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A B S T R A C T   

Accurate nowcasting is critical for preemptive action in response to heavy rainfall events (HREs). However, 
operational numerical weather prediction models have difficulty predicting HREs in the short term, especially for 
rapidly and sporadically developing cases. Here, we present multi-year evaluation statistics showing that deep- 
learning-based HRE nowcasting, trained with radar images and ground measurements, outperforms short-term 
numerical weather prediction at lead times of up to 6 h. The deep learning nowcasting shows an improved 
accuracy of 162%–31% over numerical prediction, at the 1-h to 6-h lead times, for predicting HREs in South 
Korea during the Asian summer monsoon. The spatial distribution and diurnal cycle of HREs are also well 
predicted. Isolated HRE predictions in the late afternoon to early evening which mostly result from convective 
processes associated with surface heating are particularly useful. This result suggests that the deep learning 
algorithm may be available for HRE nowcasting, potentially serving as an alternative to the operational nu
merical weather prediction model.   

1. Introduction 

Global damages from natural disasters have dramatically increased 
in recent decades (Kharin et al., 2013; Zhang et al., 2018; WMO et al., 
2021). Among others, weather and climate hazards account for 50% of 
all disasters, 45% of all reported deaths, and 74% of all reported eco
nomic losses (WMO et al., 2021). Of the top 10 weather and climate 
hazards, rainfall-related disasters, such as storms and floods, occupy the 
first and second positions (WMO et al., 2021). Their damage cost is 
expected to even rise in the future, as the frequency and intensity of 
rainfall extremes are anticipated to increase under global warming 
(Zhang et al., 2018; Fowler et al., 2021). To mitigate such risks, it is 
imperative to have precise rainfall prediction across the lead times. 
Among others, the rainfall nowcasting, which provides detailed infor
mation about the locations and timings of heavy rainfall events (HREs) 
with lead times of up to several hours, is particularly crucial for taking 
proactive steps to minimize damages within an appropriate time frame. 

Several approaches to rainfall nowcasting have been proposed. 
Traditional and common approaches include statistical predictions 

based on rain gauge data (Johnson and Bras, 1980; Browning and 
Collier, 1989) and extrapolation of weather radar and satellite mea
surements (Turner et al., 2004; Germann et al., 2006; Kim and Cho, 
2012). With increasing computing resources, numerical weather pre
diction (NWP) models, which assimilate all available observations and 
solve fundamental physical-law equations, have become increasingly 
important (Shahrban et al., 2016; Pu and Kalnay, 2018). However, NWP 
models have substantial uncertainties in predicting rapidly developing 
local convective systems, necessitating fine-scale observations and 
advanced techniques for assimilating them into initial fields, which may 
involve managing thermodynamically unstable flow states (Ducrocq 
et al., 2000; Klemp, 2006). Accurate parameterizations of subgrid-scale 
processes (e.g., turbulence, microphysics) are also essential. As a result, 
there have been challenges for NWP models to be successful in the 
prediction of localized precipitation systems (e.g., Ducrocq et al., 2000; 
Lin et al., 2005; Kim and Cho, 2012; Brotzge et al., 2023). 

Recently, deep learning algorithms have been applied to rainfall 
nowcasting. Several studies, conducted for North America (Chen and 
Wang, 2022; Espeholt et al., 2022), Europe (Ayzel et al., 2020; Ravuri 
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et al., 2021), and Asia (Yen et al., 2019; Zhang et al., 2021; Ko et al., 
2022; Oh et al., 2022), have demonstrated their capability and strength 
in predicting weak and moderate rainfall events at lead times of 1–2 h. 
Despite such successes, challenges still persist when it comes to the 
prediction of HREs (Ravuri et al., 2021; Chen and Wang, 2022; Oh et al., 
2022). Only a few studies have reported promising results in the now
casting of HREs (Espeholt et al., 2022; Zhang et al., 2023), and thus the 
usefulness of deep learning models remains not generalized. 

