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Abstract

Item popularity in real-world data follows a long-tail distribution,
where a few items attract most of the attention, while the majority
receive much less. This disparity results in high-quality embeddings
for popular (head) items, but lower-quality embeddings for unpop-
ular (tail) items, leading to less accurate recommendations for the
latter. Our observations confirm that embeddings of tail items often
exhibit (1) magnitudes (i.e., norms) that are less reflective of actual
popularity and (2) directions that are less effective in capturing user
preferences, compared to those of head items.

To address this issue, we propose EDGE, a post-training embed-
ding enhancement method for long-tail recommendations. EDGE
employs two key strategies: (1) refining embedding magnitudes to
better reflect item popularity and (2) adjusting embedding directions
by leveraging knowledge from head items. Importantly, EDGE is
model-agnostic and can be applied to embeddings learned from any
trained recommender system. Experimental results show that EDGE
significantly improves tail item recommendation performance and
overall system performance, achieving up to an improvement of
211.23% in NDCG@20 over the state-of-the-art method. Our code
and datasets are available at https://github.com/geon0325/EDGE.
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1 Introduction

In various domains, item popularity follows a long-tail distribu-
tion, where a small fraction of items (head items) attract most of
the attention, while the majority (tail items) receive significantly
less [16]. Typically, 20% of items account for 80% of user interactions
in real-world datasets [1, 10]. Consequently, recommender systems
achieve higher accuracy for head items due to the abundance of
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available training data, but the accuracy for tail items tends to be
significantly lower due to the limited training data. This imbalance
negatively impacts the overall recommendation performance.

In this paper, we investigate how the amount of data available
for each item influences the quality of embeddings in recommender
systems. Specifically, we analyze item embeddings, with a focus on
their magnitudes (i.e., norms) and directions. Magnitudes reflect
the general popularity of an item, while directions capture informa-
tion related to user preferences. We observe that, while embedding
magnitudes effectively reflect the popularity of head items, they are
less effective in capturing the popularity of tail items. Additionally,
the embedding directions of tail items fail to capture user prefer-
ences as effectively as those of head items. We hypothesize that
this discrepancy is due to the data scarcity of tail items.

Based on these observations, we propose EDGE (Embedding
Enhancement for Long-Tail Recommendation), a simple yet effec-
tive method for enhancing item embeddings. EDGE employs two
key strategies: (1) refining embedding magnitudes to better reflect
the actual item popularity and (2) adjusting embedding directions
by leveraging reliable knowledge from head items. Importantly,
EDGE operates as a post-training process and is model-agnostic.
It can be applied to embeddings generated by any recommender
system once the primary training process is completed. Our ex-
perimental results demonstrate that EDGE significantly improves
recommendation accuracy for tail items and overall performance.

Our contributions are summarized as follows:

• Observations. We examine the quality of item embeddings, es-
pecially their magnitudes and directions, and observe that limited
available data leads to low embedding quality.

• Method. We develop EDGE, a post-training item embedding en-
hancement method for long-tail recommendations. EDGE jointly
refines the magnitudes and directions of item embeddings.

• Experiments. We perform comprehensive experiments and
demonstrate that EDGE yields improvements of up to 211.23% in
terms of NDCG@20 over the state-of-the-art method.

2 Preliminaries

In this section, we review some preliminaries.
Problem Definition. Consider a set of usersU = {𝑢1, · · · , 𝑢 |U | }
and a set of items I = {𝑖1, · · · , 𝑖 | I | }. Their interactions are repre-
sented as a binary matrix R ∈ {0, 1} |U |× |I | , where each entry 𝑟𝑢𝑖
is 1 if user 𝑢 interacted with item 𝑖 , and 0 otherwise. Our goal is to
predict the relevance score 𝑟𝑢𝑖 for each unobserved user-item pair
(𝑢, 𝑖) and recommend the highest-scoring items to each user 𝑢.
Embedding-Based Recommendation. A common approach for
recommendation is to learn embeddings for both users and items
in a shared latent space [3, 4, 6]. The estimated relevance score 𝑟𝑢𝑖
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Figure 1: Themagnitudes of embeddings for tail items are less

correlated with their popularity than those for head items,

indicating that the popularity of tail items is less reflected in

the magnitudes of the embeddings. More results are in [8].

for user 𝑢 and item 𝑖 is typically computed as the inner product of
their respective embeddings e𝑢 ∈ R𝑑 and e𝑖 ∈ R𝑑 , i.e., 𝑟𝑢𝑖 = e𝑇𝑢 e𝑖 .
Head and Tail Items. Based on the Pareto principle [1, 10], we
define head items IH ⊂ I as the top 20% most frequent items and
tail items IT ⊂ I as the remaining 80%.

