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Abstract

Given a large graph, how can we summarize it with fewer
nodes and edges while maintaining its key properties, e.g.
node degrees and graph spectrum? As a solution, graph
summarization, which aims to find the compact represen-
tation for optimally describing and reconstructing a given
graph, has received much attention, and numerous methods
have been developed for it. However, many existing methods
adopt the uniform reconstruction scheme, which is an un-
realistic assumption as most real-world graphs have highly
skewed node degrees, even within communities. Therefore
we propose a degree-preserving graph summarization model,
DPGS, with a novel reconstruction scheme based on the
configuration model. To optimize the Minimum Description
Length of our model, we deisgn a linearly scalable algorithm
using hashing techniques. We theoretically show that the
minimized reconstruction error bounds the perturbation of
graph spectral information. Extensive experiments on real-
world datasets show that DPGS yields more accurate sum-
mary graphs than several well-known baselines. Moreover,
our reduced summary graphs can effectively train graph neu-
ral networks (GNNs) while saving computational cost.

1 Introduction

Recent years have witnessed the explosive growth of
data size, and large-scale graphs have become ubiqui-
tous, including social networks, computer networks, and
protein interactions network. Since they are hard to
process, analyze, and understand, this poses significant
challenges to graph mining applications.

An effective technique to tackle such challenges is
graph summarization. Given a graph G, it aims to
find a compact representation of G in the form of a
summary graph with supernodes (i.e., subsets of nodes
in G) and superedges (i.e., subsets of edges in G).

Generally, graphs are expected to be reconstructed
from summary graphs by a summarization model, and
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thus the reconstruction scheme is the heart of most
summarization models. Closely related studies [15,
21, 4, 14] reconstructed connections of original nodes
based on the uniform assignment of superedges, namely
the uniform reconstruction scheme. However, many
real-world graphs contain communities of degree-skewed
nodes [3]. That is, popular nodes or leaders in each
community usually have more connections than the
others. Thus, summarization models based on the
uniform reconstruction scheme often result in a large
gap between the reconstructed graph and the original
graph in terms of node degrees, losing related properties,
such as graph spectrum (i.e. eigenvalues), and the
authorities and hubnesses of nodes [11].

Therefore, we propose a Degree-Preserving Graph
Summarization model, named DPGS, which assigns su-
peredges proportional to node degrees, as in the well-
known configuration model. Such a configuration-based
assignment as a scheme (CR scheme) can generally be
plugged in and improve existing related summariza-
tion methods. DPGS uses minimum description length
(MDL) from information theory as the principle to min-
imize the cost of summary graphs and reconstruction er-
ror. Theoretically, we show that DPGS bounds the per-
turbation of Laplacian’s eigenvalues by minimized re-
construction error. A fast algorithm, named the DPGS
algorithm, is designed for DPGS to summarize large
graphs based on LSH (Locality Sensitive Hashing) to
group candidate nodes, and perform greedy merging
within groups.

Our empirical study on synthetic datasets (random
graphs with both uniform and skewed degree distri-
butions) validates that the proposed scheme tends to
reconstruct the original graph more accurately than
the uniform reconstruction scheme, especially in highly
degree-skewed graphs. Extensive experiments on 8 real-
world datasets show that the DPGS algorithm outper-
forms several state-of-the-art algorithms. Moreover, we
also show that our summary graphs can efficiently yet
effectively help to train a graph neural network, while
preserving high accuracy in a node classification task.
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In summary, our contributions include:

• Novel reconstruction scheme: We propose a
graph summarization model, named DPGS, with
a novel reconstruction scheme based on the con-
figuration model. We theoretically show that our
DPGS bounds the perturbation of graph spectrum
with the reconstruction error.

• Compatibility: Our proposed scheme can be
generally applied to other graph summarization
models, and improve their summarization quality.

• Effectiveness: Experiments on both synthetic
and real-world graphs verify the superiority of the
proposed reconstruction scheme, and show that
our DPGS algorithm outperforms several state-of-
the-art methods with better summary. Moreover,
summary graphs can help to train graph neural
networks efficiently yet effectively.

• Scalability: Our DPGS algorithm runs fast, and
theoretical analysis shows that the complexity is
linear in number of edges.

Reproducibility : Our DPGS algorithm is open-
sourced at https://github.com/HQJo/DPGS.

2 Related Work

Graph summarization methods can be categorized
based on many aspects. See the comprehensive sur-
vey [16] for more knowledge about this topic. In this
section, we categorize some graph summarization meth-
ods according to the objective functions.

