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Abstract

Interactions that involve a group of people or objects are omnipresent in practice. Some examples
include the list of recipients of an email, the group of co-authors of a publication, and the users participat-
ing in online discussion threads. These interactions are modeled as hypergraphs in which each hyperedge
is a set of nodes constituting an interaction. In a hypergraph, the k-core is the sub-hypergraph within
which the degree of each node is at least k. Investigating the k-core structures is valuable in revealing
some properties of the hypergraph, one of which is the network behavior when facing attacks. Networks
in practice are often prone to attacks by which the attacker removes a portion of the nodes or hyperedges
to weaken some properties of the networks. The resilience of the k-cores is an indicator of the robustness
of the network against such attacks.

In this work, we investigate the core resilience of real-world hypergraphs against deletion attacks. How
robust are the core structures of real-world hypergraphs in these attack scenarios? Given the complexity
of a real-world hypergraph, how should we supplement the hypergraph with augmented hyperedges to
enhance its core resilience? In light of several empirical observations regarding core resilience, we present
a two-step method that preserves and strengthens the core structures of the hypergraphs.
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1 Introduction
Graphs are employed to represent social networks in which people and objects are connected. Such modeling
allows for an investigation of social networks in a convenient manner. The progressive studies on the prop-
erties of graphs offer not only interesting insights into how social beings interact but also several practical
applications, such as marketing influence maximization [1], fraud detection [2], and product recommenda-
tion [3].

Some of the most important properties of graphs revolve around the concept of k-core [4]. The k-core of
a graph is the maximal sub-graph in which the degree of each node is at least k. The core number of a node
v is the maximum integer k such that v is in the k-core. The core number has demonstrated effectiveness in
indicating the centrality of nodes in a network, especially in the problems of finding influential nodes [5, 6]
and graph clustering [7].

Real-world graphs often face attacks that remove or render several parts of the network impaired [8], and
a line of work has investigated the resilience of the core structure against such attacks [9, 10, 11]. That is,
in these works, resilience is characterized by the ability of the core structure of a graph to maintain one or
several properties after a portion of the network has been removed. These works focus on how the size of the
k-core decreases or how the ranking of core numbers is altered as the consequence of removing several nodes
or edges from the network. One may devise strategies to delete some nodes or edges to minimize the k-core
size [10, 11, 12] or supplement the network with augmented edges to consolidate the core structure [13, 14, 9].

Despite extensive studies on the properties and robustness of graphs, much is left undiscovered for
hypergraphs. Hypergraphs, which are the extension of pair-wise graphs allowing multiple nodes to be in
the same hyperedge rather than just two, naturally represent group interactions that are omnipresent in
practice [15, 16, 17, 18, 19]. For example, each hyperedge may represent a publication whose co-authors
are nodes in the hypergraph, an email involving several email addresses as nodes, or a discussion thread
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consisting of several participants. Hypergraphs have been applied in the domain of image processing [20],
social networks [21, 22], contagion models [23, 24], electronic commerce [25], and circuit design [26].

Real-world hypergraphs may also face attacks that involve removing a portion of the network [27, 28] for
the same reasons as graphs. Hypergraphs are abstract structures representing several types of higher-order
interactions and are stored in databases for mining purposes. For instance, coauthorship data are stored in
academic databases [29], emails are saved in storage systems [30], and discussion threads are stored in online
forums1. Attackers may intrude on those systems to remove several nodes or hyperedges to weaken several
properties of the networks, which corresponds to deletion attacks on hypergraphs.

The concept of k-core has been proven useful also in hypergraphs, and thus attackers may aim to impair
the core structure in hypergraphs. Similarly to pair-wise graphs, the k-core of a hypergraph [31] is construed
as the maximal sub-hypergraph within which the degree of each node is at least k. In hypergraphs, the
concept of k-cores demonstrates applications in identifying dense regions [32] or monitoring epidemics [33],
and as shown in Section 4, hypergraph cores are also useful in several other practical applications, such as
identifying seed nodes for influence maximization or detecting abnormally dense sub-networks. Invaders,
hoping to degrade the performances in those tasks, may be incentivized to attack the networks via the
deletions of nodes or hyperedges, for the same motivations that attackers aim to impair the core structures
in graphs [9, 10, 11].

In this work, we focus on the core resilience of real-world hypergraphs. Motivated by the applica-
tions of hypergraph k-cores and the possibilities of attacks on hypergraphs, we formulate CREAM (Core-
conserving REsilience mAxiMization), the problem of improving the core resilience of the hypergraphs
against deletion attacks through the means of augmenting hyperedges while conserving the original core struc-
ture. We first explore the relevant patterns of core resilience of real-world hypergraphs when a portion of
the node set or the hyperedge set has been removed. Based on these, we consider supplementing each hy-
pergraph with augmented hyperedges that strengthen the core resilience of the hypergraph while preserving
all core numbers. Note that supplementing hyperedges to those hypergraphs constitutes adding “virtual"
hyperedge records into the respective databases to strengthen those networks. These virtual hyperedges
should be constructed carefully so that they preserve the network properties. Moreover, while remaining
indistinguishable from real hypergraphs to attackers, these supplemented hyperedges can be removed by
database administrators whenever necessary, thus staying harmless to the network’s applications.

However, there is a major challenge in augmenting hypergraphs through the addition of hyperedges, which
is due to the complexity of hypergraphs. In hypergraphs, each hyperedge may contain an arbitrary number
of nodes, and thus the number of all possible node combinations, which may form augmented hyperedges, is
insurmountable. As a result, the cost of iterating through each possible combination of nodes and checking
whether it is desirable to add the combination would be prohibitive.