Here, we evaluate the performance of deep-learning-based HRE 
nowcasting for the summer season of 2020–2022 in South Korea, 
compared to the 6-h numerical weather predictions. Various types of 
HREs develop during the Asian summer monsoon. They include HREs 
associated with monsoon rain bands, mesoscale disturbances, localized 
thermodynamic instability, and typhoons (Park et al., 2021a; Oh et al., 
2022). Their properties vary immensely depending on the region and 
timing of occurrences (Jo et al., 2020; Park et al., 2021a). As such, our 
evaluation also centers on different HRE types. Specifically, this study 
compares the DEEP-learning-based RAin Nowcasting and Estimation 
(DEEPRANE, Ko et al., 2022; Oh et al., 2022) to the Korea Local Analysis 
and Prediction System (KLAPS, Shin et al., 2022; Song and Roh, 2023) of 
the Korea Meteorological Administration (KMA). Only the summer 
season (June–August), which accounts for ~66% of the annual precip
itation with frequent HREs (Park et al., 2021a; Oh et al., 2022), is 
considered. As shown below, the DEEPRANE outperforms the KLAPS for 
HRE nowcasting for all lead times from 1 to 6 h, regardless of HRE types. 
A greater improvement is particularly reported in predicting spatially 
localized HREs which are typically not well predicted by NWP models. 

2. Data and methods 

2.1. Deep learning model 

This study uses the deep learning model, DEEPRANE (Ko et al., 2022; 
Oh et al., 2022). The basic structure of this model follows that of U-Net 
(Ronneberger et al., 2015) with a contracting path to reduce input image 
resolution and an expanding path to re-expand contracted images 
(Fig. 1). In the contracting path, i.e., downsampling steps, the resolution 
of the input data is halved by merging each four incident pixels, while 
the number of latent features per pixel, which means the dimension of 
the vector representing each pixel, is doubled. In the expanding path, i. 
e., upsampling steps, the resolution of the input data is doubled, while 

the number of latent features per pixel is halved. In addition, skip con
nections are used between the contracting path and expanding path. 
These connections match the downsampling steps and upsampling steps 
so that the intermediate output of each downsampling step, which in
dicates the vector representation of each pixel, is additionally consid
ered to determine the output of the corresponding upsampling step. 

Compared to the conventional U-Net, this model has two improved 
components (Ko et al., 2022). The first one is the pre-training process 
that optimizes the parameters for predicting radar reflectivity used in 
rainfall nowcasting. This process initializes the model with pre-trained 
parameters, which are then fine-tuned in the subsequent training pro
cess for rainfall nowcasting. The second one is a novel loss function 
based on critical success index (CSI) scores, which effectively addresses 
the issue of class imbalance in rainfall data. The loss function is con
structed by true positives (Hit, see Method), false positives (False alarm), 
and false negatives (Miss), which are used to calculate CSI, based on the 
output probability distribution. This new loss function allows the deep 
learning model to achieve better predictive performance at relatively 
long lead times, 3–6 h (Ko et al., 2022), than the widely-used cross-
entropy loss (Cox, 1958) and focal loss (Lin et al., 2017). See more de
tails for the DEEPRANE in Ko et al. (2022). 

An input process of this study consists of seven channels of radar 
reflectivity images, while six additional channels encode the target time. 
The seven input channels are the seven most recent radar reflectivity 
images taken at 10-min intervals, i.e., timestamps t–60, t–50, …, and t. 
The six output channels represent target times at 60-min intervals, 
which are given by t+60, t+120, …, and t+360. The input and output 
have dimensions of 1 468 × 1 468 and 706 × 706, respectively, both 
with a horizontal resolution of 1 km. The final model output is a prob
ability distribution for rainfall events at each pixel. It signifies the 
probability of rainfall events falling into the three categories, i.e., < 1 
mm h-1, 1–10 mm h-1, and > 10 mm h-1, for lead times ranging from 1 h 
to 6 h. 

