
𝑆

= {𝐸 (1)
𝑆

, 𝐸
(2)
𝑆

, · · · , 𝐸 (𝑑)
𝑆
}, where the

edge set 𝐸
(𝑑 ′)
𝑆

, which is defined as {{𝑢, 𝑣} ∈ 𝐸 (𝑑
′)

: 𝑢, 𝑣 ∈ 𝑆},
represents the set of all 𝑑′-edges between nodes in 𝑆 for each

𝑑′ ∈ {1, 2, · · · , 𝑑} (note that the distance between nodes in 𝐺
(𝑑)
𝑆

is

measured in the entire graph𝐺 , not in the subgraph𝐺
(𝑑)
𝑆

). Notably,

conventional induced subgraphs are 1-induced subgraphs, which

only consider direct connections (i.e., 1-edges) between nodes in 𝑆 .

In contrast, 𝑑-induced subgraphs generalize this concept by captur-

ing higher-order connectivity patterns beyond direct connections.

𝑑-isomorphism. Given two sets of nodes, 𝑆 and 𝑆 ′, and their 𝑑-

induced subgraphs 𝐺
(𝑑)
𝑆

= (𝑆, 𝐸 (≤𝑑)
𝑆
) and𝐺 (𝑑)

𝑆 ′ = (𝑆 ′, 𝐸 (≤𝑑)
𝑆 ′), they

are considered 𝑑-isomorphic if there exists a bijection 𝜙 : 𝑆 → 𝑆 ′

1
Two induced subgraphs𝐺𝑆 = (𝑆, 𝐸𝑆) and𝐺𝑆′ = (𝑆 ′, 𝐸𝑆′) are isomorphic if and

only if there exists a bijection 𝜙 : 𝑆 → 𝑆 ′ such that for every pair of nodes {𝑢, 𝑣} ∈(𝑆
2

)
, the connectivity relationship is preserved, i.e., {𝑢, 𝑣} ∈ 𝐸𝑆 ⇔ {𝜙 (𝑢), 𝜙 (𝑣) } ∈

𝐸𝑆′ . This implies that the connectivity patterns are identical between the subgraphs

on 𝑆 and 𝑆 ′ under the mapping 𝜙 .

such that for every pair of nodes {𝑢, 𝑣} ∈
(𝑆
2

)
, the following holds:

{𝑢, 𝑣} ∈ 𝐸 (𝑑
′)

𝑆
⇔ {𝜙 (𝑢), 𝜙 (𝑣)} ∈ 𝐸 (𝑑

′)
𝑆 ′ , ∀𝑑′ ∈ {1, 2, · · · , 𝑑}.

This indicates that the mapping 𝜙 preserves the structure of all

edges up to distance 𝑑 between the nodes in 𝑆 and 𝑆 ′, meaning the

subgraphs are structurally identical with respect to 𝑑-edges.

4.2 (𝑑, 𝑠)-Graphlets
We now define (𝑑, 𝑠)-graphlets, which generalize graphlets by in-

corporating relationships beyond direct connections to describe the

connectivity patterns of 𝑠 nodes.

Definition. A (𝑑, 𝑠)-graphlet is a 𝑑-isomorphism class of size-𝑠

𝑑-induced subgraphs. That is, the 𝑑-induced subgraphs 𝐺
(𝑑)
𝑆

and

𝐺
(𝑑)
𝑆 ′ of two sets, 𝑆 and 𝑆 ′, each containing 𝑠 nodes (i.e., |𝑆 | =
|𝑆 ′ | = 𝑠), belong to the same (𝑑, 𝑠)-graphlet if they are 𝑑-isomorphic.

In essence, a (𝑑, 𝑠)-graphlet represents an equivalence class of 𝑑-

induced subgraphs where the local structure, including both direct

and indirect connections up to distance 𝑑 , is identical.

Examples. In Figure 2, we present examples of (𝑑, 𝑠)-graphlets. We

let T
(𝑑)

denote the set of all size-3 (𝑑, 𝑠)-graphlets and Q(𝑑) denote
that of size-4 (𝑑, 𝑠)-graphlets. There exist 6 (2, 3)-graphlets (T(2) =
{T(2)

1
, · · · , T(2)

6
}), 13 (3, 3)-graphlets (T(3) = {T(3)

1
, · · · , T(3)

13
}), and

36 (2, 4)-graphlets (Q(2) = {Q(2)
1

, · · · ,Q(2)
36
}).

Comparison with graphlets.When considering only direct edges

(i.e., 1-edges), there are only two types of size-3 graphlets (a tri-

angle and a wedge) and six types of size-4 graphlets (e.g., as a

4-clique or 4-cycle). However, as shown in Figure 2, incorporating

indirect connections (e.g., 2-edges and 3-edges) allows for finer dis-

tinctions among patterns of 3 or 4 nodes. While increasing the num-

ber of nodes in conventional graphlets may provide more insights

into graph structure, it also exponentially increases the number of

graphlet types and thus requires significantly more complex and

computationally expensive counting algorithms. In Section 6, we

demonstrate empirically that size-3 and size-4 (𝑑, 𝑠)-graphlets more

effectively characterize graphs compared to larger graphlets.

4.3 Characteristic Profiles

To summarize the (𝑑, 𝑠)-graphlet characteristics of a graph, we use
a measure called characteristic profile (CP), which is conventionally

used in graphlet studies [29, 40, 59, 60, 66]. First, we count the

occurrences (i.e., number of instances) of each (𝑑, 𝑠)-graphlet, which
we simply refer to as the count of each (𝑑, 𝑠)-graphlet from now

on. Let the occurrence count of the (𝑑, 𝑠)-graphlet 𝑔 in graph 𝐺 be

denoted as C(𝑔;𝐺) (or C(𝑔) for brevity). Then, the significance of
a (𝑑, 𝑠)-graphlet 𝑔 is defined as:

𝜇𝑔 =
C(𝑔;𝐺) − C(𝑔;𝐺

rand
)

C(𝑔;𝐺) + C(𝑔;𝐺
rand
) + 𝜖 ,

where 𝐺
rand

is a randomized graph of 𝐺 generated by a null model

(see Section 3), and 𝜖 is a small constant (e.g., 𝜖 = 1). Based on the

significance, the CP of 𝑔 is computed as the normalized significance:

CP𝑔 =
𝜇𝑔√︃∑
𝑔′∈𝑔 𝜇

2

𝑔′

,

3121

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yeongho Kim, Yuyeong Kim, Geon Lee, and Kijung Shin

T1
(2) T2

(2) T3
(2) T4

(2) T5
(2) T6

(2) T1
(3) T2

(3) T3
(3) T4

(3) T5
(3) T6

(3) T7
(3) T8

(3) T9
(3) T10

(3) T11
(3) T12

(3) T13
(3)

Q1
(2) Q2

(2) Q3
(2) Q4

(2) Q5
(2) Q6

(2) Q7
(2) Q8

(2) Q9
(2) Q10

(2) Q11
(2) Q12

(2) Q13
(2) Q14

(2) Q15
(2) Q16

(2) Q17
(2) Q18

(2) Q19
(2)

Q20
(2) Q21

(2) Q22
(2) Q23

(2) Q24
(2) Q25

(2) Q26
(2) Q27

(2) Q28
(2) Q29

(2) Q30
(2) Q31

(2) Q32
(2) Q33

(2) Q34
(2) Q35

(2) Q36
(2)

(2, 3)-Graphlets (3, 3)-Graphlets

(2, 4)-Graphlets

1-edges

2-edges

3-edges

Figure 2: All the (2, 3)-graphlets (T(2)
1

, · · · ,T(2)
6

), (3, 3)-graphlets (T(3)
1

, · · · ,T(3)
13

), and (2, 4)-graphlets (Q(2)
1

, · · · ,Q(2)
36

). Solid edges

represent direct connections (i.e., 1-edges), while dotted edges represent indirect connections (i.e., 2-edges and 3-edges). The

1-edges, 2-edges, and 3-edges are colored in black, red, and blue, respectively.

where 𝑔 is the set of all considered (𝑑, 𝑠)-graphlets (e.g., T(2) , T(3) ,
or Q

(2)
). The CP is represented as a vector by concatenating the CP

values of each (𝑑, 𝑠)-graphlet, which contains the local structural

information of the graph.

5 PROPOSED ALGORITHMS

In this section, we present EDGE, our algorithm for the exact count-

ing of (𝑑, 𝑠)-graphlets in a given graph. While (𝑑, 𝑠)-graphlets are
generally defined for arbitrary values of 𝑑 and 𝑠 , we focus on three

specific configurations: (𝑑, 𝑠) = {(2, 3), (3, 3), (2, 4)}. In Section 6,

we empirically demonstrate that these configurations are effec-

tive and general enough, compared to conventional graphlets with

similar sizes, to uncover non-trivial structural patterns within the

graph. We first introduce our method for counting size-3 (𝑑, 𝑠)-
graphlets (i.e., (2, 3)- and (3, 3)-graphlets), followed by our method

for counting size-4 (𝑑, 𝑠)-graphlets (i.e., (2, 4)-graphlets).
Remarks. The problem of counting (𝑑, 𝑠)-graphlets (particularly
for 𝑑 ≥ 2), is computationally more challenging than counting

graphlets (i.e., for 𝑑 = 1). Specifically, (𝑑, 𝑠)-graphlets are defined
based on relationships between nodes up to distance𝑑 , requiring the

exploration of 𝐸 (2) , · · · , 𝐸 (𝑑) , where the number of edges grows ex-

ponentially as𝑂 (Δ𝑑), with Δ indicating the maximum node degree.

For example, as shown in Table 4, the number of 3-edges is at most

15× greater than that of the original edges (i.e., 1-edges). Moreover,

the type of each connection (i.e., 𝑑 in 𝑑-edges) should be accounted

for when determining the (𝑑, 𝑠)-graphlet of each instance. These

unique challenges incur significant bottlenecks for exhaustive enu-

meration, and thus efficient and specialized algorithms for counting

(𝑑, 𝑠)-graphlets are demanded.

5.1 Graph Construction

For efficient (𝑑, 𝑠)-graphlet counting, EDGE constructs a directed

acyclic graph (DAG) that consists of direct connections (i.e., 1-edges)

and indirect connections (i.e., 𝑑-edges with 𝑑 > 1), as a common

preprocessing step.

𝑑-Graph construction. EDGE first constructs indirect connec-

tions between non-adjacent nodes. Specifically, it builds additional

edge sets 𝐸 (2) , · · · , 𝐸 (𝑑) , resulting in a 𝑑-graph 𝐺 (𝑑) = (𝑉 , 𝐸 (≤𝑑)).

This process is performed using a breadth-first search (BFS) tra-

versal, as described in Appendix A.1 (refer to Algorithm 3). The

time complexity of this step is given in Lemma 1, and the proof is

provided in Appendix A.1.

Lemma 1 (Complexity of 𝑑-Edge Construction). The time
complexity of constructing the 𝑑-graph 𝐺 (𝑑) for a graph 𝐺 = (𝑉 , 𝐸)
is 𝑂 (|𝑉 |Δ𝑑), where Δ is the maximum degree of the graph.

𝑑-DAG construction. Once the (undirected) 𝑑-graph 𝐺 (𝑑) is con-
structed, EDGE builds a 𝑑-degree-ordered directed acyclic graph

(DAG) of 𝐺 , referred to as a 𝑑-DAG. Specifically, it creates a di-

rected edge (𝑢, 𝑣) if 𝑢 ≺ (𝑑) 𝑣 , where ≺ (𝑑) represents the degree
ordering based on the 𝑑-edges, implying |𝑁 (𝑑)𝑢 | ≤ |𝑁 (𝑑)𝑣 |. The
resulting 𝑑-DAG is denoted as ®𝐺 = (𝑉 , ®𝐸 (≤𝑑)), where ®𝐸 (≤𝑑) =

{ ®𝐸 (1) , · · · , ®𝐸 (𝑑) }, and ®𝐸 (𝑑 ′) = {(𝑢, 𝑣) ∈ 𝑉 × 𝑉 : {𝑢, 𝑣} ∈ 𝐸 (𝑑
′) ∧

𝑢 ≺ (𝑑) 𝑣} for each 𝑑′ ∈ {1, · · · , 𝑑}. For a node 𝑢, ®𝑁 (𝑑)𝑢 denotes the

out-going neighbors of 𝑢 at distance 𝑑 , i.e., ®𝑁 (𝑑)𝑢 = {𝑣 : (𝑢, 𝑣) ∈
®𝐸 (𝑑) }. Importantly, the number of out-going neighbors is typically

smaller than the number of neighbors in undirected graphs (i.e.,

| ®𝑁 (𝑑)𝑢 | ≪ |𝑁 (𝑑)𝑢 |), which significantly contributes to improving the

scalability of EDGE, as empirically demonstrated in Section 6. For

more details, refer to Appendix A.2.