To address the challenge, we introduce COREA, a fast, effective, and theoretically sound method that
augments hyperedges to preserve the core structure and improve the core resilience of the hypergraphs. In-
spired by several observations related to core resilience, COREA constructs a pool of candidate hyperedges,
which are guaranteed to conserve all core numbers, and selects the best candidates to augment to the hyper-
graph. Our experiments show that COREA is up to 1.7× more effective than several baseline approaches
while providing a better time-performance trade-off.

In short, our contributions in this research are three-fold:

• Problem Definition: We propose and tackle CREAM (Core-conserving REsilience mAxiMization),
the problem of core resilience improvement in real-world hypergraphs, for the first time, to the best of our
knowledge.

• Key Concepts & Empirical Observations: We propose relevant concepts and present the key obser-
vations regarding the core resilience of real-world hypergraphs that motivate the design of our method.

• Method: We propose COREA, a fast, effective, and theoretically sound method for enhancing the core
resilience of hypergraphs. Our extensive experiments demonstrate the consistent superiority of COREA
over several baseline approaches across ten real-world hypergraphs.

For reproducibility, the code and datasets are available at https://github.com/manhtuando97/CoReA.
1https://askubuntu.com
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The remaining sections of this paper are as follows: In section 2, we review some related work. We
introduce some preliminaries and problem formulation in Section 3. We then present some applications
of core numbers in hypergraphs in Section 4 to motivate our work. The key observations are summarized
in Section 5. We propose our method in Section 6. We evaluate our method in Section 7, where we also
investigate how our proposed method helps support the applications of hypergraph core numbers in the tasks
outlined in Section 4 under various attack scenarios. Lastly, we conclude our work in Section 8.

2 Related Work
Hypergraphs: Hypergraphs represent high-order interactions in various fields [15, 16, 17]. There have
been numerous studies on the structures and properties of real-world hypergraphs regarding transitivity
[34], reciprocity [35], simplicial closures [15], motifs [19], evolution patterns [36, 37], and realistic generative
models [17, 18, 34, 35, 38, 37]. Meanwhile, some others tackle several learning problems on hypergraphs,
such as clustering [39, 40, 41], link prediction [42, 43, 44], and node classification [45, 46, 47].
k-Core in Graphs and Hypergraphs: The concept of k-core plays an integral role in the graph min-
ing domain. It is used to detect dense subgraphs and influential nodes in [6], whereas Giatsidis et al.
[48] employ this concept to evaluate the cooperation within a community in social networks. Some other
problems on k-cores include scalable core decomposition [49, 50], its maintenance on dynamic graphs [51],
and core decomposition on uncertain graphs [52]. On the other hand, little attention has been paid to the
k-cores of hypergraphs. Some preliminary work focus on scalable maintenance of k-cores in dynamic hyper-
graphs [33, 31] or how the concept of k-core in hypergraphs is applied in discovering dense components in
social networks [32].
Core Resilience: Medya et al. [10] define the resilience of a k-core as its ability to maintain its nodes.
After many edges are deleted, several nodes can lose their core numbers, and the size of the k-core can
be reduced. Several studies attempt to minimize the number of remaining nodes in the k-core by deleting
edges [10, 11] or removing nodes [53]. In contrast, some others enhance the resilience of the k-core against
such attacks by anchoring nodes, i.e considering some nodes as having an infinite degree [54, 55, 9]. Following
a different approach, Laishram et al. [13] define core resilience as the rank correlation of nodes in core numbers
after several nodes or edges have been deleted. The authors correlate this statistic with several node-level
measurements and design an algorithm to enhance the core resilience via adding edges.

In this work, we tackle the problem of improving the core resilience in hypergraphs. We adopt the same
notion of hypergraph k-cores in [56] and core resilience in [13]. To this end, we extend the existing concepts
of core strength and core influence in this work from graphs to hypergraphs, introduce new relevant concepts,
and design an algorithm for the core resilience improvement problem. In this problem, we face new challenges
unique to the complexity of hypergraphs, outlined in Section 3.2, and propose our method to address these
challenges. The details for our technical contributions are presented in Sections 5 and 6.

3 Preliminaries & Problem Definition
3.1 Basic Concepts
We introduce some basic concepts. The key notations are in Table. 1.
Hypergraphs: A hypergraph is defined as G = (V,E), where V is the set of nodes, and E ⊆ 2V is the
set of hyperedges. Each hyperedge e ⊆ V is a set of |e| (≥ 2) nodes.2 For each node v, we define the set
EG(v) of hyperedges incident to v as EG(v) = {e ∈ E | v ∈ e}. The degree dG(v) of v is defined as the
number of hyperedges incident to v, i.e., dG(v) = |EG(v)|. A node having degree 0 is an isolated node. A
sub-hypergraph G̃ = (Ṽ, Ẽ) of G is a hypergraph (i.e., Ẽ ⊆ 2Ṽ) where Ṽ ⊆ V, and Ẽ ⊆ E.
Clique Expansion: The clique expansion of hypergraph G = (V,E) is a graph G(1) = (V,E(1)) where
E(1) = {{u, v} | u, v ∈ V,∃e ∈ E, {u, v} ⊆ e}. That is, G(1) is a graph in which two nodes u, v ∈ V are
adjacent if and only if there exists a hyperedge e in E containing both u and v. A hyperedge e ∈ E results
in a clique of |e| nodes in G(1). The clique expansion is a representation of the hypergraph in the form of a
pair-wise graph. However, this representation incurs information loss as the original hypergraph G cannot be

2In this study, for the sake of simplicity, we choose to exclude self-loops (i.e., hyperedges of size 1) as they are not significantly
relevant to robustness.