In this study, the radar reflectivity images taken at 10-min intervals 
are collected for eight years from 2014 to 2022 (Fig. S1a). For the same 
period, rainfall observations from 714 AWSs are also gathered 
(Fig. S1b). The pre-training is performed on all radar images available 
from 2014 to 2018 (5 years). During the fine-tuning process, radar and 
AWS datasets are only utilized for the months of June through 
September within the same timeframe (Fig. 1). This optimization aims to 
enhance model parameters specifically for predicting summer rainfall. 

Fig. 1. Overview of deep-learning model. Deep-learning-based Rain Nowcasting and Estimation (DEEPRANE) is based on U-Net but is equipped with a new pre- 
training scheme and new loss function, both tailored specifically for rainfall nowcasting. In the pre-training phase, DEEPRANE is trained to predict radar reflec
tivity in the near future. In the fine-tuning phase, DEEPRANE is initialized with the pre-trained parameters and then fine-tuned for rainfall nowcasting. A new loss 
function based on critical success index (CSI) is used to mitigate the class imbalance problem. See the section on deep-learning model and method for the details. 
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The year 2019 is used for verification. Previous studies (Ko et al., 2022; 
Oh et al., 2022) have demonstrated that this approach effectively pre
dicts summer rainfall events in South Korea. Using this model, rainfall 
nowcasting is conducted for three years from 2020 to 2022 and its 
performance is compared with the KLAPS. 

2.2. KLAPS 

This study uses the KMA-operational short-term numerical weather 
prediction model, KLAPS (Fig. S2, Shin et al., 2022). This model is a 
KMA modified version of Local Analysis and Prediction System (LAPS) 
developed by the US National Oceanic and Atmospheric Admin
istration/Forecast System Laboratory (NOAA/FSL; McGinley et al., 
1991; Albers, 1995). Recently, the dynamics and physics processes of 
the KLAPS were updated based on Weather Research and Forecasting 
(WRF) model (Shin et al., 2022; Song and Roh, 2023). The physics suites 
other than radiative transfer parameterization were the WRF double 
moment 7-class microphysics (Bae et al., 2019), unified Noah land 
surface model (Skamarock et al., 2019), simplified Arakawa-Schubert 
cumulus modified by the Korea Institute of Atmospheric Prediction 
Systems (Kwon and Hong, 2017), Shin and Hong boundary layer (Shin 
and Hong, 2015), and revised MM5 Monin-Obukhov surface layer 
(Jiménez et al., 2012). 

The three-dimension output of the Unified Model (UM) with a hor
izontal resolution of 1.875◦, a KMA-operational global weather predic
tion system, is used as the first guess input data for KLAPS (Fig. S2). The 
various meteorological observations, such as surface observation data 
obtained by buoys, Meteorological Aerodrome Reports (METARs), AWS, 
upper-air sounding (TEMP) data from the Global Telecommunication 
System (GTS), wind data obtained by the KMA wind profiler, Aircraft 
Meteorological Data Relay (AMDAR) data, GK-2A satellite data, Global 
Navigation Satellite System (GNSS) data, and radar reflectivity, are also 
used (Shin et al., 2022). This model is designed to predict all possible 
meteorological elements over the Korean Peninsula with a 5-km hori
zontal resolution. Forecasts are generated every hour with lead times of 
up to 12 h. More information regarding the KLAPS procedure can be 
found in Shin et al. (2022) and Song and Roh (2023). 

2.3. Evaluation strategies 

The performance of the nowcasting system is evaluated against 
hourly AWS rainfall data for June–August 2020–2022 (Fig. S1b). 
Currently, the KMA is implementing a real-time quality control system 
for meteorological observation data, which includes missing value test, 
physical limit test, step test, internal consistency test, persistence test, 
climate range test, and others (Zahumenský 2004). The AWS data are 
also produced using this quality control process. To facilitate the 
one-to-one comparison, the DEEPRANE and KLAPS grid data are inter
polated to the nearest AWS. 