Error of adjacency matrix: Methods in this
category try to minimize some error metrics between
the original and reconstructed adjacency matrices. k-
Gs [15] aimed to find a summary graph with at most
k supernodes, such that the L1 reconstruction error is
minimized. Riondato et al. [21] revealed the connection
between the geometric clustering problem and the graph
summarization problem under multiple error metrics
(including L1 error, L2 error and cut-norm error), and
they proposed a polynomial-time approximate graph
summarization method based on geometric clustering
algorithms. Beg et al. [4] developed an randomized
algorithm SAA-Gs using weighted sampling and count-
min sketch [5] techniques to find promising node pairs
efficiently.

Total edge number: In this kind of methods,
the objective function is defined as number of edges
in summary graph plus edge corrections. In [17],
Navlakha et al. proposed two algorithms: Greedy
and Randomized. The former considers all possible
node pairs at each step, and merges the best pair (u, v)

Table 1: Notations

Notation Description

G Input simple undirected graph
V, E Node/edge set of G
n,m Size of V and E
An×n Adjacency matrix of G
GS Summary graph
VS , ES Supernode/superedge set of GS

ns,ms Size of VS and ES
(AS)ns×ns

Adjacency matrix of GS

A′n×n Reconstructed adjacency matrix
di Degree of node i
Dk Degree of supernode Sk, i.e., the

sum of degrees of the nodes in Sk

which results in the greatest decrease of the total edge
number. The latter samples a supernode as u randomly
at each step, checks all other supernodes, finds the best
v and merges them together. This process continues
until the summary graph becomes smaller than a given
size. However, both algorithms are computationally
expensive. To address this problem, SWeG [24] reduces
the search space by grouping supernodes, according to
their shingle values, and only considers merging node
pairs in the same groups. Combined with parallelization
schemes, SWeG scales to large graphs with tens of
billions of edges.

Encoding length: This kinds of methods often
adopt the MDL principle and use the total encoding
length as the objective function. They typically opti-
mize the total description length under their proposed
encoding scheme. LeFevre and Terzi [15] formulated the
graph summarization problem Gs based on the MDL
principle, and they proposed three algorithms Greedy,
SamplePairs and LinearCheck. Lee et al. [14] de-
signed a dual-encoding scheme and proposed a sparse
summarization algorithm SSumM, which reduces the
number of node and sparsifies the graph simultaneously.
By dropping less important edges and encoding them as
errors, SSumM is able to obtain a compact and sparse
summary graph. Different from methods mentioned
above, VoG [13] adopted an vocabulary-based encoding
scheme, which encodes the graph using frequent pat-
terns in real-world graphs, such as cliques, stars, and
bipartite cores.

Methods mentioned above mainly focus on static
simple graphs. There are works aiming to summarize
other types of graphs, including dynamic graphs [23,
1, 20], attributed graphs [10, 8, 26], and streaming
graphs [25, 12].
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(a) Original graph (b) Reconstructed (uniform) (c) Reconstructed (CR)

Figure 1: Comparison between the CR and uniform schemes. The original graph and graphs reconstructed using
the two reconstruction schemes are shown in the figure. Heatmaps of the corresponding adjacency matrices are
plotted on the right side of graphs. Red nodes and blues nodes are two supernodes, and the width of edges
reflects the edge weight. Visually and in terms of quantitative measures, the proposed CR scheme achieves better
reconstruction results than the uniform scheme.

3 Proposed Method

In this section, we describe our DPGS model. To
enhance the readability, we list frequently-used symbols
in Table 1.

3.1 Reconstruction Scheme Given a summary
graph, we can reconstruct the original graph based on
a graph summarization model. Existing summarization
models reconstruct the adjacency matrix using the uni-
form reconstruction scheme [15].

Definition 1. (Uniform Reconstruction Scheme)
Denote AS and A′ as the adjacency matrices of the
summary graph and the reconstructed graph respec-
tively. The uniform reconstruction scheme calculates
A′(i, j) as follows:

(3.1) A′(i, j) =


AS(k, l)

|Sk|·|Sl|
k 6= l

AS(k, l)

|Sk|(|Sk|−1)
, k = l .

where Sk and Sl are the supernodes to which node i and
node j belong, respectively.