5.2 Size-3 (𝑑, 𝑠)-Graphlet Counting
We now describe how EDGE counts size-3 (𝑑, 𝑠)-graphlets (i.e.,
𝑠 = 3), specifically focusing on (2, 3)-graphlets (T(2)) and (3, 3)-
graphlets (T

(3)
). As described in Algorithm 1, whose sub-algorithms

are detailed in Appendix A.3, we categorize size-3 (𝑑, 𝑠)-graphlets
(T
(𝑑)

) into two groups: non-deducible and deducible ones as follows:

• Non-deducible size-3 (𝑑, 𝑠)-graphlets (T(𝑑)) require explicit
enumeration, as their counts cannot be directly inferred. These

include the following types of triangles:

◦ T

(2)
= {T(2)

1
,T
(2)
2

,T
(2)
4
}

◦ T

(3)
= {T(3)

1
,T
(3)
2

,T
(3)
3

,T
(3)
4

,T
(3)
6

,T
(3)
7

,T
(3)
9
}

• Deducible size-3 (𝑑, 𝑠)-graphlets (T̂(𝑑)) are those whose counts
can be inferred from the graph structure (e.g., node degrees) and

the counts of non-deducible (𝑑, 𝑠)-graphlets:

3122

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Algorithm 1: Counting Size-3 (𝑑, 𝑠)-Graphlets. Refer to
Appendix A.3 for the definitions of sub-algorithms.

Input: (1) 𝑑-Graph𝐺 (𝑑) = (𝑉 , 𝐸 (≤𝑑)) of graph𝐺
(2) 𝑑-DAG ®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) of graph𝐺
(3) Maximum considered distance 𝑑

Output: The count of each size-3 (𝑑, 𝑠)-graphlet T(𝑑)
𝑖

:

C(T(𝑑)
𝑖
) ∀𝑖 ∈ {1, · · · , |T(𝑑) | }

// Initialization

1 C(T(𝑑)
𝑖
) ← 0 ∀𝑖 ∈ {1, · · · , |T(𝑑) | }

// Count non-deducible (𝑑, 𝑠)-graphlets T

(𝑑)

2 for each 𝑢 ∈ 𝑉
3 𝑃𝑢 ← Effective_Neighbor_Pairs(𝑢,𝑑, ®𝐺 (𝑑))
4 for each (𝑣, 𝑤) ∈ 𝑃𝑢
5 T

(𝑑)
∗ ← Get_Triangle

(
(𝑢, 𝑣, 𝑤), 𝑑, ®𝐺 (𝑑)

)
6 C(T(𝑑)∗) ← C(T

(𝑑)
∗) + 1

// Count deducible (𝑑, 𝑠)-graphlets T̂
(𝑑)

7 for each T
(𝑑)
𝑗
∈ T̂(𝑑)

8 C(T(𝑑)
𝑗
) ← Comb_Three

(
T
(𝑑)
𝑗

, {C(T(𝑑)
𝑖
) } |T

(𝑑) |
𝑖=1

,𝐺 (𝑑)
)

9 return C(T(𝑑)
𝑖
) ∀𝑖 ∈ {1, · · · , |T(𝑑) | }

◦ T̂
(2) = {T(2)

3
,T
(2)
5

,T
(2)
6
}

◦ T̂
(3) = {T(3)

5
,T
(3)
8

,T
(3)
10

,T
(3)
11

,T
(3)
12

,T
(3)
13
}

As we describe in detail below, we first selectively enumerate each

instance of non-deducible (𝑑, 𝑠)-graphlets (lines 2 - 6). Afterward,
the counts of deducible (𝑑, 𝑠)-graphlets can be rapidly computed us-

ing specialized combinatorial methods without enumeration (lines 7

- 8). This two-stage approach significantly contributes to the speed

of EDGE, as empirically demonstrated in Section 6.

Counting non-deducible (𝑑, 𝑠)-graphlets. To count each non-

deducible (𝑑, 𝑠)-graphlet, EDGE iterates over each node𝑢. It samples

a subset of its neighboring pairs to ensure that only instances of

non-deducible (𝑑, 𝑠)-graphlets are enumerated (line 3). For each

effective neighboring pair (𝑣,𝑤), it identifies the (𝑑, 𝑠)-graphlet of
the triangle (𝑢, 𝑣,𝑤) based on the distances between the constituent
nodes (line 5). The count of the corresponding (𝑑, 𝑠)-graphlet is
then incremented (line 6).

Counting deducible (𝑑, 𝑠)-graphlets.Once EDGE counts the non-
deducible (𝑑, 𝑠)-graphlets, it efficiently computes the counts of de-

ducible (𝑑, 𝑠)-graphlets using combinatorial counting (line 8). For

each deducible (𝑑, 𝑠)-graphlet, EDGE leverages predefined equa-

tions specific to each (𝑑, 𝑠)-graphlet, based on (1) the exact count

of the non-deducible (𝑑, 𝑠)-graphlets and (2) structural information

(e.g., node degree), if needed. This deductive approach avoids the

need for explicit enumeration for deducible (𝑑, 𝑠)-graphlets. For
example, C(T(2)

5
) can be computed by using the following equation:

C(T(2)
5
) =

∑︁
𝑢∈𝑉

(
|𝑁 (2)𝑢 |

2

)
− 3C(T(2)

1
) − C(T(2)

2
).

The first term counts all cases where the center node of T
(2)
5

has

neighbors connected by 2-edges on both sides. Since these neigh-

bors may also be connected by an (1- or 2-) edge, the counts of the

non-deducible (2, 3)-graphlets T(2)
1

and T
(2)
2

are subtracted. As T
(2)
1

can appear at any of the three nodes in a triangle, its count is multi-

plied by 3when subtracting. All specific equations forComb_Three

are provided in Appendix A.3 (Algorithm 7).

Complexity analysis. We analyze the time complexity of EDGE

for counting size-3 (𝑑, 𝑠)-graphlets (Algorithm 1) in Theorem 1.

Theorem 1 (Complexity of Algorithm 1). The time complex-
ity of EDGE for counting size-3 (𝑑, 𝑠)-graphlets is𝑂 (|𝑉 |𝑑4 ®Δ2𝑑

log ®Δ),
where ®Δ is themaximum out-degree of nodes, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. Refer to Appendix A.3.

Remarks. The time complexity of Algorithm 1 is primarily dom-

inated by the counting of non-deducible (𝑑, 𝑠)-graphlets. EDGE
achieves this complexity in two ways: (1) It employs𝑑-DAGs, where

each node has fewer neighbors compared to 𝑑-graphs, reducing

redundancy in enumeration, (2) EDGE selectively enumerates only

non-deducible (𝑑, 𝑠)-graphlets and rapidly counts deducible (𝑑, 𝑠)-
graphlets afterward. As demonstrated in Section 6, these optimiza-

tions lead to a significant speedup of EDGE.

5.3 Size-4 (𝑑, 𝑠)-Graphlet Counting
We now describe how EDGE counts size-4 (𝑑, 𝑠)-graphlets (i.e.,
𝑠 = 4), focusing on (2, 4)-graphlets (Q(2)), as outlined in Algo-

rithm 2, whose sub-algorithms are detailed in Appendix A.4. For

(2, 4)-graphlets, we categorize the 36 possible configurations (i.e.,
Q
(2)
1

, · · · ,Q(2)
36

) into non-deducible, semi-deducible, and deducible.

• Non-deducible (2, 4)-graphlets (Q(2)), which are all cliques,
require explicit enumeration to obtain their exact counts:

◦ Q

(2)
= {Q(2)

1
,Q
(2)
2

, · · · ,Q(2)
11
}

• Semi-deducible (2, 4)-graphlets (Q̃(2)), which are all cycles,
partially require enumeration, followed by adjustment:

◦ Q̃
(2) = {Q(2)

28
,Q
(2)
29

,Q
(2)
30
}

• Deducible (2, 4)-graphlets (Q̂(2)) are those whose counts can
be rapidly obtained using the counts of non-deducible (2, 4)-
graphlets and the graph structure:

◦ Q̂
(2) = {Q(2)

12
, · · · ,Q(2)

27
,Q
(2)
31

, · · · ,Q(2)
36
}

We first count the non-deducible (𝑑, 𝑠)-graphlets by enumerating

their occurrences on the 2-DAG (lines 3 - 10) and use their counts

to compute the counts of the deducible ones through combinatorial

methods (lines 17 - 18). For semi-deducible ones, we initially com-

pute the number of their non-induced instances (i.e., instances that

induce semi-deducible (𝑑, 𝑠)-graphlets) (lines 11 - 16) and adjust

their counts accordingly after the enumeration (lines 19 - 20).

Counting non-deducible (𝑑, 𝑠)-graphlets. Instead of exhaustively
enumerating all size-4 instances on the 2-DAG to obtain the ex-

act count of (2, 4)-graphlets, we count them by decomposing their

structure. Notably, all non-deducible (𝑑, 𝑠)-graphlets form cliques,

which can be decomposed into two triangles sharing an (1- or 2-)

edge, and the remaining two nodes are also connected by an (1- or

2-) edge (see an example in Figure 3). For every edge (𝑢, 𝑣) on the 2-

DAG, using their common neighbors (line 4), we determine the set

of triangle pairs where the remaining nodes are connected (line 5).

For each pair of triangles, we first identify the (2, 3)-graphlet of
each triangle (lines 7 - 8) and then determine the (2, 4)-graphlet

3123

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yeongho Kim, Yuyeong Kim, Geon Lee, and Kijung Shin

Algorithm 2: (2, 4)-Graphlets Counting. Refer to Appen-
dix A.4 for the definitions of sub-algorithms.

Input: (1) 2-graph𝐺 (2) = (𝑉 , 𝐸 (≤2)) of graph𝐺
(2) 2-DAG ®𝐺 (2) = (𝑉 , ®𝐸 (≤2)) of graph𝐺

Output: The count of each size-4 (𝑑, 𝑠)-Graphlets Q(2)
𝑖

:

C(Q(2)
𝑖
) ∀𝑖 ∈ {1, · · · , |Q(2) | }

// Initialization

1 C(Q(2)
𝑖
) ← 0 ∀𝑖 ∈ {1, · · · , |Q(2) | }

2 for each 𝑢 ∈ 𝑉
// Count non-deducible Q

(2)

3 for each 𝑣 ∈ ®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢

4 𝑁𝑢,𝑣 ←
(
®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢

)
∩
(
®𝑁 (1)𝑣 ∪ ®𝑁 (2)𝑣

)
5 T𝑢,𝑣 ← Triangle_Pairs((𝑢, 𝑣), 𝑁𝑢,𝑣, ®𝐺 (2))
6 for each ((𝑢, 𝑣, 𝑤), (𝑢, 𝑣, 𝑤′)) ∈ T𝑢,𝑣
7 T

(2)
◦ ← Get_Triangle

(
(𝑢, 𝑣, 𝑤), ®𝐺 (2)

)
8 T

(2)
• ← Get_Triangle

(
(𝑢, 𝑣, 𝑤′), ®𝐺 (2)

)
9 Q

(2)
∗ ← Get_Cliqe

(
T
(2)
◦ ,T

(2)
• ,𝑢, 𝑣, 𝑤, 𝑤′

)
10 C(Q(2)∗) ← C(Q

(2)
∗) + 1

// Count semi-deducible Q̃
(2)

11 for each (𝑣, 𝑣′) ∈ (®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢) × ®𝑁
(2)
𝑢

12 for each 𝑤 ∈ {𝑤′ ∈ 𝑁 (2)𝑣 ∩
(
𝑁
(1)
𝑣′ ∪ 𝑁

(2)
𝑣′

)
: 𝑢 ≺ (𝑑) 𝑤′ }

13 T
(2)
△ ← Get_Non-Induced_Wedge

(
(𝑢, 𝑣, 𝑣′), ®𝐺 (2)

)
14 T

(2)
▲ ← Get_Non-Induced_Wedge

(
(𝑤, 𝑣, 𝑣′), ®𝐺 (2)

)
15 Q

(2)
∗ ← Get_Non-Induced_Cycle

(
T
(2)
△ ,T

(2)
▲

)
16 C(Q(2)∗) ← C(Q

(2)
∗) + 1

// Count deducible (𝑑, 𝑠)-graphlets Q̂
(2)

17 for each Q
(2)
𝑗
∈ Q̂(2)

18 C(Q(2)
𝑗
) ← Comb_Four

(
Q
(2)
𝑗

, {C(Q(2)
𝑖
) } |Q

(2) |
𝑖=1

,𝐺 (2)
)

// Adjust counts of semi-deducible (𝑑, 𝑠)-graphlets Q̃
(2)

19 for each Q
(2)
𝑗
∈ Q̃(2)

20 C(Q(2)
𝑗
) ← Comb_Four

(
Q
(2)
𝑗

, {C(Q(2)
𝑖
) } |Q

(2) |
𝑖=1

)
21 return C(Q(2)

𝑖
) ∀𝑖 ∈ {1, · · · , |Q(2) | }

based on the combination of the two (2, 3)-graphlets (line 9). The
count of the identified (2, 4)-graphlet is then incremented (line 10).

Counting semi-deducible (𝑑, 𝑠)-graphlets. For semi-deducible

(2, 4)-graphlets, which are cycles, we adopt a two-step approach.

Note that a cycle is composed of two wedges that share two end

nodes (see an example in Figure 3). Based on this structure, given

two (dis)connected nodes (𝑣, 𝑣 ′), we first enumerate pairs of (non-

)induced wedges (which can be either wedges or triangles) on the

2-graph using their common neighbors. Next, we identify the (2, 3)-
graphlet of each non-induced wedge (lines 13 - 14). Based on their

combination, we determine the (2, 4)-graphlet of the (non-)induced
cycle (which can be cycles, chordalcycles, or cliques) (line 15) and

increment the count (line 16). Once the enumeration finishes, we

adjust the counts by subtracting the counts of (2, 4)-graphlets that

T2
(2) T4

(2) Q7
(2)

𝒖

𝒗

𝑤

𝑤!