We use the F1 score as the primary evaluation metric. This score, 
which takes into account both the precision and recall metrics, has been 
widely used in machine learning to evaluate the accuracy of the model 
(e.g., Umer et al., 2020; Hicks et al., 2022; Ko et al., 2022). The precision 
is defined as the number of true positives divided by the number of all 
samples predicted to be positive, including those not correctly identi
fied, i.e., H/(H + F), while the recall is defined as the number of true 
positives divided by the number of all samples that should have been 
identified as positive, i.e., H/(H + M). 

F1=
2

precision− 1 + recall− 1 = 2
precision × recall
precision + recall

=
2H

2H + F + M
(1) 

Here, H is the number of correctly predicted events that match the 
observed events, called Hits, F is the number of predicted events that do 
not match the observed events, called False alarms, and M is the number 
of predictions missing the observed events, called Misses. The highest 
possible value of F1 score is 1, indicating perfect precision and recall, 

and the lowest possible value is 0, when either precision or recall is zero. 
In addition to the F1 score, the CSI, probability of detection (POD), 

false alarm rate (FAR), and bias score (BS) are also used for evaluation. 

CSI =
H

H + F + M
(2)  

POD=
H

H + M
(3)  

FAR=
F

H + F
(4)  

BS=
H + F
H + M

(5) 

The CSI score measures the fraction of correctly predicted rainfall 
events to the total rainfall events except correct negatives (i.e., no 
rainfall in both observation and prediction). It ranges from 0 to 1 with a 
perfect score of 1. This score is not affected by the number of no-rainfall 
event predictions and widely used in weather and climate predictions 
(Ravuri et al., 2021; Oh et al., 2022). The POD denotes the fraction of 
correctly predicted rainfall events to the observed rainfall events. Its 
range is 0–1, and a perfect score is 1. The FAR is the fraction of false 
alarms to all predicted rainfall events, ranging from 0 to 1, with a perfect 
score of 0. The BS is the ratio of the total number of predicted rainfall 
events to the observed rainfall events. Its range is 0 to ∞, and a perfect 
score is 1. To enable comprehensive evaluation using the four metrics 
being represented together, a performance diagram (Roebber, 2009) is 
utilized. The bootstrapping method, repeating 1 000 re-samplings and 
evaluations from the verification data, is applied to estimate the sam
pling uncertainty about the evaluated value in the performance 
diagram. 

In order to investigate the relative improvement in accuracy of the 
DEEPRANE against the KLAPS in terms of F1 score, the improvement 
rate (IR, unit: %) is defined as follows: 

IR (%)=

(
F1D − F1K

F1K

)

× 100 (6) 

Subscripts D and K denote DEEPRANE and KLAPS. This study ex
amines the degree of IR with varying lead times, rainfall intensities, and 
rainfall types. 

2.4. Definition of rainfall events 

This study uses two rainfall classes: moderate rainfall events (MREs) 
with intensity greater than 1 mm h− 1, and heavy rainfall events (HREs) 
with intensity greater than 10 mm h− 1. Note that MREs include HREs to 
ensure enough sample size. To explore how the model performance is 
influenced by rainfall types, HREs are classified into three types by 
employing self-organizing map (SOM) algorithmn (Kohonen, 1998, 
2013). The SOM is an unsupervised neural network algorithm that 
compresses high-dimensional information into a low-dimensional array 
based on iterative training and Euclidean distance (Jo et al., 2020; Ko 
et al., 2022; Oh et al., 2022). The SOM algorithm is applied to 2 306 
HREs that were identified during summer season of 2020–2022 
(Fig. 5a–c). The parameters of the SOM algorithm used in this study are 
listed in Table S1. The KMA hourly precipitation reanalysis (KMAPR) 
data, derived from AWS precipitation and weather radar reflectivity (Jo 
et al., 2020; Oh et al., 2022), are used for clustering rainfall events. The 
KMAPR data provides a 5 km × 5 km horizontal resolution covering the 
Korean Peninsula (Fig. S1c). 