3 Analyses & Observations

We analyze the magnitudes and directions of item embeddings
and examine their roles in recommendations. Then, we investigate
distinct properties of embeddings for head and tail items learned
by existing recommender systems. We utilized embeddings learned
from LightGCN [3] as an example; results using embeddings from
other models (e.g., BPRMF [12] and NGCF [13]) can be found in [8].
Embedding Representation and Roles.The embedding e𝑖 ∈ R𝑑
of an item 𝑖 can be decomposed into its magnitude and direction as:

e𝑖 = ∥e𝑖 ∥ ·
e𝑖
∥e𝑖 ∥

,

where ∥e𝑖 ∥ is themagnitude (i.e., norm), and e𝑖/∥e𝑖 ∥ is the direction
of the embedding e𝑖 . The relevance score 𝑟𝑢𝑖 between a user 𝑢 and
an item 𝑖 can be expressed as:

𝑟𝑢𝑖 = e𝑇𝑢 e𝑖 = ∥e𝑢 ∥∥e𝑖 ∥
(
e𝑇𝑢
∥e𝑢 ∥

e𝑖
∥e𝑖 ∥

)
= ∥e𝑢 ∥∥e𝑖 ∥ cos (𝜃𝑢𝑖 ) ,

where 𝜃𝑢𝑖 is the angle between e𝑢 and e𝑖 . Note that the magnitude
∥e𝑢 ∥ of the user embedding e𝑢 does not affect the ranking of items
for the user 𝑢. The magnitude ∥e𝑖 ∥ of the item embedding e𝑖 im-
pacts the general popularity of the item 𝑖 rather than specific user
preferences. The direction e𝑖/∥e𝑖 ∥ of the item embedding e𝑖 , which
determines the angle 𝜃𝑢𝑖 with the user embedding e𝑢 , captures the
alignment with user preferences. Importantly, the magnitude and
direction jointly determine the relevance of an item to a user.
Magnitudes of Tail Item Embeddings.We investigate the rela-
tionship between the magnitudes of item embeddings and item
popularity. Our findings in Figure 1 reveal that tail items exhibit a
weaker correlation between embedding magnitudes and popular-
ity, compared to head items. This suggests that the magnitudes of
embeddings for tail items are less effective at reflecting their popu-
larity than those for head items.We conjecture that this discrepancy
primarily stems from the limited data available for tail items, which
challenges recommender systems to capture their popularity in the
embedding magnitudes during training.
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Figure 2: The variance of the angles between item and user

embeddings tends to be smaller for tail items than for head

items, indicating that tail item embeddings are less effective

at capturing user preferences. More results are in [8].

Directions of Tail Item Embeddings.We examine the relation-
ship between the directions of item and user embeddings. Direc-
tions of properly learned item embeddings are expected to closely
align with the embeddings of users who are likely to interact with
the item and diverge from those of other users. To quantify this
alignment, we compute the variance of the cosine similarity be-
tween each item embedding and user embeddings, i.e., the variance
of cos(𝜃1𝑖 ), · · · , cos(𝜃 |U |𝑖 ). Intuitively, a higher variance indicates
that the item embedding has greater discriminative power in iden-
tifying users who are close to the item and those who are not. As
shown in Figure 2, our observations reveal that tail items tend to
have smaller variances in the cosine similarities with user embed-
dings, suggesting that tail items are less effective at capturing user
preferences. We conjecture that this issue is also primarily rooted
in the data scarcity associated with tail items.

4 Proposed Method

We present EDGE, a simple yet effective post-training embedding
enhancement method. EDGE jointly refines the magnitude and
direction of item embeddings. It is model-agnostic, i.e., applicable
to embeddings learned from any recommendation model.
Magnitude Refinement. To better reflect the popularity of items
within the magnitude of their embeddings, we refine the magnitude
∥e𝑖 ∥ of the embedding e𝑖 of item 𝑖 as follows:

∥e𝑖 ∥ → ∥e𝑖 ∥1−𝛼 · 𝑑𝛽
𝑖
,

where 𝛼 ∈ [0, 1] and 𝛽 ∈ [0, 1] are hyperparameters, and 𝑑𝑖 is the
degree of item 𝑖 in the training set. Here, increasing 𝛼 reduces the
impact on the magnitudes induced by the model, and increasing 𝛽

adjusts the magnitude to better reflect item popularity.
Direction Refinement. We refine the direction of item embed-
dings by leveraging knowledge from head items, which have been
trained on abundant data and thus are effective at capturing user
preferences, as empirically verified in Section 3. For the embedding
e𝑖 of item 𝑖 , we compute its head-inferred embedding as follows:

eH𝑖 =
∑︁
𝑗∈IH

𝛾𝑖 𝑗
e𝑗
∥e𝑗 ∥

, where 𝛾𝑖 𝑗 =
exp

(
cos

(
𝜃𝑖 𝑗

)
/𝜏
)∑

𝑘∈IH exp (cos (𝜃𝑖𝑘 ) /𝜏)
, (1)

and 𝜏 ∈ (0,∞) is a hyperparameter. The directions of head item
embeddings are aggregated based on their relevance to item 𝑖 (specif-
ically, by the cosine similarity with the embedding of item 𝑖). Then,
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Table 1: EDGE significantly enhances the recommendation performance of BPRMF, NGCF, and LightGCN, in both unbiased

and biased test settings across all datasets. It consistently outperforms TTEN [5], the state-of-the-art post-training embedding

enhancement method for long-tail recommendations. The improvements are measured relative to TTEN’s performance.

Unbiased Setting Biased Setting

Gowalla Yelp MovieLens Gowalla Yelp MovieLens

Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

BPRMF
Original 0.1367 0.0869 0.0471 0.0332 0.0610 0.0344 0.1532 0.0899 0.0682 0.0366 0.1126 0.0481
+ TTEN 0.1445 0.0926 0.0528 0.0363 0.0647 0.0358 0.1532 0.0899 0.0682 0.0366 0.1126 0.0481
+ EDGE 0.1601 0.0992 0.0716 0.0448 0.0776 0.0428 0.2160 0.1412 0.1089 0.0623 0.2929 0.1497

Improvement 10.80% 7.13% 35.61% 23.42% 19.94% 19.55% 40.99% 57.06% 59.68% 70.22% 160.12% 211.23%

NGCF
Original 0.0897 0.0560 0.0272 0.0211 0.0009 0.0011 0.1893 0.1190 0.0937 0.0523 0.1704 0.0857
+ TTEN 0.1449 0.0939 0.0574 0.0379 0.0540 0.0302 0.1899 0.1195 0.0937 0.0523 0.2998 0.1469
+ EDGE 0.1602 0.0991 0.0643 0.0412 0.0595 0.0314 0.2058 0.1339 0.1097 0.0633 0.3285 0.1706

Improvement 10.56% 5.54% 12.02% 8.71% 10.19% 3.97% 8.37% 12.05% 17.08% 21.03% 9.57% 16.13%

LightGCN
Original 0.0751 0.0449 0.0173 0.0157 0.0106 0.0067 0.2054 0.1322 0.1103 0.0617 0.2715 0.1271
+ TTEN 0.1408 0.0915 0.0549 0.0368 0.0658 0.0355 0.2079 0.1348 0.1103 0.0617 0.2768 0.1305
+ EDGE 0.1569 0.0971 0.0647 0.0413 0.0769 0.0410 0.2173 0.1421 0.1155 0.0656 0.3211 0.1634

Improvement 11.43% 6.12% 17.85% 12.23% 16.87% 15.49% 4.52% 5.42% 4.71% 6.32% 16.00% 25.21%

the direction of the embedding e𝑖 is refined as:

e𝑖
∥e𝑖 ∥

→ ẽ𝑖
∥ẽ𝑖 ∥

, where ẽ𝑖 =
e𝑖
∥e𝑖 ∥

+ 𝜆
eH
𝑖

∥eH
𝑖
∥
,

and 𝜆 ∈ [0,∞) is a hyperparameter. When 𝜆 > 0, the direction of
the head-inferred embedding eH

𝑖
is used to refine the direction of

the embedding e𝑖 . This enrichment with reliable information from
head items, inferred from many interactions, potentially results in
embeddings with clearer information about user preferences.
Joint Refinement.We jointly apply both magnitude and direction
refinement schemes to enhance the item embeddings as follows:

e𝑖 → ∥e𝑖 ∥1−𝛼 · 𝑑𝛽
𝑖
· ẽ𝑖
∥ẽ𝑖 ∥

, where ẽ𝑖 =
e𝑖
∥e𝑖 ∥

+ 𝜆
eH
𝑖

∥eH
𝑖
∥
,

and the head-inferred embedding eH
𝑖
is defined in Eq. (1). Note

that Kim et al. [5] introduce 𝛼 to refine embedding magnitudes,
and EDGE enhances this approach by introducing 𝛽 to account for
item popularity and 𝜆 to leverage knowledge from head items. This
joint refinement in magnitude and direction significantly improves
recommendation performance, as demonstrated in Section 5.