𝒖

𝒗𝑤

𝒖

𝒗𝑤′

1-edges 2-edges

𝒗

𝒗′

𝑢

𝑤

𝒗

𝒗′𝑢

𝒗

𝒗′𝑤

T6
(2) Q30

(2)T6
(2)

Figure 3: Examples of: (left) two triangles forming a clique,

when 𝑤 and 𝑤 ′ are connected by a 2-edge, and (right) two

wedges forming a cycle, when 𝑢 and𝑤 are disconnected, as

well as 𝑣 and 𝑣 ′.

are not cycles, ensuring the correct count of semi-deducible (𝑑, 𝑠)-
graphlets (lines 19 - 20).

Counting deducible (𝑑, 𝑠)-graphlets. The counts of deducible

(2, 4)-graphlets can be rapidly computed from the counts of the

non-deducible (2, 4)-graphlets (lines 17 - 18). The equations of

Comb_Four are provided in Algorithm 13 of Appendix A.4.

Complexity analysis. We analyze the time complexity of EDGE

for counting (2, 4)-graphlets (Algorithm 2) in Theorem 2.

Theorem 2 (Complexity of Algorithm 2). The time com-
plexity of EDGE for counting (2, 4)-graphlets is (|𝑉 | ®Δ4Δ2

log ®Δ),
where Δ and ®Δ denote the maximum undirected degree and the
maximum out-degree, respectively, i.e., Δ = max𝑢∈𝑉 |𝑁 (1)𝑢 | and
®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. Refer to Appendix A.4.

6 EXPERIMENTS

We share our empirical analysis using (𝑑, 𝑠)-graphlets and its count-
ing algorithm, EDGE. We aim to answer the following questions:

• Q1. Graph characterization: How effective are (𝑑, 𝑠)-graphlets
in distinguishing and clustering graphs across different domains?

• Q2. Real-world discoveries: What insights do (𝑑, 𝑠)-graphlets
provide that cannot be uncovered by conventional graphlets?

• Q3. Speed and scalability: How fast and scalable is EDGE? Do

𝑑-DAG and deduced counting contribute to its efficiency?

6.1 Experimental Settings

We report the settings where the experiments were performed.

Datasets.Weused 13 real-world graphs fromfive different domains:

collaboration [3, 13, 24, 32], web [11, 12], social-Facebook [57, 58],

tags [7], and road [34]. We present basic statistics of the datasets

with further details in Appendix B.1.

Implementations. We implemented EDGE in C++. EDGE sup-

ports multi-threading, and we set the number of threads to 6. To

count size-4 and size-5 graphlets, we used open-source C++ im-

plementations of recent exact counting methods, PGD [44] and

ESCAPE [22]. We ran PGD with 6 threads, while ESCAPE does not

support multi-threading.

Machines. We performed all experiments on a machine with an

Intel i9-10900K CPU and 64GB memory.

6.2 Q1. Graph Characterization

We analyzed the characterization power of (𝑑, 𝑠)-graphlets. Specifi-
cally, we computed the characteristic profiles (CPs; see Section 4.3)

for each graph using counts of (2, 3), (2, 4), and (3, 3)-graphlets. As
shown in Figure 4, graphs within the same domain exhibit highly

3124

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

ca-DBLP

ca-Citeseer

ca-HepTh

web-Arabic

web-Indochina

soc-UCSC

soc-UC

soc-MB

tags-Ubuntu

tags-Math

road-CA

road-PA

road-TX

(2, 4)-
Graphlets

N
or

m
al

ize
d

Si
gn

ifi
ca

nc
e

N
or

m
al

ize
d

Si
gn

ifi
ca

nc
e

N
or

m
al

ize
d

Si
gn

ifi
ca

nc
e

(3, 3)-
Graphlets

(2, 3)-
Graphlets

Index

Graphlet Index

Figure 4: Graphs from the same domain exhibit similar CPs derived from the counts of (2, 4)-, (3, 3)-, and (2, 3)-graphlets.

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

(2, 4)-Graphlets (3, 3)-Graphlets (2, 3)-Graphlets (1, 4)-Graphlets (1, 5)-Graphlets

ca

web

soc

tags

road

Figure 5: The domains of the graphs are effectively distinguished by CPs derived from the counts of (𝑑, 𝑠)-graphlets. Specifically,
(2, 4)-, (3, 3)-, and (2, 3)-graphlets, which account for generalized distances, provide a clearer distinction of graphs across domains

compared to conventional graphlets that consider only direct connections (e.g., (1, 4)- and (1, 5)-graphlets, which represent

size-4 and size-5 graphlets, respectively). For numerical comparisons, refer to Table 2.

Table 2: (𝑑, 𝑠)-graphlets exhibit larger correlation gaps be-

tween graphs within the same domain and across domains,

as well as superior clustering performance compared to the

original graphlets.

(𝑑, 𝑠) Correlation Gap Clustering

(Within - Across) F1 NMI SH

(1, 3) 0.000 0.467 0.455 0.266

Original (1, 4) 0.252 0.670 0.772 0.539

(1, 5) 0.440 0.920 0.908 0.680

(2, 3) 0.253 0.667 0.856 0.585

Ours (3, 3) 0.667 1.000 1.000 0.797

(2, 4) 0.473 1.000 1.000 0.795

similar CPs for all (𝑑, 𝑠)-graphlets, while CPs are clearly distin-

guished across different domains.

We computed the correlations between CPs of different graphs,

as shown in Figure 5. Notably, (2, 4)-, (3, 3)-, and (2, 3)-graphlets
provide clearer distinctions between graphs across domains, com-

pared to the conventional graphlets (i.e., (1, 4)- and (1, 5)-graphlets).
Specifically, as shown in Table 2, the correlation gap (i.e., the dif-

ference between average correlations within and across domains)

is largest for (3, 3)-graphlets, followed by (2, 4)-graphlets, even
though they use fewer nodes per graphlet than (1, 5)-graphlets.

These large gaps demonstrate the effectiveness of incorporating

multi-hop distances for graphlets in graph characterization.

We further evaluated the clustering of graphs using the CPs as

input features, specifically applying spectral clustering. As shown

in Table 2, (𝑑, 𝑠)-graphlets lead to higher clustering performance in

terms of F1 score, NMI, and Silhouette score. This further validates

the effectiveness of (𝑑, 𝑠)-graphlets in graph characterization.

Extra results. (𝑑, 𝑠)-graphlets can be effective for various machine

learning tasks, as demonstrated for link prediction and graph clas-

sification in Appendix B.4.

6.3 Q2. Real-World Discoveries

We conduct case studies on real-world graphs that support the

expressiveness and significance of (𝑑, 𝑠)-graphlets in graph charac-

terization.

Expressiveness. In Figure 6, we demonstrate that incorporating

higher-order distances between nodes allows for finer differenti-

ation of local structures. As shown on the left side of the figure,

the conventional 3-path size-4 graphlet is divided into two cases,

Q
(2)
5

and Q
(2)
19

, when considering distances up to 2; and the 2D

scatter plot shows that the proportions of these finer local struc-

tures lead to clearer graph characterization. For example, graphs

in the collaboration domain, indistinguishable when considering

only the 3-path graphlet, become distinguishable due to a lower

3125

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yeongho Kim, Yuyeong Kim, Geon Lee, and Kijung Shin

Q5
(2)

Q19
(2)

T3
(3)

T12
(3)

3-edges2-edges1-edges

collaboration web soc tags road

Figure 6: Indirect connections allow for finer differentiation

of local structures. (Top) The ratio of a graphlet relative to

the total number of instances. (Bottom) The graphlet can be

decomposed into finer structures when considering indirect

connections beyond those in the graphlet. With the finer

structures, the domains of graphs are better distinguished.

proportion of Q
(2)
19

. Similarly, as shown on the right side of the

figure, a (2, 3)-graphlet T(2)
5

is generalized to two (3, 3)-graphlets,
T
(2)
3

and T
(2)
12

, when considering distances up to 3. This further

improves domain distinction and thus graph characterization.

Significance. To assess the significance of (𝑑, 𝑠)-graphlets in graph
characterization, we use a scoring function that measures each

(𝑑, 𝑠)-graphlet’s contribution to distinguishing graphs by domain,

as in [30]. Based on these scores, we ranked the (𝑑, 𝑠)-graphlets
and retrieved the top 5 from each graph. Notably, 59 out of the 65

retrieved (𝑑, 𝑠)-graphlets were those that cannot be described by

conventional graphlets, demonstrating the effectiveness of (𝑑, 𝑠)-
graphlets in capturing more comprehensive structural patterns. For

more details, refer to Appendix B.2.

6.4 Q3. Speed and Scalability

We evaluate the speed and scalability of EDGE by comparing it

with its variants and existing counting methods.

Effects of EDGE’s components. We first analyze the effects of

EDGE’s design components: (1) deducible counting for deducible

(𝑑, 𝑠)-graphlets (i.e., T̃(𝑑) and Q̃(𝑑)) and (2) using 𝑑-DAG for count-

ing non- and semi-deducible (𝑑, 𝑠)-graphlets. We evaluate two vari-

ants: EDGE-D2, which removes both (1) and (2), and EDGE-D, which

removes only (1). As shown in Figure 7, EDGE is significantly faster

than these variants, achieving up to 14.86× and 3.93× speed-ups

over EDGE-D2 and EDGE-D, respectively. These results demon-

strate the effectiveness of EDGE’s design choices in avoiding un-

necessary enumeration and using 𝑑-DAGs to reduce redundancy.

For more details, see Appendix B.3.

Comparison to graphlet counting methods. We compare the

counting times of PGD and ESCAPE for (1, 4)-graphlets with EDGE

for (2, 4)-graphlets. As shown in Figure 8, EDGE has a higher total

runtime than PGD and ESCAPE due to the additional edges con-

necting indirect nodes. However, when comparing running time

10.68 X

3.15 X

(a) (2, 3)-graphlet

14.86 X

3.93 X

(b) (3, 3)-graphlet
Figure 7: EDGE is faster than its variants: (1) EDGE-D2, which

lacks deducible counting and 𝑑-DAG, and (2) EDGE-D, which

lacks 𝑑-DAG. This demonstrates the effectiveness of EDGE’s

design choices for fast (𝑑, 𝑠)-graphlet counting.
ESCAPE EDGE

Ru
nt

im
e

(s
ec

.)
Pe

r G
ra

ph
le

t I
ns

ta
nc

e

Ru
nt

im
e

(s
ec

.)

PGD

Figure 8: Comparison between EDGE (for counting (2, 4)-
graphlets) and PGD & ESCAPE (for counting (1, 4)-graphlets).
(Left) In total runtime, EDGE is slower than PGD and ESCAPE

due to the extra indirect connections. (Right) In runtime per

instance, EDGE is competitive and even faster in some cases.

per graphlet, EDGE is competitive, and in some cases, even faster

than the baselines. For more details, see Appendix B.3.

7 CONCLUSIONS

We present (𝑑, 𝑠)-graphlets, distance-generalized graphlets for en-

hanced graph characterization. Our contributions are as follows:

• Concept: We introduce (𝑑, 𝑠)-graphlets, distance-generalized
graphlets that enable a more detailed analysis of local structures.

• Algorithm: We introduce EDGE, an optimized counting algo-

rithm for (𝑑, 𝑠)-graphlets that reduces unnecessary enumeration

through specialized combinatorial techniques.

• Experiments: Our experiments across 13 real-world datasets

demonstrate the effectiveness of (𝑑, 𝑠)-graphlets in graph char-

acterization and the efficiency of EDGE.

Our code and datasets are available athttps://github.com/thisis05/

EDGE for reproducibility. Future research directions include accel-

erating the counting of (𝑑, 𝑠)-graphlets through approximation.

Acknowledgements This work was supported by Institute of In-

formation & communications Technology Planning & Evaluation

(IITP) grant funded by the Korea government (MSIT) (No. RS-2024-

00457882, AI Research Hub Project, 50%) (No. 2022-0-00871 / RS-

2022-II220871, Development of AI Autonomy and Knowledge En-

hancement for AI Agent Collaboration, 40%) (RS-2019-II190075,

Artificial Intelligence Graduate School Program (KAIST), 10%).

3126

https://github.com/thisis05/EDGE
https://github.com/thisis05/EDGE

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

References

[1] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. 2015. Effi-

cient graphlet counting for large networks. In ICDM.

[2] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, Nick G Duffield, and

Theodore L Willke. 2017. Graphlet decomposition: Framework, algorithms,

and applications. Knowledge and Information Systems 50 (2017), 689–722.
[3] David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. 2013.

Graph partitioning and graph clustering. Vol. 588. American Mathematical Society

Providence, RI.

[4] Sasitharan Balasubramaniam et al. 2013. Multi-hop conjugation based bacteria

nanonetworks. IEEE Transactions on nanobioscience 12, 1 (2013), 47–59.
[5] Balabhaskar Balasundaram, Sergiy Butenko, and Svyatoslav Trukhanov. 2005.

Novel approaches for analyzing biological networks. Journal of Combinatorial
Optimization 10 (2005), 23–39.

[6] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2010. Efficient

algorithms for large-scale local triangle counting. ACMTransactions on Knowledge
Discovery from Data 4, 3 (2010), 1–28.

[7] Austin R Benson, Rediet Abebe, Michael T Schaub, Ali Jadbabaie, and Jon Klein-

berg. 2018. Simplicial closure and higher-order link prediction. Proceedings of
the National Academy of Sciences 115, 48 (2018), E11221–E11230.