S.-G. Oh et al.                                                                                                                                                                                                                                   
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3. Results 

3.1. Heavy rainfall nowcasting 

The HREs, defined as rainfall events with 1-h accumulated rainfall 
amount greater than 10 mm, were prevalent in the central and southern 
parts of South Korea with a higher frequency in the western half of the 
country during the summer season of 2020–2022 (Fig. 2a). The west
ward concentration of HREs is related to the eastward-moving nature of 
rainstorms from the Yellow Sea to the Korean Peninsula because of the 
midlatitude westerly and their impinging on topography (Fig. 2b) (Park 
et al., 2021a, 2021b). In general, the DEEPRANE shows more accurate 

rainfall nowcasting compared to the KLAPS across the country, as 
measured by the F1 score. This superiority is observed for all lead times 
from 1 h to 6 h. The DEEPRANE and KLAPS show the F1 scores of 
approximately 0.4–0.6 and 0.1–0.3, respectively, at the lead time of 1 h 
(Fig. 2c–f). Although the F1 scores of the DEEPRANE decrease with 
increasing lead time, they are still 0.3–0.5 at lead times of 2–3 h, double 
the KLAPS’s scores (Fig. 2d,e,g,h). Even for longer lead times of 4–6 h, 
the DEEPRANE shows relatively higher F1 scores than the KLAPS 
(Fig. S3). Such superiority of the DEEPRANE over the KLAPS is also 
found in the CSI score (Figs. S4 and S5). Note that the two models predict 
similar occurrence frequency of HREs, as indicated by their comparable 
bias scores mostly falling between 0.8 and 2.0 (Figs. S6 and S7). 

Fig. 2. Model performance for heavy rainfall event (HRE) nowcasting in South Korea for summer season of 2020–2022. Spatial distribution of (a) the number of 
HREs observed by automatic weather station (AWS) during June–August 2020–2022 in South Korea and (b) topography (m). (c–h) The F1 score of the DEEPRANE 
and Korea Local Analysis and Prediction System (KLAPS, see Method and Fig. S1) for HRE nowcasting at lead times of 1–3 h. F1 score of “-999” indicates no 
correctly predicted. 
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Therefore, the superior accuracy of the DEEPRANE against the KLAPS 
results from a more precise prediction of the HRE timing, rather than the 
HRE occurrence itself. 

The regional-averaged accuracy of HRE nowcasting with respect to 
lead time is investigated in Fig. 3. The F1 scores of the DEEPRANE and 
KLAPS decrease from 0.55 to 0.17 and from 0.21 to 0.13, respectively, as 
the lead time increases from 1 h to 6 h. It highlights that the DEEPRANE 
outperforms the KLAPS for all lead times (compare red and black lines), 
with significant improvement rates against the KLAPS ranging from 31% 
to 162% (blue bars). The improvement rates are higher at shorter lead 
times. Similar results are also found for moderate rainfall events (≥1 
mm h− 1) (Fig. S8). These results suggest that the DEEPRANE could offer 
improved rainfall nowcasting than the KLAPS, potentially enabling 
more effective preparation for hydrological disasters. 

3.2. Diurnal variation of heavy rainfall events 

The diurnal variation of summer monsoon rainfall in South Korea is 
characterized by a bi-modal distribution with one peak occurring in the 
early morning (approximately 4–8 local time) and the other in the late 
afternoon to early evening (approximately 15–20 local time) (Oh and 
Suh, 2018; Jo et al., 2020). These two peaks are attributed to different 
physical processes: the early morning peak is driven by nocturnal 
cooling of cloud tops, while the late afternoon-early evening peak is 
associated with surface heating by solar insolation during the daytime 
(Zhou et al., 2008; Jo et al., 2020). This bi-modal distribution is 
distinctly observed in HREs in the summer season of 2020–2022 
(Fig. 4a). 

The DEEPRANE consistently outperforms the KLAPS throughout the 
diurnal cycle. Its F1 score is higher than ~0.5 at a lead time of 1 h for all 
local times, which is better than that of the KLAPS with ~0.2 (Fig. 4b 
and c). Unlike the KLAPS that shows poor performance in the afternoon 
and evening nowcasting (Fig. 4c), the DEEPRANE performs well for both 
early morning and late afternoon-early evening HREs (Fig. 4b). As a 
result, the performance gap between the two models is relatively larger 
in late afternoon-early evening HRE nowcasting (compare Fig. 4b and c). 
A similar result is obtained for moderate rainfall events (Fig. S9) and for 
the CSI-based assessment (Fig. S10). 