5 Experiments

We conduct comprehensive experiments on EDGE to evaluate its
accuracy, effectiveness, and efficiency.

5.1 Experimental Settings

We discuss the experimental settings. For full details, refer to [8].
Datasets.We used three publicly available datasets that are widely
used in recommender systems research: Gowalla (GW) [2], Yelp
(YP),1 and MovieLens (ML).2 These datasets were processed follow-
ing [5]. Some basic statistics of each dataset are given in [8].
Evaluation. The performances of all models are evaluated using
Recall@20 and NDCG@20 metrics, and the training, validation, and
test sets are split with a ratio 7:1:2, following [5]. We employ two
distinct test sets for a comprehensive evaluation. An unbiased test
set, used in [5, 11, 14, 17], is constructed so that each item appears
an equal number of times in the test interactions. A biased test set
1https://www.yelp.com/dataset
2https://grouplens.org/datasets/movielens

Table 2: EDGE outperforms its competitors in long-tail rec-

ommendations. Results marked
✳
are from [5].

Gowalla Yelp MovieLens

Recall NDCG Recall NDCG Recall NDCG

BPRMF 0.137 0.087 0.047 0.033 0.061 0.034
LightGCN 0.075 0.045 0.017 0.016 0.011 0.007
IPS ✳ 0.057 0.035 0.012 0.012 0.018 0.010
GRAD ✳ 0.081 0.053 - - - -
MACR ✳ 0.100 0.054 0.047 0.027 0.057 0.028
BiGNN ✳ 0.108 0.059 0.046 0.027 0.059 0.032
TTEN 0.141 0.092 0.055 0.037 0.066 0.036
EDGE 0.157 0.097 0.065 0.041 0.077 0.041

is constructed by uniform random sampling of interactions, leading
to a similar long-tail distribution as the training set. While EDGE is
applicable to any embedding-based recommendation model, we use
LightGCN [3] as the default base model unless otherwise stated.
Implementation. Our implementation of EDGE is based on the
framework provided by [5]. For the hyperparameters, 𝛼 , 𝛽 , 𝜏 , and
𝜆, we explored the following ranges: 𝛼 ∈ {0.0, 0.2, . . . , 1.0}, 𝛽 ∈
{0.0, 0.1, 0.2}, 𝜏 ∈ {0.01, 0.05, 0.2}, and 𝜆 ∈ {0.0, 0.2, . . . , 2.0}. In-
spired by the empirical effectiveness demonstrated in [5], we used
the SSM (Sampled Softmax) loss [15] to train the models, which
generally yielded better results than the BPR loss [12] (refer to [8]).

5.2 Experimental Results

We discuss our experimental results discussed as follows.
Comparison with a Post-Training Method.We evaluate EDGE
in Table 1 under both unbiased and biased test settings. Since EDGE
is model-agnostic, it can be applied to any embedding-based rec-
ommender system. When applied to three models, BPRMF [12],
NGCF [13], and LightGCN [3], EDGE consistently and significantly
improves recommendation performance of the base models. Ad-
ditionally, EDGE outperforms TTEN [5], the state-of-the-art post-
training embedding enhancement method for long-tail recommen-
dations. While TTEN shows limited effectiveness in the biased
setting, EDGE is effective in both unbiased and biased settings.
These results demonstrate the effectiveness of EDGE’s strategy for
refining both the magnitude and direction of embeddings.

https://www.yelp.com/dataset
https://grouplens.org/datasets/movielens
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(a) Unbiased Setting (b) Biased Setting

Figure 3: Incorporating 𝛼 and 𝛽 for magnitude refinement

and 𝜆 for direction refinement incrementally increases the

average NDCG@20 improvements of BPRMF, NGCF, and

LightGCN in both unbiased and biased test settings.

TTEN

EDGE

LightGCN

(a) Unbiased Setting (b) Biased Setting

Figure 4: EDGE improves the performance for both head and

tail items by LightGCN [3] and outperforms TTEN [5] in

MovieLens. More results can be found in [8].