[8] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-

zation of complex networks. Science 353, 6295 (2016), 163–166.
[9] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski,

Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr

Nyczyk, et al. 2024. Graph of thoughts: Solving elaborate problems with large

language models. In AAAI.
[10] Hanjo D Boekhout, Walter A Kosters, and Frank W Takes. 2019. Efficiently count-

ing complex multilayer temporal motifs in large-scale networks. Computational
Social Networks 6, 1 (2019), 8.

[11] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004.

UbiCrawler: A Scalable Fully Distributed Web Crawler. Software: Practice &
Experience 34, 8 (2004), 711–726.

[12] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered

label propagation: A multiresolution coordinate-free ordering for compressing

social networks. InWWW.

[13] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Compres-

sion Techniques. InWWW.

[14] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-generalized

core decomposition. In SIGMOD.
[15] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein.

2022. Improving graph neural network expressivity via subgraph isomorphism

counting. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 1
(2022), 657–668.

[16] Hao Chen, Zhong Huang, Yue Xu, Zengde Deng, Feiran Huang, Peng He, and

Zhoujun Li. 2022. Neighbor enhanced graph convolutional networks for node

classification and recommendation. Knowledge-based Systems 246 (2022), 108594.
[17] Lina Chen, Xiaoli Qu, Mushui Cao, Yanyan Zhou, Wan Li, Binhua Liang, Weiguo

Li, Weiming He, Chenchen Feng, Xu Jia, et al. 2013. Identification of breast cancer

patients based on human signaling network motifs. Scientific reports 3, 1 (2013),
3368.

[18] Xuexin Chen, Ruichu Cai, Yuan Fang, Min Wu, Zijian Li, and Zhifeng Hao. 2023.

Motif graph neural network. IEEE Transactions on Neural Networks and Learning
Systems (2023).

[19] Hong Cheng, Xifeng Yan, and Jiawei Han. 2014. Mining graph patterns. Frequent
pattern mining (2014), 307–338.

[20] Qiangqiang Dai, Rong-Hua Li, Lu Qin, Guoren Wang, Weihua Yang, Zhiwei

Zhang, and Ye Yuan. 2021. Scaling up distance-generalized core decomposition.

In CIKM.

[21] Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. 2019. Cog-

nitive graph for multi-hop reading comprehension at scale. arXiv preprint
arXiv:1905.05460 (2019).

[22] ESCAPE. 2016. Efficient Subgraph Counting Algorithmic Package (ESCAPE)

library. https://bitbucket.org/seshadhri/escape.

[23] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffu-

sion improves graph learning. In NeurIPS.
[24] Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008. Better approxi-

mation of betweenness centrality. In ALENEX.
[25] Shawn Gu, John Johnson, Fazle E Faisal, and Tijana Milenković. 2018. From ho-

mogeneous to heterogeneous network alignment via colored graphlets. Scientific
reports 8, 1 (2018), 12524.

[26] Christopher R Harshaw, Robert A Bridges, Michael D Iannacone, Joel W Reed,

and John R Goodall. 2016. Graphprints: Towards a graph analytic method for

network anomaly detection. In CISRC.
[27] Tomaž Hočevar and Janez Demšar. 2014. A combinatorial approach to graphlet

counting. Bioinformatics 30, 4 (2014), 559–565.
[28] Hong Huang, Jie Tang, Sen Wu, Lu Liu, and Xiaoming Fu. 2014. Mining triadic

closure patterns in social networks. InWWW.

[29] Geon Lee, Jihoon Ko, and Kijung Shin. 2020. Hypergraph motifs: concepts,

algorithms, and discoveries. PVLDB 13, 12 (2020), 2256–2269.

[30] Geon Lee, Seokbum Yoon, Jihoon Ko, Hyunju Kim, and Kijung Shin. 2024. Hy-

pergraph motifs and their extensions beyond binary. The VLDB Journal 33, 3
(2024), 625–665.

[31] John Boaz Lee, Ryan A Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, and

Anup Rao. 2019. Graph convolutional networks with motif-based attention. In

CIKM.

[32] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:

Densification and shrinking diameters. ACM transactions on Knowledge Discovery
from Data 1, 1 (2007), 2–es.

[33] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[34] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.

Community structure in large networks: Natural cluster sizes and the absence of

large well-defined clusters. Internet Mathematics 6, 1 (2009), 29–123.
[35] Pei-Zhen Li, Ling Huang, Chang-Dong Wang, and Jian-Huang Lai. 2019. EdMot:

An edge enhancement approach for motif-aware community detection. In KDD.
[36] Qing Liu, Xuliang Zhu, Xin Huang, and Jianliang Xu. 2021. Local algorithms for

distance-generalized core decomposition over large dynamic graphs. PVLDB 14,

9 (2021), 1531–1543.

[37] R Duncan Luce. 1950. Connectivity and generalized cliques in sociometric group

structure. Psychometrika 15, 2 (1950), 169–190.
[38] Dror Marcus and Yuval Shavitt. 2010. Efficient counting of network motifs. In

ICDCS Workshops.
[39] Brendan D McKay. 2007. Nauty user’s guide (version 2.4). Computer Science Dept.,

Australian National University (2007), 225–239.

[40] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal

Ayzenshtat, Michal Sheffer, and Uri Alon. 2004. Superfamilies of evolved and

designed networks. Science 303, 5663 (2004), 1538–1542.
[41] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,

and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.

Science 298, 5594 (2002), 824–827.
[42] Robert J Mokken et al. 1979. Cliques, clubs and clans. Quality & Quantity 13, 2

(1979), 161–173.

[43] Mark EJ Newman. 2003. The structure and function of complex networks. SIAM
Rev. 45, 2 (2003), 167–256.

[44] PGD. 2015. Parallel Parameterized Graphlet Decomposition (PGD) library.

https://github.com/nkahmed/PGD.

[45] Yinhua Piao, Sangseon Lee, Dohoon Lee, and Sun Kim. 2022. Sparse structure

learning via graph neural networks for inductive document classification. In

AAAI.
[46] Ali Pinar, Comandur Seshadhri, and Vaidyanathan Vishal. 2017. Escape: Effi-

ciently counting all 5-vertex subgraphs. InWWW.

[47] Nataša Pržulj. 2007. Biological network comparison using graphlet degree distri-

bution. Bioinformatics 23, 2 (2007), e177–e183.
[48] Natasa Pržulj, Derek G Corneil, and Igor Jurisica. 2004. Modeling interactome:

scale-free or geometric? Bioinformatics 20, 18 (2004), 3508–3515.
[49] Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li, Weinan Zhang, and Yong

Yu. 2019. Dynamically fused graph network for multi-hop reasoning. In ACL.
[50] Yuanfang Ren, Aisharjya Sarkar, Ahmet Ay, Alin Dobra, and Tamer Kahveci.

2019. Finding conserved patterns in multilayer networks. In BCB.
[51] Pedro Ribeiro, Pedro Paredes,Miguel EP Silva, David Aparicio, and Fernando Silva.

2021. A survey on subgraph counting: concepts, algorithms, and applications to

network motifs and graphlets. Comput. Surveys 54, 2 (2021), 1–36.
[52] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with inter-

active graph analytics and visualization. In AAAI.
[53] Ryan A Rossi, Nesreen K Ahmed, Aldo Carranza, David Arbour, Anup Rao,

Sungchul Kim, and Eunyee Koh. 2020. Heterogeneous graphlets. ACM Transac-
tions on Knowledge Discovery from Data 15, 1 (2020), 1–43.

[54] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten

Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In

AISTATS.
[55] Shinji Tajima, Ren Sugihara, Ryota Kitahara, and Masayuki Karasuyama. 2024.

Learning Attributed Graphlets: Predictive Graph Mining by Graphlets with Train-

able Attribute. In KDD.
[56] Nikolaj Tatti. 2023. Fast computation of distance-generalized cores using sam-

pling. Knowledge and Information Systems 65, 6 (2023), 2429–2453.
[57] Amanda L Traud, Eric D Kelsic, Peter J Mucha, andMason A Porter. 2011. Compar-

ing Community Structure to Characteristics in Online Collegiate Social Networks.

SIAM Rev. 53, 3 (2011), 526–543.
[58] Amanda L Traud, Peter J Mucha, and Mason A Porter. 2012. Social structure of

facebook networks. Physica A: Statistical Mechanics and its Applications 391, 16
(2012), 4165–4180.

[59] Kun Tu, Jian Li, Don Towsley, Dave Braines, and Liam D Turner. 2019. gl2vec:

Learning feature representation using graphlets for directed networks. In

ASONAM.

3127

http://snap.stanford.edu/data

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yeongho Kim, Yuyeong Kim, Geon Lee, and Kijung Shin

[60] Katherine Van Koevering, Austin Benson, and Jon Kleinberg. 2021. Random

graphs with prescribed k-core sequences: A new null model for network analysis.

In WWW.

[61] Virginia Vassilevska and RyanWilliams. 2009. Finding, minimizing, and counting

weighted subgraphs. In STOC.
[62] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. 2020. Multi-hop

attention graph neural network. arXiv preprint arXiv:2009.14332 (2020).
[63] Sebastian Wernicke. 2005. A faster algorithm for detecting network motifs. In

WABI.
[64] Sebastian Wernicke and Florian Rasche. 2006. FANMOD: a tool for fast network

motif detection. Bioinformatics 22, 9 (2006), 1152–1153.
[65] Qinghua Wu and Jin-Kao Hao. 2015. A review on algorithms for maximum clique

problems. European Journal of Operational Research 242, 3 (2015), 693–709.

[66] Wen-Jie Xie, Ming-Xia Li, Zhi-Qiang Jiang, and Wei-Xing Zhou. 2014. Triadic

motifs in the dependence networks of virtual societies. Scientific Reports 4, 1
(2014), 5244.

[67] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs

with jumping knowledge networks. In ICML.
[68] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
neural information processing systems 33 (2020), 5812–5823.

[69] Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang,

Martin Ester, and Can Wang. 2018. ANRL: attributed network representation

learning via deep neural networks.. In IJCAI.
[70] Junyou Zhu, Chunyu Wang, Chao Gao, Fan Zhang, Zhen Wang, and Xuelong Li.

2021. Community detection in graph: An embedding method. IEEE Transactions
on Network Science and Engineering 9, 2 (2021), 689–702.

A ALGORITHMIC DETAILS

In this section, we provide a more detailed explanation of the count-

ing algorithms introduced in Section 5.

A.1 𝑑-Graph Construction

To count the instances of (𝑑, 𝑠)-graphlets, we construct 𝐸 (≤𝑑) =
{𝐸 (1) , 𝐸 (2) , · · · , 𝐸 (𝑑) } as a preprocessing step. Algorithm 3 describes

the process of constructing 𝑑-edges (i.e., 𝐸 (𝑑)) from the input graph.

For each node 𝑢 ∈ 𝑉 , we utilize the BFS function to identify all

nodes that are exactly 𝑑-hops away from 𝑢 (line 3). Then, these

nodes are added as edges in 𝐸 (𝑑) (line 6) while avoiding duplicates.

The time complexity of this preprocessing step is given in Lemma 1,

and we provide its proof as follows:

Proof of Lemma 1. For each node 𝑢 ∈ 𝑉 , the algorithm per-

forms a BFS up to 𝑑-hops, and thus the total number of nodes

explored up to 𝑑-hops is 𝑂 (Δ + Δ2 + · · · + Δ𝑑) = 𝑂 (Δ𝑑). Thus, the
time complexity for iterating over all nodes 𝑢 ∈ 𝑉 is 𝑂 (|𝑉 |Δ𝑑).

A.2 Effects of 𝑑-DAG

In this section, we assess the effectiveness of using 𝑑-DAGs instead

of (undirected) 𝑑-graphs. As shown in Table 3, both the average and

maximum degrees of nodes with respect to 1-edges, 2-edges, and

3-edges are significantly smaller in 𝑑-DAGs compared to 𝑑-graphs,

i.e., 𝑑𝑎𝑣𝑔 ≫ ®𝑑𝑎𝑣𝑔 and Δ ≫ ®Δ. This reduction dramatically decreases

the number of enumerations required for counting non-deducible

(𝑑, 𝑠)-graphlets. We empirically demonstrate the effectiveness of

employing 𝑑-DAGs in Section 6.

A.3 Details of Algorithm 1

In this subsection, we provide the details of sub-algorithms used in

Algorithm 1. Then, we provide the proof of Theorem 1 regarding

the complexity of Algorithm 1.

Retrieve_Distance (Algorithm 4).Given a pair of nodes (𝑢, 𝑣)
and the 𝑑-DAG ®𝐺 (𝑑) , which considers up to 𝑑-edges, this function

Algorithm 3: 𝑑-Edge Construction (Preprocess)

Input: (1) Input graph𝐺 = (𝑉 , 𝐸 = 𝐸 (1))
(2) Maximum distance considered 𝑑

Output: Set of 𝑑-edges 𝐸 (𝑑)

1 𝐸 (𝑑) ← ∅
2 for each 𝑢 ∈ 𝑉

// Get all nodes at exactly 𝑑-hops from 𝑢

3 𝑆 (𝑑) ← BFS(𝑢,𝑑,𝐺)
4 for each 𝑣 ∈ 𝑆 (𝑑)
5 if 𝑢 ≺ 𝑣

6 𝐸 (𝑑) ← 𝐸 (𝑑) ∪ { (𝑢, 𝑣) }

7 return 𝐸 (𝑑)

Table 3: Degree statistics for various datasets. Each value

represents the degree characteristics of 1-edge, 2-edge, and 3-

edge types.Δ denotes themaximumdegree, ®Δ denotes the out-

going maximum degree, and 𝑑𝑎𝑣𝑔 and ®𝑑𝑎𝑣𝑔 denote the average
degree and the out-going average degree, respectively.