It can be seen from Equation (3.1) that the edges
between two supernodes Sk and Sl, i.e. AS(k, l), are
equally assigned to each node pair between them, and
each node pair has the same connection weight. Thus,
this approach assumes the random graph model (or
Erdős-Rényi model equivalently) [7]. However, real-
world graphs have highly skewed degree distribu-
tions. Thus, this uniform reconstruction scheme is not
suitable for real-world graphs.

Different from the uniform reconstruction scheme,
we reconstruct A′ based on degrees of nodes:

Definition 2. (CR Scheme) Denote AS and A′ as
the adjacency matrices of the summary graph and the
reconstructed graph respectively. The configuration-
based reconstruction scheme (CR scheme) calculates
A′(i, j) as follows:

(3.2) A′(i, j) =
di
Dk

AS(k, l)
dj
Dl

.

where Sk and Sl are the supernodes to which node i and
node j belong respectively. We use di and dj to denote
the degrees of nodes i and j; and we use Dk and Dl to
denote the degrees of supernodes Sk and Sl.

In this way, the reconstructed edge weight A′(i, j) is
proportional to the product of endpoints’ degrees. This
approach is based on the configuration model [18], which
has proved successful in modularity-based community
detection [19].

Note that the proposed CR scheme is able to
preserve the degrees of nodes.

Property 3.1. (Degree Preservation)

(3.3)

n∑
j=1

A′(i, j) = di =

n∑
j=1

A(i, j) .

Proof. ∑
j

A′(i, j) =
∑
l

∑
j∈Sl

di
Dk

AS(k, l)
dj
Dl

=
∑
l

di
Dk

AS(k, l) = di .

�
Figure 1 demonstrates the difference between these

two reconstruction schemes. It can be seen that our CR
scheme can yield more accurate results, restoring the
graph topology and the adjacency matrix better than
the uniform reconstruction scheme.
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3.2 Our proposed DPGS We use the MDL princi-
ple to find a summary graph. That is, we minimize the
total description length while assuming that one needs
both the summary graph and the errors for exactly re-
constructing the original graph. Then, the objective
L(M,D) of our DPGS has two parts: the description
length of summary graph L(M), and the description
length of errors L(D |M):

(3.4) L(M,D) = L(M) + L(D |M) .

To encode the errors between original and recon-
structed adjacency matrices A and A′, we use the gen-
eralized KL-divergence, an instance of the Bregman di-
vergence [6], as in [9]:
(3.5)
L(D |M) = KL(A‖A′)

=
∑
i,j

A(i, j) ln
A(i, j)

A′(i, j)
−A(i, j) +A′(i, j)

=
∑
i,j

A(i, j) ln
A(i, j)

A′(i, j)
,

where the last two terms −A(i, j) + A′(i, j) originate
from the first-order term in the Bregman divergence.
Due to the degree-preservation property, the last two
terms are cancelled out when summing over i and j.

Moreover, we show that the eigenvalue perturbation
are bounded by the reconstruction error L(D | M), as
formalized in the following theorem:

Theorem 3.1. (Eigenvalue perturbation)
Denote the normalized Laplacian matrices of the
original graph and the reconstructed graph as L and
L′. Then, the total squared errors of their eigenvalues
(denoted by λ(i) and λ′(i)) are bounded as follows:

(3.6)

n∑
i=1

(λ(i)− λ′(i))2 ≤ 2 · L(D |M)

Proof. See Appendix. �

For the encoding length of model, we have:

(3.7) L(M) = LN(ns)+nLN(ns)+

n∑
i=1

LN(di)+L(AS) ,

where LN is the optimal encoding length for a positive
integer [22]. The first two term encodes the number
of supernodes and the supernode index to which each
node belongs, respectively (we use LN(ns) for all nodes
for simplicity). The third term encodes the degrees
of nodes in the original graph, which are required for
reconstruction. Since the degree distribution is skewed,

the encoding length for degrees is not large. Finally,
L(AS) encodes the adjacency matrix of the summary
graph in the following way:

(3.8)

L(AS) = LN(ms) +

ms∑
i=1

LN(wi)

+ BE

(
ns(ns + 1)

2
,ms

)
,

where wi is the weight of superedge i, and

BE(ns(ns+1)
2 ,ms) encodes ms superedges’ endpoints

(there are ns(ns+1)
2 possible superedges) using the bi-

nomial encoding, as in Equation (3.9).

(3.9) BE(a, b) = −b log2

b

a
− (a− b) log2(1− b

a
) .

In summary, L(AS) encodes the size, endpoints and
weights of superedges.