3



1

2
3

4
5

7

6

1

2
3

4
5

7

6

Original Hypergraphs

1

2 3

4

7

5

6

Clique Expansion

Figure 1: The clique expansion of a hypergraph is a pair-wise graph in which two nodes are adjacent if and
only if there exists at least one hyperedge of the original hypergraph containing them. This representation
is lossy, as the original hypergraphs cannot be reconstructed from the clique expansion and different hyper-
graphs may have the same clique expansion.

reconstructed from G(1) and two different hypergraphs may result in the same clique expansion, as depicted
in Figure 1.
k-Core and Core Numbers: The k-core of G, denoted by C(k,G), is the sub-hypergraph of G within
which the degree of every node is at least k [56]. The core number NG(v) of node v in hypergraph G is
the maximum integer k such that v is in C(k,G). The degeneracy N∗

G of hypergraph G is the highest core
number of a node v ∈ V. The degeneracy core of G is the N∗

G-core of G, denoted by C(N∗
G,G).

Core Decomposition: Core decomposition is the process of obtaining the k-cores and core numbers of
nodes in a hypergraph G (Algorithm 3 in Appendix B). After removing all isolated nodes, the remaining
hypergraph is the 1-core. For each k ≥ 1, to obtain the (k+1)-core, a pruning process starts from the k-core
and repeatedly removes the nodes of degrees lower than (k+1) until no such removal is possible. The nodes
removed in this pruning process are assigned core number k.
Node and Hyperedge Deletions: Attackers often seek to weaken the structure of G by deleting several
nodes or hyperedges [27, 28]. We denote a deletion attack as AV(r, s) that deletes r% of the nodes in V by
a strategy s. Similarly, AE(r, s′) is an attack that deletes r% of the hyperedges in E by a strategy s′. We
introduce several potential attack strategies that attackers may employ in Section 5.2.
Speaman’s Rank Correlation: Speaman’s Rank Correlation is a measurement of rank correlation between
two variables. Let X = [x1, ..., xn] and Y = [y1, ..., yn] be two variables. Let R(X) = [τX(x1), ..., τX(xn)]
be the rank variable of X in which τX(xi), for i = 1, ..., n, is the relative ranking position of xi when the
values in {x1, ..., xn} are sorted in the descending order3. Simiarly, let R(Y ) = [τY (y1), ..., τY (yn)] be the
rank variable of Y . The Spearman’s rank correlation between X and Y , denoted as ρ(R(X), R(Y )), equals
to the Pearson correlation coefficient of R(X) and R(Y ), i.e.,

ρ(R(X), R(Y )) =
cov(R(X), R(Y ))

σR(X)σR(Y )
, (1)

where cov(R(X), R(Y )) is the covariance of R(X) and R(Y ); σR(X) and σR(Y ) are the standard deviations
of R(X) and R(Y ), respectively. We have −1 ≤ ρ(R(X), R(Y )) ≤ 1, with ρ(R(X), R(Y )) = 1 when R(X)
and R(Y ) are identical and ρ(R(X), R(Y )) = −1 when R(X) and R(Y ) are fully opposed.
Core Resilience: The core resilience RV

G(r, s) against node deletions of a hypergraph G is defined as
the Spearman’s rank correlation coefficient of the core numbers of the nodes before and after r% of the

3Identical rank values are each assigned the fractional rank equal to the average of their positions in the ascending order of
the rank values.
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Table 1: Frequently used symbols.

Symbols Definition

G = (V,E) a hypergraph G with the node set V and the hyperedge set E
EG(v) the set of hyperedges incident to v in G
dG(v) the degree of node v in hypergraph G

G(1) = (V,E(1)) the clique expansion of G
C(k,G) the k-core of G
NG(v) the core number of node v in G

N∗
G the degeneracy of G

AV(r, s) an attack that deletes r% of the nodes in V by a strategy s
AE(r, s′) an attack that deletes r% of the hyperedges in E by a strategy s′

ρ(R(X), R(Y )) the Spearman’s rank correlation coefficient between X and Y

RV
G(r, s) the core resilience of G after r% nodes are deleted by AV(r, s)

RE
G(r, s′) the core resilience of G after r% hyperedges are deleted by AE(r, s′)

NG(e) the core number of hyperedge e in G
AG(e) the set of anchors of hyperedge e in G
CSG(v) the core strength of node v in G
CIG(v) the core influence of node v in G
CSG(e) the core strength of hyperedge e in G

nodes have been deleted from V by attack AV(r, s). After several nodes are deleted alongside their incident
hyperedges, there remains a sub-hypergraph G̃ = (Ṽ, Ẽ) in which some of the remaining nodes may lose
their original core numbers, potentially distorting the ranking of core numbers. Denote the original and
post-attack core numbers of the remaining nodes Ṽ = {vi1 , ..., vim} as NG = [NG(vi1), ..., NG(vim)] and
NG̃ = [NG̃(vi1), ..., NG̃(vim)]4, respectively. The core resilience RV

G(r, s) is defined as the Spearman’s rank
correlation between NG and NG̃, which is equal to ρ(R(NG), R(NG̃)). Similarly, the core resilience RE

G(r, s′)
against hyperedge deletions of a hypergraph G is defined as the Spearman’s rank correlation coefficient of
the core numbers of the nodes before and after r% of the hyperedges have been deleted from E by attack
AE(r, s′).

These definitions of core resilience against node deletions and hyperedge deletions are adopted from [13]
and extended to hypergraphs. The core number serves as a measure of node centrality [6, 13], and core
resilience measures the tendency of central (or peripheral) nodes to remain central (or peripheral) after the
network faces node/hyperedge deletions.

3.2 Problem Definition
In this section, we aim to establish a clear understanding of the problem at hand. First, we present a formal
definition of the problem. Then, we discuss its objective and constraints. Lastly, we discuss the challenges
associated with this problem and discuss its relevance to existing problems.