Datasets Edge type 𝑑𝑎𝑣𝑔 Δ ®𝑑𝑎𝑣𝑔 ®Δ

1-edge 3 343 2 113

ca-DBLP 2-edge 39 5.15K 20 378

3-edge 482 42.9K 241 3.10K

1-edge 3 1.37K 2 206

ca-Citeseer 2-edge 32 5.45K 16 1.36K

3-edge 221 24.4K 111 1.91K

1-edge 10 1.10K 5 164

web-Arabic 2-edge 18 2.66K 9 1.10K

3-edge 91 15.8K 46 1.13K

1-edge 4 199 2 83

web-Indochina 2-edge 37 2.01K 19 194

3-edge 325 3.92K 163 1.47K

1-edge 24 454 12 82

soc-UCSC 2-edge 799 5.64K 400 1.46K

3-edge 2.76K 6.91K 1.38K 4.51K

1-edge 22 660 11 99

soc-UC 2-edge 690 4.90K 345 1.35K

3-edge 1.97K 5.12K 987 3.19K

computes the distance between 𝑢 and 𝑣 . Equivalently, it determines

in which of ®𝐸 (≤𝑑) = { ®𝐸 (1) , · · · , ®𝐸 (𝑑) } the edge (𝑢, 𝑣) is contained.
If (𝑢, 𝑣) is not included in any of the ®𝐸 (1) , · · · , ®𝐸 (𝑑) , the distance
is considered to be∞. Since the 𝑑-DAG is 𝑑-degree-ordered, a di-

rected edge 𝑢 → 𝑣 (or 𝑣 → 𝑢) exists if 𝑢 ≺ (𝑑) 𝑣 (or 𝑣 ≺ (𝑑) 𝑢). For
each distance 𝑑′ ∈ {1, · · · , 𝑑}, it checks whether 𝑣 is an out-going

neighbor of 𝑢 (i.e., 𝑣 ∈ ®𝑁 (𝑑
′)

𝑢) if 𝑢 ≺ (𝑑) 𝑣 , and vice versa. If the

neighbor is found, the function returns the corresponding distance

𝑑′. The time complexity of Algorithm 4 is provided in Lemma 2.

Lemma 2 (Complexity of Algorithm 4). The time complexity
of retrieving the distance between two nodes is 𝑂 (𝑑2 log ®Δ), where ®Δ
is the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. Without loss of generality, let 𝑢 ≺ (𝑑) 𝑣 . For each dis-

tance 𝑑′ ∈ {1, · · · , 𝑑}, we check 𝑣 is the out-going 𝑑′-neighbor
of 𝑢, i.e., 𝑣 ∈ ®𝑁 (𝑑

′)
𝑢 . Assuming that ®𝑁 (𝑑

′)
𝑢 is implemented as a

3128

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Algorithm 4: Retrieve_Distance

Input: (1) A pair of nodes 𝑢 and 𝑣

(2) 𝑑-DAG ®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) of graph𝐺
(3) Maximum considered distance 𝑑

Output: 𝛿 (𝑢, 𝑣) (distance between 𝑢 and 𝑣)

1 for each 𝑑 ′ ∈ {1, · · · , 𝑑 }
2 if 𝑢 ≺ (𝑑) 𝑣
3 if 𝑣 ∈ ®𝑁 (𝑑

′)
𝑢 ⊲ Binary Search

4 return 𝑑 ′

5 else

6 if 𝑢 ∈ ®𝑁 (𝑑
′)

𝑣 ⊲ Binary Search
7 return 𝑑 ′

8 return∞

sorted list, we employ a binary search with a time complexity of

𝑂 (log | ®𝑁 (𝑑
′)

𝑢 |). In the worst case, we search through all distances

𝑑′ ∈ {1, · · · , 𝑑}, yielding a total time complexity of 𝑂 (log | ®𝑁 (1)𝑢 | +
· · · + log | ®𝑁 (𝑑)𝑢 |). Let ®Δ be the maximum out-degree, i.e., ®Δ =

max𝑣∈𝑉 | ®𝑁 (1)𝑣 |. The time complexity of Algorithm 4 is thus derived

as 𝑂 (log ®Δ + · · · log ®Δ𝑑) = 𝑂 (𝑑2 log ®Δ).
Effective_Neighbor_Pairs (Algorithm 5). This function de-

termines the effective neighboring pairs from all possible pairs

of neighbors. Specifically, given a node 𝑢 and the maximum con-

sidered distance 𝑑 , the set of all neighbors of node 𝑢 up to dis-

tance 𝑑 is

⋃
𝑑 ′∈{1,· · · ,𝑑 } ®𝑁

(𝑑 ′)
𝑢 . Among all pairs of neighbors (i.e.,(⋃

𝑑′ ∈{1,· · · ,𝑑} ®𝑁
(𝑑′)
𝑢

2

)
), we only consider those that are connected and

thus form a triangle with 𝑢. In addition, we exclude the neighbor

pairs whose triangle forms deducible (𝑑, 𝑠)-graphlets, as these can
be efficiently counted without enumeration. This reduction in the

set of neighbor pairs significantly and speeds up EDGE. The time

complexity of Algorithm 5 is provided in Lemma 3.

Lemma 3 (Complexity of Algorithm 5). The time complexity
of retrieving effective neighboring pairs of a node is 𝑂 (𝑑4 ®Δ2𝑑

log ®Δ),
where ®Δ is the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. For a given node𝑢 and themaximum considered distance

𝑑 , we consider 𝑢’s out-going neighbors at all 𝑂 (𝑑2) combinations

of distances (𝑑𝑖 , 𝑑 𝑗). For each pair of distances, we examine all

pairs (𝑣,𝑤) (where 𝑣 ≺ (𝑑) 𝑤) of 𝑑𝑖 -neighbors and 𝑑 𝑗 -neighbors,

which results is 𝑂 (| ®𝑁𝑑𝑖
𝑢 | · | ®𝑁

𝑑 𝑗

𝑢 |) = 𝑂 (®Δ2𝑑) pairs, where ®Δ is the

maximum out-degree, i.e., max𝑢∈𝑉 | ®𝑁 (1)𝑢 |. Next, we check whether

the two neighbors are connected, which can be done by performing

a binary search for𝑤 from ®𝑁 (𝑑𝑘)𝑣 ∀𝑑𝑘 ∈ {1, · · · , 𝑑𝑘 } which takes

𝑂 (log | ®𝑁 (1)𝑣 | + · · · + log | ®𝑁
(𝑑)
𝑣 |) = (𝑑2 log ®Δ) time. Thus, the overall

time complexity is 𝑂 (𝑑4 ®Δ2𝑑
log ®Δ).

Get_Triangle (Algorithm 6).Given three nodes (𝑢, 𝑣,𝑤)which
consists a triangle, and the maximum distance considered 𝑑 , this

function returns the corresponding (𝑑, 3)-graphlet of the triangle.
First, it retrieves the distances for all pairs of edges. Then, based

on these three distances, it identifies the (𝑑, 3)-graphlet. The time

complexity of Algorithm 6 is provided in Lemma 4.

Algorithm 5: Effective_Neighbor_Pairs

Input: (1) Node 𝑢

(2) Maximum considered distance 𝑑

(3) 𝑑-DAG ®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) of graph𝐺
Output: Effective node pairs set 𝑃𝑢

1 𝑃𝑢 ← ∅
2 for each (𝑑𝑖 , 𝑑 𝑗) ∈ { (𝑑 ′𝑖 , 𝑑 ′𝑗) : 1 ≤ 𝑑 ′

𝑖
≤ 𝑑 ′

𝑗
≤ 𝑑 }

3 for each (𝑣, 𝑤) ∈ { (𝑣′, 𝑤′) ∈ ®𝑁 (𝑑𝑖)𝑢 × ®𝑁 (𝑑 𝑗)
𝑢 : 𝑣′ ≺ (𝑑) 𝑤′ }

4 if 𝑤 ∈ ®𝑁 (𝑑𝑘)𝑣 ∃𝑑𝑘 ∈ {1, · · · , 𝑑 } \ {𝑑𝑖 + 𝑑 𝑗 , |𝑑𝑖 − 𝑑 𝑗 | }
5 𝑃𝑢 ← 𝑃𝑢 ∪ { (𝑣, 𝑤) }

6 return 𝑃𝑢

Lemma 4 (Complexity of Algorithm 6). The time complexity
of identifying (𝑑, 3)-graphlet of a triangle is 𝑂 (𝑑2 log ®Δ), where ®Δ is
the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. The time complexity for retrieving the distances of three

pairs of nodes is 𝑂 (𝑑2 log ®Δ) (from Lemma 2). Once the distances

are obtained, the corresponding (𝑑, 3)-graphlet can be identified in

𝑂 (1) time. Thus, the overall time complexity is 𝑂 (𝑑2 log ®Δ).
Comb_Three (Algorithm 7). This function is for computing the

counts of deducible (𝑑, 3)-graphlets (T̂(𝑑)). Based on the counts

of non-deducible (𝑑, 3)-graphlets (T(𝑑)), it computes the counts

of the target deducible (𝑑, 3)-graphlets. The time complexity of

Algorithm 7 is provided in Lemma 5.

Lemma 5 (Complexity of Algorithm 7). The time complexity of
computing the count of the given deducible (𝑑, 3)-graphlet is 𝑂 (|𝑉 |).

Proof. To compute the count of the target deducible (𝑑, 3)-
graphlet, degree-based computations are required, e.g.,

∑
𝑢∈𝑉

(|𝑁 (1)𝑢 |
2

)
to compute C(T(2)

3
). This takes 𝑂 (|𝑉 |) time.

Proof of Theorem 1. Below, we provide the proof for Theorem 1.

Proof. The time complexity of Algorithm 1 is determined by

two main operations: (1) counting non-deducible (𝑑, 3)-graphlets
and (2) counting deducible (𝑑, 3)-graphlets.

• To count non-deducible (𝑑, 3)-graphlets, we iterate over each
node 𝑢 ∈ 𝑉 and obtain its effective neighbor pairs using Effec-

tive_Neighbor_Pairs, which takes 𝑂 (𝑑4 ®Δ2𝑑
logΔ) time (refer

to Lemma 3). For each effective neighbor pair (𝑣,𝑤), we identifies
the (𝑑, 3)-graphlet of the triangle (𝑢, 𝑣,𝑤) using Get_Triangle,

which takes𝑂 (𝑑2 log ®Δ) time (Lemma 4). In practice, we (1) check

the connectivity between 𝑣 and𝑤 takes𝑂 (𝑑2 log ®Δ) time, and (2)

subsequently identify the (𝑑, 3)-graphlet if it is connected which

takes𝑂 (|𝑉 |𝑑2 log ®Δ) time as well. Thus, the total time complexity

of counting non-deducible (𝑑, 3)-graphlets is 𝑂 (|𝑉 |𝑑4 ®Δ2𝑑
log ®Δ).

• To count deducible (𝑑, 3)-graphlets, we use Comb_Three which
takes 𝑂 (|𝑉 |) time (Lemma 5).

Since counting non-deducible (𝑑, 𝑠)-graphlets dominates the entire

complexity, the total time complexity of Algorithm 1 is𝑂 (|𝑉 |𝑑4 ®Δ2𝑑

log ®Δ).

3129

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yeongho Kim, Yuyeong Kim, Geon Lee, and Kijung Shin

Algorithm 6: Get_Triangle

Input: (1) Three nodes consisting a triangle 𝑢, 𝑣, 𝑤

(2) Maximum distance considered 𝑑

(3) 𝑑-DAG ®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) of graph𝐺
Output: The corresponding (𝑑, 𝑠)-graphlet T(𝑑)∗ ∈ T(𝑑)
// Retrieve pairwise distances (Algorithm 4)

1 𝑑𝑖 ← Retrieve_Distance((𝑢, 𝑣), 𝑑, ®𝐺 (𝑑))
2 𝑑 𝑗 ← Retrieve_Distance((𝑢, 𝑤), 𝑑, ®𝐺 (𝑑))
3 𝑑𝑘 ← Retrieve_Distance((𝑣, 𝑤), 𝑑, ®𝐺 (𝑑))
// (2, 3)-graphlets (𝑑 = 2)

4 if 𝑑 = 2

5 if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (2, 2, 2) }
6 T

(2)
∗ ← T

(2)
1

7 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (1, 2, 2), (2, 1, 2), (2, 2, 1) }
8 T

(2)
∗ ← T

(2)
2

9 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (2, 1, 1), (1, 2, 1), (1, 1, 2) }
10 T

(2)
∗ ← T

(2)
3

11 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (1, 1, 1) }
12 T

(2)
∗ ← T

(2)
4

// (3, 3)-graphlets (𝑑 = 3)

13 if 𝑑 = 3

14 if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (3, 3, 3) }
15 T

(3)
∗ ← T

(3)
1

16 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (2, 3, 3), (3, 2, 3), (3, 3, 2) }
17 T

(3)
∗ ← T

(3)
2

18 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (2, 2, 3), (2, 3, 2), (3, 2, 2) }
19 T

(3)
∗ ← T

(3)
3

20 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (1, 3, 3), (3, 1, 3), (3, 3, 1) }
21 T

(3)
∗ ← T

(3)
4

22 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (2, 2, 2) }
23 T

(3)
∗ ← T

(3)
6

24 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (1, 2, 2), (2, 1, 2), (2, 2, 1) }
25 T

(3)
∗ ← T

(3)
7

26 else if (𝑑𝑖 , 𝑑 𝑗 , 𝑑𝑘) ∈ { (1, 1, 1) }
27 T

(3)
∗ ← T

(3)
9

28 return T
(𝑑)
∗

A.4 Details of Algorithm 2

In this subsection, we provide the details of sub-algorithms used in

Algorithm 2. Then, we provide the proof of Theorem 2 regarding

the complexity of Algorithm 2.