A relatively poor performance of the KLAPS at late afternoon-early 
evening hours results from significant over-prediction of HREs 
(Fig. 4e). The late afternoon-early evening HREs are mainly associated 
with deep convection caused by solar heating of the surface (Zhou et al., 
2008; Jo et al., 2020). Since convection involves complex small-scale 

processes, many of which occur at a spatial scale smaller than the nu
merical model’s grid scale and their representation in the model depends 
on subgrid-scale process parameterization. Those parameterizations can 
lead to systematic errors in convective rainfall prediction (Lin et al., 
2005; Oh and Suh, 2018; Brotzge et al., 2023). Given this difficulty of 
NWP models, recent studies have highlighted the potential usefulness of 
deep learning algorithms in convective rainfall prediction (Zhou et al., 
2019; Su et al., 2020; Zhang et al., 2023). Our result provides a piece of 
additional evidence that the deep learning model could be a great 
alternative in convective rainfall nowcasting. 

3.3. Heavy rainfall types 

The HREs are often spatially and temporally heterogeneous, exhib
iting localized characteristics varying with regions (Lee and Seo, 2008; 
Jo et al., 2020; Park et al., 2021b). Such natures should be taken into 
account when devising effective preparation and response strategies to 
HRE-related disasters. In this regard, we further evaluate the perfor
mance of the DEEPRANE by considering HRE types. Following Jo et al. 
(2020), HREs are classified into isolated, central, and southern rainfall 
types (Fig. 5a–c), using the SOM algorithm (Kohonen, 1998, 2013) as 
described in Section 2.4. 

The central and southern rainfall types (Fig. 5b and c) are related to 
the synoptic-scale systems located over the central and southern parts of 
the country (Jo et al., 2020). In contrast, the isolated rainfall type 
(Fig. 5a) is caused by local processes which occur sporadically 
throughout the country (Jo et al., 2020; Oh et al., 2022). Although the 
isolated rainfall events account for the majority of HREs during the 
summer monsoon period (~80%, see Fig. 5a), NWP models struggle to 
accurately predict them due to their small spatial scale and short lifetime 
(Lin et al., 2005; Oh and Suh, 2018). 

The performance of two nowcasting systems is summarized in 
Fig. 5d–f using a performance diagram which combines the POD (y- 
axis), success ratio (x-axis) defined by one minus FAR, BIAS (dashed 
lines), and CSI (solid contours). See Section 2.3 for the details. The result 
confirms that the DEEPRANE consistently outperforms the KLAPS for all 
HRE types, especially at shorter lead times (Fig. 5d and e). At the lead 
time of 1 h, the CSI scores of the DEEPRANE are greater than 0.35 across 
all HRE types, whereas those of the KLAPS are less than 0.2 (compare red 
marks). The bias scores are slightly smaller than one, but comparable 
between the two systems. The CSI scores of the DEEPRANE at lead times 
of 2–4 h are still more than double those of the KLAPS, although the 
DEEPRANE slightly over-predicts the central and southern HREs as 
indicated by the BIASs of ~2. 

Upon examining the performance of the two systems for three HRE 
types, it is evident that they show relatively lower accuracy in predicting 
isolated HREs (represented by the circles in Fig. 5d and e; see also 
Fig. 5a), compared to the central and southern HREs (triangles and 
squares in Fig. 5d and e; see also Fig. 5b and c). However, it is worth 
noting that improvement of the DEEPRANE to the KLAPS is largest for 
predicting isolated HREs at all lead times (Fig. 5f, see also Fig. S11). This 
result can be linked to the better performance of the DEEPRANE than the 
KLAPS for the late afternoon-early evening HRE predictions as shown in 
Fig. 4. The isolated HREs are only weakly influenced by synoptic-scale 
environment. They are instead dominated by local convective pro
cesses and thus have a shorter lifespan than spatially-organized HREs (i. 
e., central and southern HREs), which pose challenges to NWP models in 
accurate nowcasting (Lin et al., 2005; Oh and Suh, 2018). This result 
suggests that the DEEPRANE can be an innovative alternative to 
enhance the nowcasting of isolated rainfall extremes with a short 
lifespan. 