Comparison with Training-Based Methods.We compare EDGE
with training-based methods, including IPS [9], GRAD [11], MACR
[14], and BiGNN [7], which learn embeddings via training (e.g., gra-
dient descent). These models are specifically designed to address
long-tail distributions, and we follow their common unbiased test
settings for evaluation. As shown in Table 2, EDGE outperforms all
competitors across all datasets, demonstrating its effectiveness in
enhancing embeddings as a post-training process.
Ablation Study. To examine the effects of each component of
EDGE, we compare the performance of its variants in Figure 3.
Introducing 𝛼 and 𝜆 is effective in both unbiased and biased settings.
Introducing 𝛽 is effective in the biased setting but has minimal
effectiveness in the unbiased setting (i.e., it was tuned closely to 0),
where the training and test popularities significantly differ. EDGE,
incorporating 𝛼 , 𝛽 , and 𝜆, achieves the best performance in both
unbiased and biased test settings, with an average improvement of
420.88% and 54.71%, respectively, over the original models.
Performance on Head & Tail Items.We evaluate the respective
performance of head and tail items. As shown in Figure 4, EDGE
improves LightGCN’s performance for both head and tail items
in unbiased and biased settings. In the unbiased setting, where
item popularities significantly differ in training and test sets, the
improvement for both head and tail items is notable as they easily
benefit from the adjustment of magnitude, which reflects popularity,
through 𝛼 (recall that 𝛽 has minimal effect in the setting). Tail
items, which are inherently difficult to recommend accurately due
to limited data, also show non-trivial improvements in both settings.
Enhancement of Tail Item Embeddings.We examine how the
magnitudes and directions of tail item embeddings are enhanced
after applying EDGE. As shown in Figure 5, EDGE refines both
the magnitude and direction of tail item embeddings. Specifically,
the correlation between embedding magnitude and popularity in-
creases, as does the average variance of similarity with user em-
beddings (see Section 2). These enhancements collectively lead to
more accurate recommendations of tail items, as shown in Figure 4.

Original
Embeddings

Refined
Embeddings

(a)MagnitudeRefinement

0.01 0.03 0.05
Variance

0

50

100

De
ns

ity

(b) Direction Refinement

Figure 5: EDGE enhances tail item embeddings. Compared

to the original embeddings, the refined embeddings exhibit

magnitudes that better align with item popularity and direc-

tions that are more discriminative towards user preferences.

Speed. Since EDGE is applied as a post-training step, it does not
require graph convolution or gradient descent. Consequently, EDGE
requires minimal execution time compared to the training time
needed to learn the embeddings. For instance, LightGCN (with the
SSM loss) requires an average of 11.30, 22.11, and 167.25 seconds per
epoch for Gowalla, Yelp, and MovieLens, respectively. In contrast,
EDGE takes 0.001, 0.011, and 0.013 seconds to adjust the embeddings
for the same datasets, demonstrating the efficiency of EDGE.3

6 Related Work

Long-tail data arise in various domains, and recommendations
on such data are crucial in practical applications [16]. To better
recommend both tail and head items, most prior research has devel-
oped specific strategies during the training process. These include
techniques for item re-weighting [9], gradient adjustment [11], spe-
cialized loss functions [15], and embedding disentanglement [17].
Recently, TTEN [5], which adjusts the magnitude of item embed-
dings as a post-training process, has shown state-of-the-art perfor-
mance. However, TTEN overlooks the importance of the quality
of embedding directions. In addition, its effectiveness diminishes
when evaluated in biased settings, as shown in Section 5. EDGE
builds upon the post-training approach and enhances both the mag-
nitudes and directions of embeddings. We empirically demonstrate
that EDGE is effective in both unbiased and biased test settings.

7 Conclusions

In this paper, we present EDGE, a simple yet effective embedding
enhancement method for long-tail recommendations. Motivated by
our empirical analyses regarding the quality of item embeddings,
EDGE jointly refines the magnitude and direction of item embed-
dings. Importantly, EDGE operates as a post-training process and is
model-agnostic, making it applicable to embeddings learned by any
recommender system. Our experimental results demonstrate that
EDGE significantly improves the recommendation performance of
various models for both tail and head items.
Acknowledgements. This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. RS-2024-00406985, 90%). This work was
supported by Institute of Information & Communications Tech-
nology Planning & Evaluation (IITP) grant funded by the Korea
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3The experiments were conducted using a machine with an RTX 8000 GPU.
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