Problem 1. (CREAM: Core-conserving REsilience mAxiMization)

• Input: a hypergraph G = (V,E) with the hyperedge size distribution D and a budget B,

• Find: b hyperedges: E = {e1, ..., eb} where E ⊆ 2V and E∩E = ∅ to augment to G to form G′ = (V,E′)
with E′ = E ∪E,

• to Maximize: the core resilience RT
G′(r, s) of G′ in a case of attack AT(r, s), whose target T, degree r

and strategy s are unknown in advance (T is either V, for a node deletion attack, or E′, for a hyperedge
deletion attack)
4The nodes having no incident hyperedges left are assigned core number 0 in this case.
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• Subject to Constraints:

– all core numbers of nodes are conserved, i.e., NG(v) = NG′(v),

– the hyperedges are augmented within the budget, i.e., b ≤ B,

– the size distribution of the hyperedges in E follows D.

Objective: As shown later in Section 4, the ranking of core numbers is useful in several applications. Such
ranking may be distorted once several nodes or hyperedges are deleted from the hypergraph. Thus, we wish
to preserve such ranking under deletion attacks by improving the core resilience.
Constraints on Cores Numbers: The goal is to consolidate the resilience of the core structure, so it is
essential to avoid distorting the core structure, to begin with. Also, we augment hyperedges as a pre-caution
measure without any prior knowledge of the attack, so the augmented hyperedges should preserve the core
structure even in the case that the attack would not occur. These justify the constraint of preserving the
core numbers.
Constraints on the Number of Augmented Hyperedges: While Problem 1 allows a maximum budget
of B, in order to satisfy the requirement of preserving all core numbers, the actual number b of hyperedges
that any method can augment to G can be smaller than B.
Constraints on the Sizes of Augmented Hyperedges: In addition, since the augmented hyperedges
should not be easily distinguishable from the real hyperedges or harmful to the network properties, the
original hyperedge size distribution should be preserved. Moreover, if the size distribution of the augmented
hyperedges deviates significantly from the real distribution, they become easily noticeable to the attackers,
which may enable them to deliberately ignore all the augmented hyperedges that they deem unrealistic prior
to any attacks, which renders the augmentation unavailing.
Related Problems and Unique Challenges: A similar problem in graphs is defined in [13], where the
authors propose a method named MRKC. Among all pairs of non-adjacent nodes, MRKC retains those
guaranteed to preserve all core numbers when they are added to the network while discarding the others.
MRKC then ranks all the retained pairs by a certain metric and greedily selects the one with the highest
score to be added to the network. A naive extension of MRKC to hypergraphs is to check all combinations
of nodes that are not actual hyperedges and select only those that preserve all core numbers, However, the
number of the combinations is in the order of O(2|V|), which is huge in practice. Therefore, the cost of
checking all possible node combinations is prohibitive and renders this approach impractical. This proves
the challenge of Problem 1. We address this challenge by our method, COREA, in Section 6.

4 Motivating Applications
In this section, we present two applications of the concept of k-core on hypergraphs, in the identification
of influential nodes and anomaly detection, to motivate our studies on the core resilience of hypergraphs.
Due to the importance of k-cores, attackers are often incentivized to impair the core structures of pair-wise
graphs [9, 10, 11]. Similarly, hypergraph core structures, proving useful in these applications, are vulnerable
to deletion attacks. As subsequently shown in Section 7.6, the usefulness of hypergraph cores in those
tasks is degraded when the networks face deletion attacks, and our proposed method helps mitigate such
degradation.

4.1 Identification of Influential Nodes
The concept of core number in graphs has proven useful in finding influential nodes in social networks [5, 6].
We generalize the SIR model in [5] to hypergraphs (see Algorihm 4 in Appendix C). In each dataset, we start
with one seed node (initially infected), simulate the SIR process, and measure the number of ever-infected
nodes (i.e., recovered nodes) as the influence of the seed node.

In Table 2, we report the Spearman’s rank correlation coefficient between the node influences and each
of the following node-level statistics:

• Core: the core numbers in the original hypergraph.

• Degree: the degrees in the original hypergraph.

• Clique-C: the core numbers in the clique expansion of the hypergraph.

6



Table 2: The Speaman’s rank correlation coefficient between the nodes’ influences and the statistics. The
ranking of core number in hypergraph possesses the highest correlation, illustrating its utility in identifying
influential nodes.

Dataset Core Degree Clique-C Clique-D

coauth-MAG-Geology 0.79 0.58 0.56 0.52
coauth-MAG-History 0.81 0.78 0.71 0.77
contact-high-school 0.87 0.69 0.84 0.72

contact-primary-school 0.92 0.72 0.82 0.69
email-Enron 0.84 0.73 0.78 0.67

email-Eu 0.87 0.75 0.78 0.67
NDC-classes 0.85 0.62 0.72 0.57

NDC-substances 0.72 0.65 0.71 0.64
threads-ask-ubuntu 0.87 0.58 0.87 0.65

threads-math 0.89 0.59 0.88 0.56

• Clique-D: the degrees in the clique expansion of the hypergraph.

Among them, the core number in hypergraph is the most correlated with the individual nodes’ influences,
demonstrating the usefulness of hypergraph core number ranking in finding influential nodes in real-world
hypergraphs.

4.2 Anomaly Detection
Shin et al. [6] introduce an effective scoring function to detect abnormally dense subgraphs. The scoring
function employed to measure the abnormality of node v is the difference in the rankings of v in core number
and degree, specifically, s(v) = |log(rankc(v))− log(rankd(v))|.