3.3 Algorithm Our DPGS algorithm is based on
greedy merging operations. Firstly, each node is ini-
tialized as a supernode containing itself alone. Then,
the algorithm finds promising supernode pairs (u, v) and
merges them together consecutively. Here, the goodness
of a node pair gain(u, v) is defined as the decrease of the
total description length when merging them.

Ideally, the algorithm is expected to find the best
pairs at each step, which leads to the greatest decrease
of the description length. However, this exhaustive
search takes O(|V |2) time for each step, which is time-
consuming and not scalable to large graphs. Thus, we
need to find a way to reduce the search space.

The total description length is comprised of two
parts, the model part and the error part. The model
part contains several discrete function and is hard to
analyze quantitatively. Generally, the smaller the ms

and ns are, the smaller the model length is. For the
error part, denote the change of the error part when
merging supernodes Si and Sj as ∆LE(i, j). We have
the following theorem.

Theorem 3.2. (Merging Cost) ∆LE(i, j) ≥ 0.

Proof. See Appendix. �

Theorem 3.2 says that merging two nodes never de-
creases the error part. This matches our intuition since
merging two nodes retains or loses information. Thus,
∆LE(i, j) can be seen as the cost of merging supernode
Si and Sj . While the the error part increases due to
mergers, the model part may decrease, and this leads to
the reduction of the total description length.

By analyzing ∆LE(i, j), we have the following
observation.
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Algorithm 1 DPGS

Input: G = (V, E), iteration T
Output: GS = (VS , ES , AS)

1: GS ← G,VS ← V, ES ← E
2: t← 0
3: while t < T do
4: t← t+ 1
5: Update LSH
6: Divide supernodes into disjoint groups by LSH
7: for each group g do
8: MergeGroup(g)
9: end for

10: end while
11: return GS

Observation 1. The more common neighbors supern-
odes Si and Sj have, the more likely their merging cost
is small.

Due to the space limit, the full analysis is placed in
Appendix. This observation provides a guideline for our
algorithm. That is, it is better to merge nodes with
more common neighbors.

To do so, we utilize the LSH technique [2] to
group nodes with similar neighborhoods together. The
overview of the DPGS algorithm is given in Algorithm 1.
The DPGS algorithm runs T iterations. In each itera-
tion, DPGS seperates current nodes into disjoint groups
according to LSH, and tries merging node pairs sepa-
rately within each group. Inspired by SSumM [14], in
each group g, we sample log2|g| node pairs and merge
the one with maximum gain. Here the gain is defined
as the reduction of the total description length. This
process is repeated until the size of group is less than 2,
or the algorithm fails to find node pairs decreasing the
description length for log2|g| times. The full merging al-
gorithm is described in Algorithm 2. According to Ob-
servation 1, DPGS is able to find and merge promising
node pairs raising great reduction of description length.

3.4 Complexity Analysis The DPGS algorithm
scales linearly with the number of edges of the input
graph, as formalized in Theorem 3.3.

Theorem 3.3. The time complexity of Algorithm 1 is
O(T · |E|).

Proof. In each iteration, updating LSH costs O(|E|)
time. During the group merging step, at mostO(log2|g|)
pairs are sampled, and calculating the merging gain
of a node pair (u, v) and the remaining part of the
merging step costs O(du + dv) time. If we limit the
size of group not larger than a constant C (for example,

Algorithm 2 MergeGroup

Input: g ⊂ VS
1: times← log2|g|
2: nskip← 0
3: while nskip < times and |g|≥ 1 do
4: pairs← Sample log2|g| node pairs from g
5: u, v ← arg max(i,j)∈pairs gain(i, j)
6: if gain(u, v) > 0 then
7: Merge u and v
8: nskip← 0
9: else

10: nskip← nskip+ 1
11: end if
12: end while

500), the expected running time of merging a group
is O(

∑
u∈g du). Thus, merging all the groups costs

O(
∑

g

∑
u∈g du) = O(|E|). In conclusion, the algorithm

runs T iterations, and the total time complexity is
O(T · |E|). �

3.5 Compatibility with Existing Methods As a
reconstruction scheme is the heart of most summa-
rization models, our novel CR reconstruction scheme
can replace the commonly-used uniform reconstruction
scheme, and upgrade the existing models and then the
corresponding algorithms. We show in the following two
examples:

• k-Gs (CR): k-Gs [15] greedily merges (super)node
pairs that lead to the least increase of the L1
error between the uniformly reconstructed graph
and the original one at every step. k-Gs (CR)
replaces the uniform reconstruction with our CR
scheme and our KL-divergence encoding scheme in
Equation (3.5).