4. Summary and discussion 

The present study evaluates the deep-learning-based rainfall now
casting system, DEEPRANE, against the 6-h numerical weather 

Fig. 3. Overall accuracy of HRE nowcasting with varying lead times. Red and 
black solid lines denote the F1 score of Deep-learning-based Rain Nowcasting 
and Estimation (DEEPRANE) and Korea Local Analysis and Prediction System 
(KLAPS), respectively, during summer season of 2020–2022 in South Korea. 
Blue bars represent the improvement rate (IR) of DEEPRANE over KLAPS (see 
Method). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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predictions of the KLAPS for the summer season of 2020–2022. We 
present that the DEEPRANE outperforms the KLAPS in heavy rainfall 
nowcasting for all lead times. Quantitatively, the accuracy is higher than 
the KLAPS by 162%–31% at the 1-h to 6-h lead times. The DEEPRANE is 
particularly useful for nowcasting of isolated HREs and HREs in the late 
afternoon to early evening which mostly result from convective pro
cesses associated with surface heating. 

While previous studies have introduced several deep-learning-based 
rainfall nowcasting systems (e.g., Ayzel et al., 2020; Chen and Wang, 
2022; Espeholt et al., 2022), there remains a scarcity of statistics 
regarding their performance over multiple years especially for heavy 
rainfall nowcasting. The present study quantitatively shows that the 
deep learning model has a clear advantage over the operational NWP 
model in moderate and heavy rainfall nowcasting. It supports the 
argument that the deep learning model can be a feasible alternative to 
the NWP model for rainfall nowcasting. 

Several challenges remain to improve the deep learning model. The 
DEEPRANE is designed to predict three rainfall categories, i.e., rainfall 

events of < 1 mm h− 1, 1–10 mm h− 1, and > 10 mm h− 1. However, the 
rainfall amount or intensity predictions are more important for effective 
pre-emptive action to minimize the socioeconomic damages caused by 
HREs. To address this issue, a more detailed subdivision of rainfall 
categories could be implemented in the next version. This update will 
enable the deep learning nowcasting to make more informed decisions 
with comprehensive information on rainfall amounts. 

Another possible way to improve the model is to adopt the ensemble 
approach. The multiple deep learning models, with different algorithms, 
could be combined to construct the ensemble prediction system, similar 
to the multi-model ensemble method commonly utilized in climate 
predictions (Xiao et al., 2018; Mohammed and Kora, 2021). Such 
approach could lead to the development of probabilistic rainfall 
nowcasting. 

Data availability 

The software of deep-learning model used in this study, DEEPRANE 

Fig. 4. Diurnal variation of HREs and their predictions by deep-learning nowcasting and operational numerical weather prediction model (a) Observed diurnal 
variation of the number of HREs aggregated in South Korea during summer season of 2020–2022, and the performance of (b, d) Deep-learning-based Rain Now
casting and Estimation (DEEPRANE) and (c, e) Korea Local Analysis and Prediction System (KLAPS) in terms of (b, c) the F1 score and (d, e) bias score (BS) with 
respect to the local time and lead time. 
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version 1.0, is released under the GPL-3.0 license at https://github.com/ 
jihoonko/DeepRaNE. To run the model, Python 3.6.9 or later, NumPy 
1.19 or later, and Pytorch 1.6.0 or later are required to be installed in the 
system. The radar reflectivity and AWS data across South Korea used in 
this study are available on Korea Meteorological Administration data 
released website https://data.kma.go.kr/cmmn/main.do. The KLAPS 
prediction data can be also obtained from https://www.data.go.kr/. 
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