In each hypergraph, we select k nodes uniformly at random as abnormal nodes and inject
⌈
k(k−1)

m

⌉
hyperedges of size m in which each of the abnormal nodes is incident to (k − 1) hyperedges, with m is the
maximum hyperedge size of the hypergraph. Each abnormal node now has core number and degree at least
(k − 1). We use the score s(v) to estimate how abnormal each node v is in the two settings:

• Core: rankc(v) and rankd(v) are the rankings of v in core number and degree in the hypergraph,
respectively.

• Clique-C: rankc(v) and rankd(v) are the rankings of v in core number and degree in the clique expansion
of the hypergraph, respectively.

The AUC-PR of predicting which nodes are the abnormal nodes based on the score s(v) in the two
settings Core and Clique-C is reported in Figure 2. Using core numbers in hypergraphs yields better
prediction than using the core numbers in the clique expansion, showing the usefulness of the concept of
hypergraph core numbers, particularly the ranking of core numbers.

5 Proposed Concepts & Observations
The objective of Problem 1, core resilience, is a hypergraph-level measurement, and it is difficult to optimize
directly for two major reasons. Firstly, measuring the core resilience is computationally expensive as we
need to conduct core decomposition on the original hypergraph, apply a deletion attack, and administer core
decomposition again on the attacked networks. Furthermore, due to the unpredictable nature of attacks,
it is impossible to anticipate their magnitude and strategy accurately. This lack of foresight hinders the
precise computation of core resilience for our network. Thus, we define several node-level and hyperedge-
level measurements to characterize the core resilience so that we can improve the core resilience indirectly
via these measurements. In this section, we introduce such measurements and show that they are effective
indicators of the core resilience of real-world hypergraphs via several empirical observations.
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Figure 2: The AUC-PR of predicting the abnormal nodes. Employing core numbers in hypergraphs results
in a more accurate prediction than core numbers in the clique expansions.

5.1 Proposed Concepts
We introduce a number of concepts that are related to core resilience. These concepts serve as the foundation
for the observations made in Section 5 and our proposed method presented in Section 6.

5.1.1 Hyperedge Core Number and Anchor

As we wish to augment the hyperedges that preserve the core numbers, we seek to unravel how hyperedges
contribute to the core numbers of nodes. While a node relies on having enough incident hyperedges for its
core number, by definition, the existence of a hyperedge may not contribute to the core numbers of all of its
incident nodes. In the core decomposition process, when a node v of core number k is removed, its incident
hyperedges are also removed. If e is one of those hyperedges, e is not incident to any nodes of core numbers
smaller than k; otherwise, e would have been removed before v. Moreover, e cannot contribute to the core
numbers of the incident nodes whose core numbers are higher than k as e is not present in the core levels
higher than k. In other words, e only helps contribute to the core numbers of the incident nodes whose core
numbers are equal to k, and we refer to them as the anchors of e.
Core Number of a Hyperedge e: It is the maximum integer k such that e is in C(k,G) and denoted
by NG(e). In the pruning process to obtain the (k + 1)-core from the k-core, a node is removed along
its incident hyperedges. Therefore, NG(e) is equal to the lowest core number of a node included in e:
NG(e) = minv∈e NG(v).
Anchor(s) of a Hyperedge e: They are the nodes involved in e having core number equal to NG(e). The
set of anchors of e is denoted by AG(e). For each v ∈ AG(e), e is said to be anchored at v. The anchors
are critical to the core number of the hyperedge as the hyperedge loses its core number once an anchor loses
its core number.

Each hyperedge incident to a node v has a core number that is either equal to or lower than that of v. We
denote the sets of such hyperedges as E=

G(v) = {e ∈ EG(v) | NG(e) = NG(v)} and E<
G(v) = {e ∈ EG(v) |

NG(e) < NG(v)}, respectively.

5.1.2 Core Strength and Core Influence

Before exploring the core resilience of the hypergraph as a whole, which is difficult to compute exactly, we
characterize what constitutes the resilience of nodes in keeping their core numbers, how nodes benefit from the
connections with other nodes for their core numbers, and in turn how nodes contribute to the core numbers
of other nodes. As described, a node v of core number k relies entirely on the incident hyperedges whose core
numbers are also k for its core number, i.e., the incident hyperedges consisting of only nodes having core
numbers at least k. If v is incident to many hyperedges of such kind, even when some are removed, v may still
have enough incident hyperedges, at least k, to maintain its core numbers k. In those hyperedges, the nodes
having core numbers greater than k help contribute to the core number of v via the incident hyperedges.
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We extend the concepts of core strength and core influence in graphs [13] to hypergraphs to quantify how
resilient a node is in keeping its core number and how much a node contributes to the connected nodes of
lower core numbers, respectively, in a hypergraph.
Core Strength of a Node v: It is the minimum number of hyperedges to delete to certainly reduce NG(v),
denoted by CSG(v). The node v depends on its incident hyperedges in E=

G(v) to obtain its core number
because all hyperedges in E<

G(v) are deleted before the core decomposition process reaches the NG(v)-core.
|E=

G(v)| −NG(v) is the number of “extra" hyperedges incident to v in the NG(v)-core, beyond its minimum
requirement of NG(v) incident hyperedges, so after merely removing | E=

G(v) | −NG(v) incident to v, v is
not guaranteed to lose its core number k. Thus, CSG(v) =| E=

G(v) | −NG(v)+ 1. A node with a higher core
strength has higher resilience to maintain its core number against deletion attacks. In order to improve a
node’s resilience, we add hyperedges to improve its core strength.
Core Strength of a Hyperedge e: It is the minimum number of hyperedges to delete to certainly reduce
NG(e). Since NG(e) certainly decreases once the core number of at least 1 anchor of e decreases, NG(e)
is equal to the lowest core strength among those of its anchor(s). We denote the core strength of e by
CSG(e) = minx∈AG(e) CSG(v). A hyperedge with a higher core strength has higher resilience to maintain
its core number against deletion attacks.
Core Influence of a Node v: It is a number measuring v’s contribution to the core numbers of the anchors
of the hyperedges in E<