Triangle_Pairs (Algorithm 8). This function identifies the set

of effective triangle pairs formed by the edge (𝑢, 𝑣), where the re-
maining nodes are connected. Specifically, we consider a pair of

triangles (𝑢, 𝑣,𝑤) and (𝑢, 𝑣,𝑤 ′) effective if𝑤 and𝑤 ′ for a 1-edge or
2-edge. The time complexity of Algorithm 8 is provided in Lemma 6.

Lemma 6 (Complexity of Algorithm 8). The time complexity
of retrieving effective triangle pairs is 𝑂 (®Δ4

log ®Δ), where ®Δ is the
maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. It retrieves the distance for every common neighboring

pair (𝑤,𝑤 ′) of (𝑢, 𝑣), which takes 𝑂 (|𝑁𝑢,𝑣 |2) = 𝑂 (®Δ2𝑑), where ®Δ

is the maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |. For each pair,

retrieving the distance between 𝑤 and 𝑤 ′ takes 𝑂 (𝑑2 log ®Δ) time

(Lemma 2). Thus, the total time complexity is 𝑂 (®Δ2𝑑𝑑2 log ®Δ) =
𝑂 (®Δ4

log ®Δ) since we assume 𝑑 = 2.

Get_Cliqe (Algorithm 9).Given two triangles ((2, 3)-graphlets)
T
(2)
◦ ,T

(2)
• and four nodes (𝑢, 𝑣,𝑤,𝑤 ′) that form a clique, this func-

tion returns the corresponding (2, 4)-graphlet of the clique. It first
retrieves the distances of the additional necessary edge pairs. Then,

based on these four distances and the (2, 3)-graphlets of the two
triangles, it immediately identifies the (2, 4)-graphlet of the clique.
The time complexity of Algorithm 9 is provided in Lemma 7.

Lemma 7 (Complexity of Algorithm 9). The time complexity
of identifying (2, 4)-graphlet of a clique is 𝑂 (log ®Δ), where ®Δ is the
maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. The time complexity for retrieving the distances of pairs

of nodes in the clique is 𝑂 (𝑑2 log ®Δ) (from Lemma 2). Once the dis-

tances are obtained, the corresponding (2, 4)-graphlet can be iden-

tified in 𝑂 (1) time. Thus, the overall time complexity is 𝑂 (log ®Δ)
assuming that we use 𝑑 = 2.

Get_Non-induced_Wedge (Algorithm 11).This function iden-

tifies the type of non-induced wedges (which can either be a wedge

or a triangle) for a given set of three nodes (𝑢, 𝑣,𝑤). Here, we
assume that (𝑢,𝑤) is disconnected, and focus on identifying the

wedge (i.e., T
(2)
5

and T
(2)
6

) formed by the triple of nodes. To this

end, we retrieve the distances between (𝑢, 𝑣) and (𝑣,𝑤) and then

rapidly identify the corresponding wedge based on these distances.

The time complexity of Algorithm 11 is provided in Lemma 8.

Lemma 8 (Complexity of Algorithm 11). The time complexity
of identifying T

(2)
5

and T
(2)
6

of the given triple of nodes (𝑢, 𝑣,𝑤),
assuming that 𝑢 and𝑤 are disconnected, is 𝑂 (log ®Δ), where ®Δ is the
maximum out-degree, i.e., ®Δ = max𝑢∈𝑉 | ®𝑁 (1)𝑢 |.

Proof. The time complexity for retrieving the distances of pairs

of nodes in the clique is 𝑂 (𝑑2 log ®Δ) (from Lemma 2). Once the

distances are obtained, the corresponding wedge (T
(2)
5

and T
(2)
6

)

can be identified in 𝑂 (1) time. Thus, the overall time complexity is

𝑂 (log ®Δ) assuming that we use 𝑑 = 2.

Get_Non-induced_Cycle (Algorithm 12). A non-induced cy-

cle can be obtained based on the predefined conditions of the given

pair of wedges. Thus, the time complexity of Algorithm 12 is 𝑂 (1).
Comb_Four (Algorithm 13). This function computes the counts

of deducible (2, 4)-graphlets (Q̂(2)) and adjusts the counts of semi-

deducible (2, 4)-graphlets (Q̃(2) . Specifically, it leverages node de-
grees or edge counts to quickly compute these values. In the worst

case, enumeration over the 𝐸 (2) . The time complexity of Algo-

rithm 13 is provided in Lemma 9.

Lemma 9 (Complexity of Algorithm 13). The time complexity
of computing the counts of deducible (2, 4)-graphlets and adjusting
the counts of semi-deducible (2, 4)-graphlet is 𝑂 (|𝑉 |Δ2).

Proof. In the worst case, it requires enumeration over 𝐸 (2) , and
thus the time complexity is 𝑂 (|𝐸 | (2)) = 𝑂 (|𝑉 |Δ2).
Proof of Theorem 2. Below, we provide the proof for Theorem 2.

Proof. The time complexity of Algorithm 2 is determined by three

3130

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Algorithm 7: Comb_Three

Input: (1) Target deducible (𝑑, 𝑠)-graphlet T(𝑑)
𝑗
∈ T̂(𝑑)

(2) Intermediate counts of (𝑑, 𝑠)-graphlets {C(T(𝑑)
𝑖
) } |T

(𝑑) |
𝑖=1

(3) 𝑑-graph𝐺 (𝑑) = (𝑉 , 𝐸 (≤𝑑)) of graph𝐺
Output: The count of the target (𝑑, 𝑠)-graphlet T(𝑑)

𝑗

// (2, 3)-graphlets (𝑑 = 2)

1 if 𝐺 (𝑑) = 𝐺 (2)

// Apply the appropriate equation to T
(2)
𝑗

. The equations should be applied in the below following order.

2 C(T(2)
3
) ← ∑

𝑢∈𝑉
(|𝑁 (1)𝑢 |

2

)
− 3C(T(2)

4
)

3 C(T(2)
5
) ← ∑

𝑢∈𝑉
(|𝑁 (2)𝑢 |

2

)
− 3C(T(2)

1
) − C(T(2)

2
)

4 C(T(2)
6
) ← ∑

𝑢∈𝑉 (|𝑁
(1)
𝑢 | |𝑁

(2)
𝑢 |) − 2C(T(2)

2
) − 2C(T(2)

3
)

// (3, 3)-graphlets (𝑑 = 3)

5 if 𝐺 (𝑑) = 𝐺 (3)

// Apply the appropriate equation to T
(3)
𝑗

. The equations should be applied in the below following order.

6 C(T(3)
8
) ← ∑

𝑢∈𝑉
(|𝑁 (1)𝑢 |

2

)
− 3C(T(3)

9
)

7 C(T(3)
5
) ← ∑

𝑢∈𝑉 (|𝑁
(1)
𝑢 | |𝑁

(2)
𝑢 |) − 2C(T(3)

7
) − 2C(T(3)

8
)

8 C(T(3)
10
) ← ∑

𝑢∈𝑉
(|𝑁 (3)𝑢 |

2

)
− 3C(T(3)

1
) − C(T(3)

2
) − C(T(3)

4
)

9 C(T(3)
11
) ← ∑

𝑢∈𝑉 (|𝑁
(2)
𝑢 | |𝑁

(3)
𝑢 |) − 2C(T(3)

2
) − 2C(T(3)

3
) − 2C(T(3)

5
)

10 C(T(3)
12
) ← ∑

𝑢∈𝑉
(|𝑁 (2)𝑢 |

2

)
− C(T(3)

3
) − 3C(T(3)

6
) − C(T(3)

7
)

11 C(T(3)
13
) ← ∑

𝑢∈𝑉 (|𝑁
(1)
𝑢 | |𝑁

(3)
𝑢 |) − 2C(T(3)

4
) − C(T(3)

5
)

Algorithm 8: Triangle_Pairs

Input: (1) Two nodes consisting an edge (𝑢, 𝑣)
(2) Common neighbor nodes set between 𝑢 and 𝑣 : 𝑁𝑢,𝑣

(3) 2-DAG ®𝐺 (2) = (𝑉 , ®𝐸 (≤2)) of graph𝐺
Output: The set of effective pairs triangles { (𝑢, 𝑣, 𝑤), (𝑢, 𝑣, 𝑤′) }

that share nodes 𝑢 and 𝑣 : T𝑢,𝑣
1 T𝑢,𝑣 ← ∅
2 for each (𝑤, 𝑤′) ∈

(𝑁𝑢,𝑣
2

)
3 𝛿 (𝑤, 𝑤′) ← Retrieve_Distance((𝑤, 𝑤′), 2, ®𝐺 (2))
4 if 𝛿 (𝑤, 𝑤′) ≠ ∞
5 T𝑢,𝑣 ← T𝑢,𝑣 ∪ {{ (𝑢, 𝑣, 𝑤), (𝑢, 𝑣, 𝑤′) } }

6 return T𝑢,𝑣

main operations: (1) computing non-deducible (2, 4)-graphlets, (2)
computing semi-deducible (2, 4)-graphlets, and (3) computing de-

ducible (2, 4)-graphlets.
• To count non-deducible (2, 4)-graphlets, we iterate over each
node 𝑢 ∈ 𝑉 . For each of 𝑢’s neighbor 𝑣 ∈ ®𝑁 (1)𝑢 ∪ ®𝑁 (2)𝑢 , we first

compute the common neighbors𝑁𝑢,𝑣 which takes𝑂 (min(| ®𝑁 (1)𝑢 ∪
®𝑁 (2)𝑢 |, | ®𝑁

(1)
𝑣 ∪ ®𝑁 (2)𝑣 |)) = 𝑂 (®Δ2) time. Using the common neigh-

bors, the effective triangle pairs are retrieved usingTriangle_Pairs,

which takes 𝑂 (®Δ4
log ®Δ) time (Lemma 6), and the number of

pairs is 𝑂 (®Δ4). Then for each triangle pair, each of the corre-

sponding triangle’s (2, 3)-graphlet is identified. Using these (2, 3)-
graphlets, the clique is then determined, which takes 𝑂 (log ®Δ)

time (Lemma 7). Thus, the time complexity of counting non-

deducible (2, 4)-graphlets is (|𝑉 | ®Δ4
log ®Δ).

• To count semi-deducible (2, 4)-graphlets, for each node 𝑢, we

enumerate over its neighboring pairs (𝑣, 𝑣 ′), which takes 𝑂 (®Δ4)
time. Thenwe iterate each of the𝑂 (Δ2) common neighbors𝑤 of 𝑣

and 𝑣 ′, and identify the non-induced wedge which takes𝑂 (log ®Δ)
time (Lemma 8). Then the cycle is identified in 𝑂 (1) time. Thus,

the time complexity of counting semi-deducible (2, 4)-graphlets
is (|𝑉 | ®Δ4Δ2

log ®Δ).
• To count deducible (2, 4)-graphlets, we use the Comb_Four

which takes 𝑂 (|𝑉 | ®Δ2) time.

As a result, counting semi-deducible (𝑑, 𝑠)-graphlets dominate the

entire complexity, and thus the overall time complexity of Algo-

rithm 2 is (|𝑉 | ®Δ4Δ2
log ®Δ).

B EXPERIMENT DETAILS

In this section, we provide further details on our experiments.

B.1 Datasets

The details of the datasets and domains are provided below:

• collaboration (ca-DBLP [13], ca-Citeseer [3, 24], ca-HepTh [32]):
Collaboration networks from various academic fields, where

nodes represent authors and edges represent co-authorship be-

tween two authors.

3131

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yeongho Kim, Yuyeong Kim, Geon Lee, and Kijung Shin

Algorithm 9: Get_Cliqe

Input: (1) Two triangle types T
(2)
◦ ,T

(2)
•

(2) Four nodes consisting a clique 𝑢, 𝑣, 𝑤, 𝑤′

(3) 2-DAG ®𝐺 (2) = (𝑉 , ®𝐸 (≤2)) of graph𝐺
Output: The corresponding (𝑑, 𝑠)-graphlet Q(𝑑)∗ ∈ Q(𝑑)

1 𝑑 (𝑢,𝑣) ← Retrieve_Distance(𝑢, 𝑣, 2, ®𝐺 (2))
2 𝑑 (𝑢,𝑤) ← Retrieve_Distance(𝑢, 𝑤, 2, ®𝐺 (2))
3 𝑑 (𝑢,𝑤′) ← Retrieve_Distance(𝑢, 𝑤′, 2, ®𝐺 (2))
4 𝑑 (𝑤,𝑤′) ← Retrieve_Distance(𝑤, 𝑤′, 2, ®𝐺 (2))
5 if 𝑑 (𝑢,𝑣) = 2

6 if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
1

, 2)
7 Q

(2)
∗ ← Q

(2)
1

8 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
1

, 1)
9 Q

(2)
∗ ← Q

(2)
2

10 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
2

, 2)
11 Q

(2)
∗ ← Q

(2)
2

12 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
2

, 1)
13 Q

(2)
∗ ← Q

(2)
4

14 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
3

, 2)
15 Q

(2)
∗ ← Q

(2)
4

16 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)1

,T
(2)
3

, 1)
17 Q

(2)
∗ ← Q

(2)
6

18 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
2

, 2)
19 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′)
20 Q

(2)
∗ ← Q

(2)
4

21 else

22 Q
(2)
∗ ← Q

(2)
3

23 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
2

, 1)
24 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′)
25 Q

(2)
∗ ← Q

(2)
7

26 else

27 Q
(2)
∗ ← Q

(2)
5

28 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
3

, 2)
29 Q

(2)
∗ ← Q

(2)
5

30 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
3

, 1)
31 Q

(2)
∗ ← Q

(2)
9

32 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
3

, 2)
33 Q

(2)
∗ ← Q

(2)
8

34 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
3

, 1)
35 Q

(2)
∗ ← Q

(2)
10

// Continue on the right side.