• SSumM(CR): SSumM[14] greedily merges (su-
per)node pairs and sparsifies (i.e. drops) (su-
per)edges simultaneously to obtain a sparse sum-
mary graph. As SSumM greedily finds a summary
graph based on the MDL principle and the uniform
reconstruction scheme, we can smoothly upgrade it
with our CR scheme and error encoding scheme
used in the optimization objective and algorithm.

As such, k-Gs (CR) and SSumM(CR) yield degree-
preserved summary graphs, and inherit the bounding
graphs’ spectra as our theoretical analysis.

4 Experiments

In this section, we design experiments to answer the
following questions:
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Figure 2: Average reconstruction error1 (KL-divergence) of two reconstruction schemes. Ours achieves lower error
when the degrees of nodes are highly skewed (larger α indicates higher skewness), as in many real-world graphs.

• Q1. Comparison of reconstruction schemes
Does our CR scheme outperform the uniform re-
construction scheme?

• Q2. Effectiveness Does DPGS yield better
summarization compared to the baselines on real-
world datasets?

• Q3. Compatibility How much can existing graph
summarization methods be improved when they are
equipped with our reconstruction scheme?

• Q4. GNN application Can we train graph neural
networks effectively on summary graphs?

• Q5. Scalability Does DPGS scale well with the
size of the input graph?

4.1 Q1. Comparison of reconstruction schemes
We generate synthetic data using the following random
graph models:

• G(n, p) model (also known as Erdős-Rényi
model) [7], with connection probability p = 0.02.

• Random graph model with power-law degree dis-
tribution, with parameter α = 3.0, 3.5, and 4.0

The main difference between these two models is that
the degrees of nodes in Erdős-Rényi graphs are nearly
uniform, while those in power-law graphs are highly
skewed (larger α implies higher skewness).

We compare our CR scheme with the uniform recon-
struction scheme using the summary graphs obtained by
SSumM [14]. Note that we fix the optimization method
to fairly compare the two reconstruction schemes. As
shown in Figure 2, our CR scheme achieves lower re-
construction error (i.e. KL-divergence error) than the

1The values are normalized by the size of graph, i.e. |V |.

Table 2: Dataset statistics

Dataset #Nodes #Edges Description

ppi 14,755 228,431 Protein
ppi-large 56,944 818,786 Protein

soc-Epinions1 75,879 405,740 Social
flickr 89,250 449,878 Social
reddit 232,965 11,606,919 Social
yelp 716,847 7,335,833 Social

amazon 1,569,960 132,954,714 Co-purchase
amazon2m 2,449,029 61,859,140 Co-purchase

uniform reconstruction scheme. The margin of improve-
ment is significantly large when the degree distribution
is highly skewed, as in many real-world graphs. Sim-
ply put, our CR scheme gives better summaries of real-
world graphs than the uniform reconstruction scheme.

4.2 Q2. Effectiveness We compare our DPGS
algorithm with k-Gs [15] and SSumM [14] on eight real-
world datasets listed in Table 2.

We implement k-Gs in C++ and adopt the Sam-
plePairs strategy for summarizing large graphs. For
SSumM, we use the open-sourced code2. The number
of iterations in SSumM and DPGS is set to 30. The
number of bands (i.e., b) in LSH grows gradually as
the iteration proceeds, and the minimum and maximum
numbers are set to 3 and 8 respectively.

We summarize the graphs aiming at different frac-
tions of node sizes (from 80% to 20%), while reduc-
ing the graph size, and compare the relative description
lengths3 of different methods. The results are shown in
Figure 3. It can be seen that the proposed DPGS al-
gorithm achieves better summarization in most of the
datasets, except the flickr dataset where the perfor-

2https://github.com/KyuhanLee/SSumM
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Figure 3: Relative description length3 (the smaller, the better) of different methods on 8 datasets. DPGS yields
the best summarization result on most datasets. Due to the high complexity of k-Gs , it fails on the large datasets
in the second row.

mance gap is marginal. However, in the other datasets,
our DPGS algorithm achieves up to 28.85% improve-
ment in terms of the relative description length.