G(v), denoted by CIG(v). As a node relies on its incident hyperedges consisting of
nodes having equal or higher core numbers to maintain its own core number, a node can contribute to the
core numbers of lower-core nodes via such incident hyperedges. Particularly, the anchors of these hyperedges
benefit from such contribution. CIG(v) measures such contribution and is defined as:

CIG(v) = 1 +
∑

e∈E<
G(v)

(1 +
∆

NG(v)− 1
) max
t∈AG(e)

[
(1− CSG(t)− 1

| E=
G(t) |

)CIG(t)

]
,

where ∆ = NG(v)−NG(e) indicates the gap in the core numbers between v and e, and ∆
NG(v)−1 is the gap

normalized by the highest possible gap (NG(v)− 1). Among the nodes in e \AG(e), the term 1 + ∆
NG(v)−1

gives a higher value to a node with a higher core number. For each anchor t ∈ AG(e), t has (CSG(t) − 1)

“extra hyperedges" (deleting them does not change the core number of t). The term 1 − CSG(t)−1
|E=

G(t)| reflects
the idea that the more extra hyperedges t has, the less dependent t is on e. Among the anchors of e, the
node with the greatest dependence on v is selected, explaining the max aggregation. To compute the core
influences, we first initialize the core influence of each node to 1. We start computing the core ìnluences of
the nodes having the minimum core number and continue up until the nodes in the degeneracy core. The
core influence of each node only depends on the nodes with lower core numbers, so we only need to iterate
through each hyperedge once. A node that has a high core influence is important to the core numbers of
many nodes, so if this node disappears or loses its core numbers, numerous nodes are affected. As a result,
to preserve the core structure of the network, we wish to enhance the resilience in maintaining core numbers
of the nodes having high core influences.

5.1.3 Core Influence-Strength and Degeneracy Centralized Index of a Hypergraph

Having described the resilience to maintain core numbers at the node and hyperedge levels, we aggregate
the relevant measures to the hypergraph level to characterize the hypergraph’s core resilience. These char-
acterizations involve core strengths, core influences, and the degeneracy core.
Core Influence-Strength of G: It is the average of CIG×CSG over the nodes in V, denoted by CIS(G):
CIS(G) = 1

|V|
∑

v∈V CIG(v)CSG(v). If nodes of high core influences have high core strengths, they are
resilient in keeping their core numbers, and as a result, many nodes benefit from the contribution of the
high-influence nodes in keeping their core numbers, making the core structure more resilient. Thus, we
hypothesize that the CIS(G) is a good indicator of core resilience of G, which is confirmed in Observation 4
in Section 5.3.
Degeneracy Centralized Index of G: It is a value from 0 to 1 measuring how centralized G is around
its degeneracy core. An index of 0 means that in every hyperedge, every node has the same core number.
An index of 1 indicates that every hyperedge is incident to at least one node in the degeneracy core. The
degeneracy centralized index of a hypergraph G is defined as: i(G) = 1

|E|
∑

e∈E
k∗(e)−NG(e)

N∗
G−NG(e)

, where k∗(e)
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denotes the highest NG(v) among all nodes v ∈ e. We extend a similar measurement for graphs in [57], which
is theoretically proven to be positively correlated with the core resilience of a random graph, to hypergraphs.

5.2 Attack Strategies
In this section, we introduce several attack strategies that attackers may exploit to weaken a hypergraph
G = (V,E). Each strategy reflects the preferences of the attackers to delete particular nodes/hyperedges,
which they may deem more vital to the core structure of the network. By simulating these attacks, we
measure the core resilience of each hypergraph against each attack strategy and confirm the usefulness of
the concepts proposed in Section 5.1.
Node Deletions: We introduce different strategies s for an attack AV(r, s) that deletes r% of nodes.

• If s is Random Attack : r% of the nodes, together with their incident hyperedges, are chosen uniformly at
random and deleted by AV(r, s).

• If s is Degree Attack : The high-degree nodes are targeted, and the chance for a node v to be deleted by
AV(r, s), alongside its incident hyperedges, is proportional to its degree dG(v).

• If s is Core Number Attack : The nodes having high core numbers are targeted, and the chance for a node
v to be deleted by AV(r, s), with its incident hyperedges, is proportional to its core number NG(v).

• If s is Core Strength Attack: The nodes of low core strengths are targeted, and the chance for a node v to
be deleted by AV(r, s) is proportional to 1

CSG(v)
.

Hyperedge Deletions: We introduce different strategies s for an attack AE(r, s) that deletes r% of hyper-
edges.

• If s is Random Attack : r% of the hyperedges are chosen uniformly at random and deleted by AE(r, s).

• If s is Cardinality Attack : The large-cardinality hyperedges are targeted, and the chance for a hyperedge
e to be deleted by AE(r, s) is proportional to its cardinality |e|.

• If s is Degree Attack: The hyperedges incident to high-degree nodes are targeted, and the chance for a
hyperedge e to be deleted by AE(r, s) is proportional to the degree of its highest-degree constituent node.

• If s is Core Strength Attack : The hyperedges of low core strengths are targeted, and the chance for a
hyperedge e to be deleted by AE(r, s) is proportional to 1

CSG(e)
.

5.3 Observations in Real-world Hypergraphs
We present several patterns of core resilience of 10 real-world hypergraphs [15] to validate the usefulness of
the concepts proposed in Section 5.1. More details on the datasets are in Appendix A. In this section, we
present the results of hyperedge deletions only. The figures highlighting the results of node deletions are in
Appendix D.