• web [11, 12, 52] (web-Arabic, web-Indochina): Web networks,

where nodes represent web pages and edges represent hyperlinks

between pages.

• social-Facebook [57, 58] (soc-UCSC, soc-UC, soc-MB): Social

friendship networks from Facebook at various US schools, where

nodes represent users and edges represent friendship connections

between them.

Algorithm 10: Get_Cliqe (continued)

1 else

2 if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
2

, 2)
3 Q

(2)
∗ ← Q

(2)
2

4 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
2

, 1)
5 Q

(2)
∗ ← Q

(2)
3

6 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
3

, 2)
7 Q

(2)
∗ ← Q

(2)
4

8 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
3

, 1)
9 Q

(2)
∗ ← Q

(2)
5

10 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
4

, 2)
11 Q

(2)
∗ ← Q

(2)
7

12 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)2

,T
(2)
4

, 1)
13 Q

(2)
∗ ← Q

(2)
9

14 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
3

, 2)
15 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′)
16 Q

(2)
∗ ← Q

(2)
6

17 else

18 Q
(2)
∗ ← Q

(2)
5

19 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
3

, 1)
20 if 𝑑 (𝑢,𝑤) = 𝑑 (𝑢,𝑤′)
21 Q

(2)
∗ ← Q

(2)
9

22 else

23 Q
(2)
∗ ← Q

(2)
8

24 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
4

, 2)
25 Q

(2)
∗ ← Q

(2)
9

26 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)3

,T
(2)
4

, 1)
27 Q

(2)
∗ ← Q

(2)
10

28 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)4

,T
(2)
4

, 2)
29 Q

(2)
∗ ← Q

(2)
10

30 else if (T(2)◦ ,T
(2)
• , 𝑑 (𝑤,𝑤′)) = (T(2)4

,T
(2)
4

, 1)
31 Q

(2)
∗ ← Q

(2)
11

32 return Q
(2)
∗

Algorithm 11: Get_Non-induced_Wedge

Input: (1) Three nodes consisting a wedge (𝑢, 𝑣, 𝑤)
(2) 𝑑-DAG ®𝐺 (𝑑) = (𝑉 , ®𝐸 (≤𝑑)) of graph𝐺

Output: The corresponding (𝑑, 𝑠)-graphlet T(2)∗ ∈ T(2)
1 𝛿 (𝑢, 𝑣) ← Retrieve_Distance(𝑢, 𝑣, 2, ®𝐺 (2))
2 𝛿 (𝑣, 𝑤) ← Retrieve_Distance(𝑣, 𝑤, 2, ®𝐺 (2))
3 if (𝛿 (𝑢, 𝑣), 𝛿 (𝑣, 𝑤) ∈ { (1, 2), (2, 1) }
4 T

(2)
∗ ← T

(2)
6

5 else

6 T
(2)
∗ ← T

(2)
5

7 return T
(2)
∗

• tags [7] (tags-Ubuntu, tags-Math): Tag co-occurrence networks

from question-and-answer sites, where nodes represent tags and

edges link tags that appear together on the same question post.

3132

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Algorithm 12: Get_Non-induced_Cycle

Input: (1) Two wedge type T
(2)
△ ,T

(2)
▲

Output: The corresponding (𝑑, 𝑠)-graphlet Q(2)∗ ∈ Q̃(2)

1 if (T(2)△ ,T
(2)
▲) ∈ { (T

(2)
5

,T
(2)
5
) }

2 Q
(2)
∗ ← Q

(2)
30

3 else if (T(2)△ ,T
(2)
▲) ∈ { (T

(2)
5

,T
(2)
6
), (T(2)

6
,T
(2)
5
) }

4 Q
(2)
∗ ← Q

(2)
29

5 else

6 Q
(2)
∗ ← Q

(2)
28

7 return Q
(2)
∗

Table 4: Statistics for 13 real-world graphs across 5 domains:

|𝐸 (𝑑) | is the number of 𝑑-edges, and |T(𝑑) | and |Q(𝑑) | are the
counts of size-3 and size-4 (𝑑, 𝑠)-graphlets, respectively.

Dataset |𝑉 | |𝐸 (1) | |𝐸 (2) | |𝐸 (3) | |T(2) | |T(3) | |Q(2) |
ca-DBLP 317K 1.05M 12.7M 153M 4.89B 769B 3.95T

ca-Citeseer 227K 814K 7.38M 50.4M 1.70B 107B 659B

ca-HepTh 9.88K 26.0K 179K 1.10M 21.8M 797M 3.77B

web-Arabic 164K 1.75M 3.06M 14.9M 755M 12.6B 205B

web-Indochina 11.4K 47.6K 425K 3.70M 121M 2.93B 54.5B

soc-UCSC 8.99K 225K 7.19M 24.8M 12.7B 98.9B 21.9T

soc-UC 6.83K 155K 4.72M 13.5M 7.13B 42.5B 9.80T

soc-MB 3.08K 125K 2.35M 1.96M 2.34B 4.62B 1.79T

tags-Ubuntu 3.03K 133K 3.66M 764K 3.96B 4.59B 3.07T

tags-Math 1.63K 91.7K 1.08M 152K 661M 716M 275B

road-CA 1.97M 2.77M 5.12M 8.07M 45.0M 189M 301M

road-PA 1.09M 1.54M 2.88M 4.58M 25.7M 109M 175M

road-TX 1.38M 1.92M 3.52M 5.55M 30.7M 128M 202M

• road [34] (road-CA, road-PA, road-TX): Road networks from

various US regions, where nodes represent intersections or road

endpoints, and edges represent the roads connecting them.

We removed self-loops for our analysis. The preprocessed datasets

can be accessed at https://github.com/thisis05/EDGE. All origi-

nal datasets used in this study are publicly available from [7, 33, 52].

We present the dataset statistics, including the number of nodes,

edges, and graphlet instances, in Table 4.

B.2 Importance Scores

Among the (2, 4)-graphlets, Q(2)
6

,Q
(2)
8

,Q
(2)
9

,Q
(2)
10

,Q
(2)
11

,Q
(2)
19

can

also be represented in the original size-4 graphlet. Since the 2-edges

of these instances can be inferred from the 1-edge (i.e., the distance

between nodes that are not connected by a 1-edge is guaranteed to

be at most 2.), they are naturally represented in the (2, 4)-graphlets
as well. The remaining (2, 4)-graphlet instances are newly captured
local structures, identified by considering distances up to 2. To

understand how the newly defined (𝑑, 𝑠)-graphlet plays a significant
role in characterization, we use the scoring function proposed by

[30], which denotes the importance of each graphlet 𝑔.

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝑔) = 1 − 𝑑𝑖𝑠𝑡𝑤𝑖𝑡ℎ𝑖𝑛 (𝑔)
𝑑𝑖𝑠𝑡𝑎𝑐𝑟𝑜𝑠𝑠 (𝑔)

Table 5: Importance scores of (2, 4)-graphlets for each dataset.

Each rank is based on the importance score, and each value

represents the index of graphlet instance, with the score

shown in parentheses.

Dataset 1st 2nd 3rd 4th 5th

ca-DBLP 4 (0.91) 13 (0.90) 2 (0.86) 3 (0.85) 27 (0.76)

ca-Citeseer 4 (0.82) 13 (0.81) 3 (0.76) 5 (0.76) 2 (0.70)

ca-HepTh 4 (0.89) 13 (0.89) 2 (0.84) 5 (0.79) 3 (0.79)

web-Arabic 3 (0.99) 5 (0.98) 36 (0.94) 12 (0.94) 8 (0.93)

web-Indochina 3 (0.99) 5 (0.98) 36 (0.94) 12 (0.94) 8 (0.94)

soc-UCSC 5 (0.96) 4 (0.91) 3 (0.89) 2 (0.89) 1 (0.87)

soc-UC 5 (0.95) 4 (0.93) 3 (0.91) 2 (0.91) 6 (0.89)

soc-MB 5 (0.93) 27 (0.89) 18 (0.88) 4 (0.85) 6 (0.84)

tags-Ubuntu 6 (0.96) 20 (0.94) 3 (0.94) 22 (0.93) 28 (0.91)

tags-Math 6 (0.96) 3 (0.94) 20 (0.93) 22 (0.92) 14 (0.91)

road-CA 30 (0.99) 17 (0.99) 29 (0.99) 12 (0.99) 28 (0.99)

road-PA 17 (0.99) 30 (0.99) 12 (0.99) 14 (0.99) 29 (0.99)

road-TX 30 (0.99) 29 (0.99) 17 (0.99) 28 (0.99) 12 (0.99)

𝑑𝑖𝑠𝑡𝑤𝑖𝑡ℎ𝑖𝑛 (𝑔) is the average CP distance between other graphs from

the same domain, and 𝑑𝑖𝑠𝑡𝑎𝑐𝑟𝑜𝑠𝑠 (𝑔) is the average CP distance be-

tween other graphs from different domains. We calculate the impor-

tance of (2, 4)-graphlets across all 13 datasets and display the top

5 instances for each dataset in Table 5, where the graphlet indices

are ranked by the importance score.

B.3 Exact Counting Time for All Algorithms

In Section 6.4, we evaluate the counting time of EDGE from two

perspectives: (1) in comparison to conventional graphlet counting

algorithms (PGD and ESCAPE) for size-4 (𝑑, 𝑠)-graphlets, and (2)

against two ablation variants of EDGE (EDGE-D2 and EDGE-D).

Table 6 presents the exact counting time of all algorithms along

with additional information about graphlet instances.

B.4 Machine Learning Applications

To evaluate the effectiveness of (𝑑, 𝑠)-graphlets as feature extrac-
tors for graph machine learning tasks, we performed additional

experiments on link prediction and graph classification.

Link prediction. We generated concise vectors where each ele-

ment corresponds to the normalized count of (𝑑, 𝑠)-graphlets associ-
ated with each node. In order to predict whether two nodes are adja-

cent, the two corresponding vectors were fed into an MLP classifier.

As shown in Table 7, the accuracies achieved using (3, 3)-graphlets
and (2, 4)-graphlets consistently outperform those achieved using

conventional graphlets across the three datasets. Notably, even the

performances with (2, 3)-graphlets outperform those with (1, 4)-
graphlets in some datasets (e.g., in soc-UC).

Graph classification. Our graph classification task aims to pre-

dict which dataset a given ego-network belongs to. To this end,

we employed an MLP classifier using the normalized counts of

(𝑑, 𝑠)-graphlets in the ego-network as input features. For this exper-

iment, we sampled 100 ego-networks from each 10 datasets listed

in Table 4, except for those from the road domain due to their large

sizes. In total, we sampled 1,000 ego-networks. As a competitor, we

employed GraphCL [68], a graph neural network (GNN) trained in

3133

https://github.com/thisis05/EDGE

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yeongho Kim, Yuyeong Kim, Geon Lee, and Kijung Shin

Algorithm 13: Comb_Four

Input: (1) Target deducible or semi-deducible (2, 4)-graphlet Q(2)
𝑗
∈ Q̂(2) ∪ Q̃(2)

(2) Intermediate counts of (𝑑, 𝑠)-graphlets {C(Q(𝑑)
𝑖
) } |Q

(𝑑) |
𝑖=1

(3) The counts of each T
(2)
𝑖

per edge {C𝑒 (T(2)𝑖
) } |T

(2) |
𝑖=1

(4) 2-graph𝐺 (2) = (𝑉 , 𝐸 (≤2)) of graph𝐺
Output: The count of the target (𝑑, 𝑠)-graphlet Q(𝑑)

𝑗

// Apply the appropriate equation to Q
(2)
𝑗

. The equations should be applied in the below following order.