4.3 Q3. Compatibility In this experiment, we
show how much our CR scheme improves the existing
graph summarization methods. We compare k-Gs and
SSumM, which are based on the uniform reconstruc-
tion scheme, with k-Gs (CR) and SSumM(CR), which
are upgraded as described in subsection 3.5. Note that
the algorithms with the upgraded models search sum-
mary graphs by optimizing the new objective functions,
which are different from simply reconstructing a given
summary graph with the configuration-based scheme in
Section 4.1. Since k-Gs searches for the best summary
graph subject to a given target number of supernodes,
we measure the KL-divergence error on average while
changing the target number of supernodes (from 10%
to 90% of the number of nodes in the original input
graph). On the other hand, SSumM searches for the
best summary graph subject to a given target size in-
bits. Thus, we measure the average KL-divergence error
while changing the target size in bits (from 10% to 80%
of the original input graph size).4

3defined as (L(M) + L(D | M))/L(D), where L(D) is the encod-
ing length of the original graph when it is encoded as the summary

graph is encoded.
4The KL divergence error (i.e., Equation (3.5)) is not defined

for dropped superedges, which may contain (i, j) ∈ E such that

As seen in Figure 4, the variants with our CR
scheme consistently yield more accurate summaries than
the original methods based on the uniform reconstruc-
tion scheme in all three datasets. For example, k-Gs
(CR) gives a 2.8× more accurate summary graph with
the same number of supernodes than original k-Gs in the
ppi-large dataset. Moreover, SSumM(CR) gives a sum-
mary graph with 1.2× smaller KL-divergence error but
smaller sizes than original SSumM in the soc-Epinions1
dataset. Simply put, our CR scheme as the heart of
the summarization models helps the existing methods
to find a better solution.

4.4 Q4. Training GNNs on summary graphs
One important application of graph summarization is
to accelerate graph mining algorithms, and graph neu-
ral networks (GNNs) are one of the most memory-
consuming and time-consuming graph mining algo-
rithms currently. Ideally, we can reduce the running
time and required memory via graph summarization,
without sacrificing the performance of GNNs much.
Thus, we design experiments to check how our sum-
marization method affects the performance of GNNs.
Specifically, we choose the task of node classification to
test the performance. Since the graphs we are deal-

A′(i, j) = 0 and A(i, j) 6= 0. Thus, we add the correction of
each edge belonging to each dropped superedge to the model cost,

and we increase the description length (and thus relative size)
accordingly.
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Figure 4: Our CR reconstruction scheme improves k-Gs and SSumM. Equipped with our scheme, k-Gs and
SSumM consistently yield better summary graphs with smaller reconstruction errors5 than the original methods.
Larger improvement margins can be seen when aiming at a smaller summary graphs.
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Figure 5: Micro F1-scores on the node classification task
when using GNN models trained on summary graphs
with different sizes.

ing with are large, we use GraphSAINT [27], a scalable
GNN model based on subgraph sampling.

The procedure is as follows: We train GraphSAINT
models on summary graphs, keep models’ parameters,
and test the node classification performance on the
original graphs. Features of supernodes are obtained
by simple aggregation (i.e., sum) of features of inside
nodes, and class labels of supernodes are determined
by a majority vote of inside nodes. We follow the

5The values are normalized by the number of nodes, i.e., |V |.

original GraphSAINT paper’s configurations and use
the random walk sampler, which achieves the best
performance in most datasets.

We perform experiments on two datasets: the flickr
and reddit datasets. The micro F1-scores are reported
in Figure 5. Surprisingly, summarization does not harm
the performance, even when the size of the summary
graphs is 30% of the size of the original ones.

4.5 Q5. Scalability We evaluate the scalability of
our method on the largest amazon dataset, which con-
tains 1,569,960 nodes and 132,169,374 edges. We run
DPGS algorithm on a number of graphs that are ob-
tained from the original dataset by randomly sampling
different numbers of nodes. As seen in Figure 6, our
proposed DPGS algorithm scales linearly with the
number of edges.

5 Conclusion

In this work, we present DPGS, an efficient and ef-
fective graph summarization algorithm using a novel
configuration-based reconstruction scheme, and we the-
oretically show that it bounds the perturbation of graph
spectrum. The proposed reconstruction scheme can also
be applied to existing graph summarization methods to
improve their reconstruction accuracy. Extensive exper-
iments on both synthetic and real-world datasets show
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Figure 6: DPGS is scalable. The running time scales
linearly with the number of edges.

that DPGS yields better summary graphs compared to
several state-of-the-art methods. Moreover, we show
that the summary graphs can be used to train GNN
models with much less computational resources while
maintaining comparable performance.
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