Observation 1. Core Strength Attack is the most destructive to the core resilience of real-world hypergraphs
for both node-deletion and hyperedge-deletion attacks.

Figure 3 shows the core resilience of real-world hypergraphs against hyperedge-deletion attack strategies,
Random , Degree, Cardinality, and Core Strength, across deletion ratios. The figure illustrates how the
Spearman’s rank correlation, between the original and the post-attack core number distributions, changes
depending on the ratio of the hyperedges that are deleted. Core Strength Attack results in the lowest core
resilience per deletion ratio, while Random Attack results in the highest core resilience.

Observation 2. The node core-strength distribution in each dataset is positively skewed.

The core strength distribution of nodes for each dataset is illustrated in Figure 4. In each dataset, the
distribution of core strengths is positively skewed, i.e., most nodes have low core strengths, and they are
more prone to losing core numbers due to hyperedge deletions. Augmenting hyperedges to enhance their
core strengths can make them more robust against deletion attacks.
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Figure 3: The core resilience of real-world hypergraphs against hyperedge-deletion attacks varies among
the attack strategies and across deletion ratios. The x-axis shows the deletion ratio, and the y-axis indicates
Spearman’s rank correlation coefficient between the original and the post-attack core number distributions.
Core Strength Attack is consistently the most destructive to the core resilience, while Random Attack is the
least destructive.

Observation 3. A hypergraph of high core resilience tends to possess a low skewness of the core-strength
distribution and vice versa. Hypergraph datasets within the same domain exhibit similarities in terms of both
skewness and core resilience.

The relationship between the skewness of core-strength distribution and core resilience, when 50% of
hyperedges are deleted, is depicted in Figure 5. A high skewness indicates a tendency for the distribution to
have a heavy tail to the right, indicating more nodes of low core strengths. This tendency is negatively corre-
lated with core resilience. The two datasets in each domain (“co-authorship", “contact", “email", “NDC", and
“threads") exhibit similarities in terms of both core resilience and the skewness of core strength distribution.

Observation 4. A hypergraph of high core resilience tends to possess a high core influence-strength and vice
versa.

Observation 5. A hypergraph of high core resilience tends to possess a high degeneracy centralized index,
and vice versa.

For each hypergraph G, we measure the core influence-strength, CIS(G), and the degeneracy centralized
index i(G). The positive correlations between the core resilience, when 50% of hyperedges are deleted, with
CIS(G) and i(G) are shown in Figures 6 and 7, respectively. The results imply two indicators for high core
resilience. The first indicator is that the nodes of high core influences have high resilience against deletion
attacks, i.e., high core strengths. The second indicator is that many hyperedges are incident to the nodes in
the degeneracy core.

The core resilience, a hypergraph-level measurement, is difficult to optimize directly as core resilience is
computationally expensive to measure exactly and the deletion strategies and degree of attacks that attackers
employ are unknown. Therefore, we seek to optimize the correlated measurements that are presented in this
section. The details of our proposed method, COREA, are described in Section 6. Apart from basing on
the observations, COREA also has several theoretical merits, outlined in Section 6.4.

6 Proposed Method: COREA
In this section, we introduce our proposed method, COREA (COre REsilience Improvement by Hyperedge
Augmentation), for addressing Problem 1. We begin by providing an overview of the approach, followed by
a detailed description of each step. Lastly, we present its theoretical merits.
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Figure 4: The distribution of core strengths of nodes in each dataset, visualized on a log-log scale, is
positively skewed. This indicates that a majority of nodes have relatively low core strengths, indicating the
potential for improvement through the augmentation of hyperedges.

6.1 Overview
We present an overview of our two-step method, COREA, whose pseudocode is given in Algorithm 1. The
inputs of Problem 1, which are defined regardless of specific solutions, are a hypergraph G with the hyperedge
size distribution D and a budget B. Given these problem input parameters, COREA is tasked to find at
most B hyperedges to augment to G such that these hyperedges have a size distribution following D and
conserve all core numbers of the nodes in G.

• Step 1: Construct a pool P of candidate hyperedges that are guaranteed to conserve all core numbers.
Firstly, COREA follows the core decomposition process (see Algorithm 2), i.e., a node-deletion process,
to determine C, the maximum number of hyperedges to augment to G while conserving all core numbers.
We introduce a tie-breaking scheme T to determine the order by which nodes are deleted in this process.
Once the number C is determined, we introduce a sampling scheme S to construct C candidate hyperedges.

• Step 2: Theorem 3 shows that there is a maximum number M of hyperedges that can be augmented
to G while preserving all core numbers and C = M. Therefore, the maximum number b of hyperedges
COREA can augment is b = min{B, C}, subject to the constraints of Problem 1. As our budget is limited
and |P | might be greater than b, we need to select a few of the candidate hyperedges, constructed in
Step 1, from P to add to G. The core resilience is a hypergraph-level objective that is hard to maximize
directly due to computational cost and attack unpredictability. Therefore, we use the improvement to the
core influence-strength of G, demonstrated to correlate with the core resilience in Observation 4, as the
ranking metric. At each step, c candidate hyperedges with the highest scores are chosen to augment to
G, with c as the batch size of each step, an input parameter of COREA.

Apart from the input parameters given by Problem 1, COREA also employs 3 other algorithm input
parameters: the tie-breaking scheme T in Step 1-1, the sampling scheme S in Step 1-2, and the batch size
c in Step 2, as described above. These algorithm input parameters are the exclusive hyperparameters of
our method, which may not be used for other algorithms. In section 7.3, we present our ablation study to
investigate the importance of these algorithm input parameters.