1 C(Q(2)
12
) ← ∑

(𝑢,𝑣) ∈𝐸 (2)
(C(𝑢,𝑣) (T(2)1

)
2

)
− 6C(Q(2)

1
) − C(Q(2)

2
)

2 C(Q(2)
13
) ← ∑

(𝑢,𝑣) ∈𝐸 (1)
(C(𝑢,𝑣) (T(2)2

)
2

)
− C(Q(2)

2
) − 2C(Q(2)

3
)

3 C(Q(2)
14
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) (C(𝑢,𝑣) (T
(2)
1
) C(𝑢,𝑣) (T(2)2

)) − 4C(Q(2)
2
) − 2C(Q(2)

4
)

4 C(Q(2)
15
) ← ∑

(𝑢,𝑣) ∈𝐸 (2)
(C(𝑢,𝑣) (T(2)2

)
2

)
− 4C(Q(2)

3
) − C(Q(2)

5
) − C(Q(2)

4
) − 3C(Q(2)

7
)

5 C(Q(2)
16
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) (C(𝑢,𝑣) (T
(2)
2
) C(𝑢,𝑣) (T(2)3

)) − 2C(Q(2)
4
) − 2C(Q(2)

5
)

6 C(Q(2)
17
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) (C(𝑢,𝑣) (T
(2)
1
) C(𝑢,𝑣) (T(2)3

)) − C(Q(2)
4
) − 3C(Q(2)

6
)

7 C(Q(2)
18
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) (C(𝑢,𝑣) (T
(2)
2
) C(𝑢,𝑣) (T(2)4

)) − 3C(Q(2)
7
) − C(Q(2)

9
)

8 C(Q(2)
19
) ← ∑

(𝑢,𝑣) ∈𝐸 (1)
(C(𝑢,𝑣) (T(2)3

)
2

)
− C(Q(2)

5
) − 4C(Q(2)

8
) − 3C(Q(2)

6
) − C(Q(2)

9
)

9 C(Q(2)
20
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
1
) (|𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 |) } − 4C(Q(2)

12
) − C(Q(2)

14
) − 12C(Q(2)

1
) − 4C(Q(2)

2
) − C(Q(2)

4
)

10 C(Q(2)
21
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
1
) (|𝑁 (1)𝑢 | + |𝑁

(1)
𝑣 |) } − C(Q

(2)
14
) − 2C(Q(2)

17
) − 2C(Q(2)

2
) − 2C(Q(2)

4
) − 3C(Q(2)

6
)

11 C(Q(2)
22
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T
(2)
2
) (|𝑁 (2)𝑢 |+ |𝑁

(2)
𝑣 |) }−4C(Q

(2)
13
) −C(Q(2)

14
) −2C(Q(2)

15
) −C(Q(2)

16
) −4C(Q(2)

2
) −8C(Q(2)

3
) −2C(Q(2)

4
) −2C(Q(2)

5
)

12 C(Q(2)
23
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
2
) (|𝑁 (2)𝑢 |+ |𝑁

(2)
𝑣 |) }−

∑
(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T

(2)
2
) (|𝑁 (2)𝑢 |+ |𝑁

(2)
𝑣 |) }−C(Q

(2)
14
) −2C(Q(2)

2
) −2C(Q(2)

4
) −3C(Q(2)

7
)

13 C(Q(2)
24
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
2
) (|𝑁 (1)𝑢 |+ |𝑁

(1)
𝑣 |) }−

∑
(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T

(2)
2
) (|𝑁 (1)𝑢 |+ |𝑁

(1)
𝑣 |) }−2C(Q

(2)
15
) −4C(Q(2)

3
) −2C(Q(2)

5
) −C(Q(2)

9
)

14 C(Q(2)
25
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T
(2)
3
) (|𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 |) } −

∑
(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T

(2)
3
) (|𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 |) } − C(Q

(2)
16
) − 2C(Q(2)

19
)

15 −C(Q(2)
4
) − 2C(Q(2)

5
) − 4C(Q(2)

8
)

16 C(Q(2)
26
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) {C(𝑢,𝑣) (T
(2)
3
) (|𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 |) }) − C(Q

(2)
16
) − 2 · C (Q(2)

17
) − 2 · C (Q(2)

4
) − 2 · C (Q(2)

5
) − 6 · C (Q(2)

6
) − 2 · C (Q(2)

9
)

17 C(Q(2)
27
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) {C(𝑢,𝑣) (T
(2)
4
) (|𝑁 (2)𝑢 | + |𝑁

(2)
𝑣 |) } − 2 · C (Q(2)

18
) − C(Q(2)

9
) − 2 · C (Q(2)

10
) − 3 · C (Q(2)

7
) − C(Q(2)

9
)

18 C(Q(2)
28
) ← C(Q(2)

28
) − C(Q(2)

12
) − C(Q(2)

13
) − 3 · C (Q(2)

1
) − C(Q(2)

2
) − C(Q(2)

3
)

19 C(Q(2)
29
) ← C(Q(2)

29
) − C(Q(2)

14
) − C(Q(2)

16
) − 2 · C (Q(2)

2
) − 2 · C (Q(2)

4
) − C(Q(2)

5
)

20 C(Q(2)
30
) ← C(Q(2)

30
) − C(Q(2)

15
) − C(Q(2)

19
) − 2C(Q(2)

3
) − C(Q(2)

5
) − 2C(Q(2)

8
)

21 C(Q(2)
31
) ← ∑

𝑢∈𝑉
(𝑁 (2)𝑢

3

)
− C(Q(2)

20
) − C(Q(2)

23
) − 2C(Q(2)

12
) − C(Q(2)

14
) − 4C(Q(2)

1
) − 2C(Q(2)

2
) − C(Q(2)

4
) − C(Q(2)

7
)

22 C(Q(2)
32
) ← ∑

𝑢∈𝑉 {
(|𝑁 (2)𝑢 |

2

)
|𝑁 (1)𝑢 | } − C(Q

(2)
21
) − C(Q(2)

22
) − C(Q(2)

24
) − C(Q(2)

26
) − 2C(Q(2)

13
) − C(Q(2)

14
) − 2C(Q(2)

15
) − C(Q(2)

16
) − 2C(Q(2)

17
)

23 −2C(Q(2)
2
) − 4C(Q(2)

3
) − 2C(Q(2)

4
) − 2C(Q(2)

5
) − 3C(Q(2)

6
) − C(Q(2)

9
)

24 C(Q(2)
33
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) { (|𝑁
(2)
𝑢 | − 1) (|𝑁 (2)𝑣 | − 1) − C(𝑢,𝑣) (T(2)1

) } − 4C(Q(2)
28
) − C(Q(2)

29
) − 2C(Q(2)

20
) − C(Q(2)

22
) − 6C(Q(2)

12
) − 4C(Q(2)

13
)

25 −2C(Q(2)
14
) − C(Q(2)

15
) − C(Q(2)

16
) − 12C(Q(2)

1
) − 6C(Q(2)

2
) − 4C(Q(2)

3
) − 2C(Q(2)

4
) − C(Q(2)

5
)

26 C(Q(2)
34
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) { |𝑁
(1)
𝑢 | (|𝑁

(2)
𝑣 | − 1) + (|𝑁 (2)𝑢 | − 1) |𝑁 (2)𝑣 | − 1

2
C(𝑢,𝑣) (T(2)2

) } − 2C(Q(2)
29
) − 2C(Q(2)

21
) − 2C(Q(2)

23
) − C(Q(2)

26
)

27 −3C(Q(2)
14
) − 2C(Q(2)

16
) − 4C(Q(2)

17
) − 2C(Q(2)

18
) − 4C(Q(2)

2
) − 6C(Q(2)

4
) − 2C(Q(2)

5
) − 6C(Q(2)

6
) − 6C(Q(2)

7
) − 2C(Q(2)

9
)

28 C(Q(2)
35
) ← ∑

(𝑢,𝑣) ∈𝐸 (1) (|𝑁
(2)
𝑢 | |𝑁

(2)
𝑣 | − C(𝑢,𝑣) (T

(2)
2
)) − C(Q(2)

29
) − 2C(Q(2)

30
) − C(Q(2)

22
) − 2C(Q(2)

25
) − 2C(Q(2)

13
) − C(Q(2)

14
) − 2C(Q(2)

15
)

29 −2C(Q(2)
16
) − 3C(Q(2)

19
) − 2C(Q(2)

2
) − 4C(Q(2)

3
) − 2C(Q(2)

4
) − 3C(Q(2)

5
) − 4C(Q(2)

8
)

30 C(Q(2)
36
) ← ∑

(𝑢,𝑣) ∈𝐸 (2) (|𝑁
(1)
𝑢 | |𝑁

(1)
𝑣 | − C(𝑢,𝑣) (T

(2)
3
)) − 2C(Q(2)

30
) − 2C(Q(2)

24
) − 3C(Q(2)

15
) − 2C(Q(2)

19
) − 4C(Q(2)

3
) − 3C(Q(2)

5
) − 4C(Q(2)

8
)

31 −2C(Q(2)
9
) − 2C(Q(2)

10
)

3134

Beyond Neighbors: Distance-Generalized Graphlets for Enhanced Graph Characterization WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Table 6: Dataset statistics and exact counting time (sec.) for each algorithm. |T(𝑑) | represents the number of instances of size-3

(𝑑, 𝑠)-graphlets, and |Q(𝑑) | represents the number of instances of size-4 (𝑑, 𝑠)-graphlets. Additionally, the table includes the

counting time for the conventional 4-size graphlet counting algorithms, PGD and ESCAPE, as well as the counting time for our

method EDGE and the two baselines (EDGE-D2, EDGE-D).

Datasets |T(2) | |T(3) | |Q(1) | |Q(2) | PGD ESCAPE EDGE-D2-(2,3) EDGE-D-(2,3) EDGE-(2,3) EDGE-D2-(3,3) EDGE-D-(3,3) EDGE-(3,3) EDGE-(2,4)

ca-DBLP 4.89B 769B 629M 3.95T 0.381 0.297 82.3 17.5 4.31 19.0K 4.64K 913 62.5

ca-Citeseer 1.70B 107B 806M 659B 0.206 0.216 40.1 11.6 3.84 2.64K 651 154 807

ca-HepTh 21.8M 797M 3.99M 3.77B 0.004 0.003 0.40 0.09 0.03 23.1 5.52 1.32 0.17

web-Arabic 755M 12.6B 779M 205B 0.427 1.25 23.2 7.58 2.72 308 69.0 18.0 607

web-Indochina 121M 2.93B 23.2M 54.5B 0.009 0.009 1.23 0.30 0.06 89.3 24.2 6.70 1.46

soc-UCSC 12.7B 98.9B 1.97B 21.9T 0.361 0.323 363 103 27.6 5.80K 1.82K 627 3.87K

soc-UC 7.13B 42.5B 1.60B 9.80T 0.296 0.256 212 60.0 15.7 2.53K 789 273 2.75K

soc-MB 2.34B 4.62B 1.99B 1.79T 0.372 0.339 95.8 27.4 8.14 344 102 36.5 2.40K

tags-Ubuntu 3.96B 4.59B 14.2B 3.07T 1.95 1.11 170 54.0 17.6 327 89.9 33.0 9.74K

tags-Math 661M 716M 4.76B 275B 1.17 0.938 33.0 9.80 3.20 51.4 13.2 5.14 936

road-CA 45.0M 189M 14.0M 301M 0.312 0.285 7.76 7.66 7.30 19.0 17.5 15.5 7.88

road-PA 25.7M 108.9M 8.01M 175M 0.187 0.149 2.73 2.64 2.53 7.16 5.86 5.19 2.75

road-TX 30.7M 128M 9.52M 202M 0.238 0.188 4.24 4.20 3.96 10.4 9.33 8.2 4.31

Table 7: Link prediction performance. (1, 3) and (1, 4) corre-
spond to the original graphlets, while (2, 3), (3, 3), and (2, 4)
correspond to our proposed (𝑑, 𝑠)-graphlets. (𝑑, 𝑠)-graphlets
presents overall better link prediction performance com-

pared to original graphlets.

Dataset Metrics (1, 3) (1, 4) (2, 3) (2, 4) (3, 3)

web-Indochina

ACC 0.720 0.772 0.774 0.803 0.799

AP 0.837 0.918 0.934 0.982 0.965

AUC 0.838 0.921 0.934 0.984 0.970

soc-UC

ACC 0.645 0.684 0.696 0.735 0.728

AP 0.694 0.799 0.817 0.866 0.851

AUC 0.727 0.800 0.824 0.869 0.859

ca-HepTh

ACC 0.696 0.733 0.736 0.765 0.756

AP 0.781 0.886 0.864 0.944 0.916

AUC 0.802 0.888 0.878 0.947 0.922

a self-supervised manner for node feature learning. Since most of

our datasets lack external node features, the input node features

were derived by applying PCA to the Laplacian matrix of each

ego-network. The features were processed by a GNN to generate

latent node features, which were then aggregated into ego-network-

level features. The accuracy of graph classification with features

learned from GraphCL was 0.705. In contrast, the accuracies with

features derived from (2,3)- and (3,3)-graphlets were 0.718 and

0.780, respectively.

These extra results on link prediction and graph classification

demonstrate the effectiveness of (𝑑, 𝑠)-graphlets as a feature extrac-
tor, especially when external node features are not available.

3135

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 NOTATIONS & BASIC CONCEPTS
	4 PROPOSED CONCEPTS
	4.1 Preliminary Concepts
	4.2 (d,s)-Graphlets
	4.3 Characteristic Profiles

	5 PROPOSED ALGORITHMS
	5.1 Graph Construction
	5.2 Size-3 (d,s)-Graphlet Counting
	5.3 Size-4 (d,s)-Graphlet Counting

	6 EXPERIMENTS
	6.1 Experimental Settings
	6.2 Q1. Graph Characterization
	6.3 Q2. Real-World Discoveries
	6.4 Q3. Speed and Scalability

	7 CONCLUSIONS
	References
	A ALGORITHMIC DETAILS
	A.1 d-Graph Construction
	A.2 Effects of d-DAG
	A.3 Details of Algorithm 1
	A.4 Details of Algorithm 2

	B EXPERIMENT DETAILS
	B.1 Datasets
	B.2 Importance Scores
	B.3 Exact Counting Time for All Algorithms
	B.4 Machine Learning Applications