6.2 Step 1: Construct Candidate Hyperedges
As discussed, it is infeasible to check all possible node combinations and select those guaranteed to change
no core numbers. As a workaround, we instead answer this question: for each node v of core number k, how
many hyperedges anchored at v can be augmented without changing the core number of v?

Suppose a candidate hyperedge e is formed by grouping v with other nodes having core numbers higher
than or equal to k. If we can guarantee the augmentation of e preserves the core number k of its anchor(s)

12



Algorithm 1 Overview of COREA
Problem Input: (1) input hypergraph G = (V,E), no isolated nodes,

(2) hyperedge size distribution D,
(3) budget B

Algorithm Input: (1) tie-breaking scheme T,
(2) sampling scheme S,
(3) batch size c

Output: augmented hypergraph G′ = (V,E′)
1 /* Step 1-1: compute anchor availabilities given G and T*/
2 run Algorithm 2 and obtain the following information:

(1) anchor availabilities {c(v) | v ∈ V} of nodes,
(2) core numbers {NG(v) | v ∈ V} of nodes,
(3) removal order O of nodes,
(4) degeneracy N∗

G of G
3 /* Step 1-2: build a pool P of candidate hyperedges */
4 initialize pool of candidate hyperedges: P ← {}
5 for i = 1, ..., length(O)− 1 do
6 v = O[i]
7 for j = 1, ..., c(v) do
8 e← empty hyperedge, add v to e
9 Sample a hyperedge size s ∼ D

10 Sample (s− 1) nodes from O[i+ 1 :] to fill up e by S
11 P ← P ∪ {e}
12 /* Step 2: select the best hyperedges from the pool P */
13 C ←

∑
v∈V c(v), b← min{B, C}

14 Ecur ← E,Gcur ← (V,Ecur), b← b

15 while b > 0 do
16 for e ∈ P do
17 Enew ← Ecur ∪ {e}, Gnew ← (V,Enew)
18 s(e) = CIS(Gnew)− CIS(Gcurr)

19 choose c hyperedges e1, ..., ec in P of the highest scores s(.)
20 P ← P \ {e1, ..., ec},Ecur ← Ecur ∪ {e1, ..., ec}
21 b← b− c

22 E′ ← Ecur

23 return G′ = (V,E′)

13



10 20 30

0.4

0.6

0.8
Re

sil
ie

nc
e

Random Attack

CorrCoef: -0.43CorrCoef: -0.43

10 20 30
0.2

0.4

0.6

Cardinality Attack

CorrCoef: -0.27CorrCoef: -0.27

10 20 30
Core Str. Dist. Skewness

0.2

0.4

0.6

Re
sil

ie
nc

e

Degree Attack

CorrCoef: -0.5CorrCoef: -0.5

10 20 30
Core Str. Dist. Skewness

0.2

0.4

0.6
Core Strength Attack

CorrCoef: -0.39CorrCoef: -0.39

coauth-MAG-Geology
coauth-MAG-History
contact-high-school
contact-primary-school
email-Enron
email-Eu
NDC-classes
NDC-substances
threads-ask-ubuntu
threads-math

Figure 5: The skewness of the distribution of core strengths is negatively correlated with the core resilience.
“CorrCoef" indicates Spearman’s rank correlation coefficient. It is worth noting that datasets within the
same domain exhibit similarities in terms of both skewness and core resilience.

including v, e will be deleted in process of obtaining the (k + 1)-core from the k-core. Therefore, the core
numbers of all the nodes in e are unchanged. Because each hyperedge only contributes to the core number
of its anchor(s), e does not affect any nodes of core numbers lower than k. As a result, augmenting e into
G changes no core numbers. In Step 1, COREA forms a pool P of such candidate hyperedges like e. We
further divide Step 1 into two parts.

6.2.1 Step 1-1: Compute Anchor Availabilities

This step is outlined in Algorithm 2. Following the core decomposition process, for each node v ∈ E,
Algorithm 2 computes the number of hyperedges anchored at v that can be augmented while preserving
NG(v).

In the pruning process of obtaining the (k+1)-core from the k-core, when node v, NG(v) = k, is about to
be deleted, its degree is lower than (k+1), i.e., dG(v) ≤ k, and let a ≥ 0 be the value satisfying dG(v) = k−a.
If we augment a = k−(k−a) hyperedges anchored at v, its degree becomes k−a+a = k, which still qualifies
v for removal. Prior to removing v, Algorithm 2 computes the number c(v) = a, referred to as the anchor
availability of v. c(v) is the number of hyperedges anchored at v that can be augmented while preserving
NG(v). The total number C of hyperedges that can be augmented by COREA, subject to preserving all
core numbers, is the sum of all anchor availabilities of the nodes: C =

∑
v∈V c(v).

At any point during the pruning process of obtaining the (k + 1)-core from the k-core, several nodes
may have degree ≤ k, and the order by which those nodes are removed may affect their respective anchor
availabilities. In particular, when both u and v have degree ≤ k. If we delete u first, the hyperedges anchored
in both u and v are removed along u, which further reduces the degree of v. As a result, Algorithm 2 will
afford a higher anchor availability for v. The tie-breaking scheme T that decides which node to remove
first impacts the anchor availabilities of the nodes. While COREA does not assume a specific tie-breaking
scheme, we set T to select v to delete first with the chance proportional to CSG(v)/CIG(v). By this, we
defer the removals of the nodes having high CIG/CSG values to potentially afford them higher anchor
availabilitiles. Our experiment results in Sections 7.2 and 7.3 justify this choice for the tie-breaking scheme
T.

An example in Figure 8 illustrates the process of computing the anchor availabilities of Algorithm 2 in
two different deletion orders. In the two different deletion orders, the anchor availabilities of a node may be
different, but the total anchor availabilities is always zero for the one node of core number 1, one for the
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Figure 6: The core influence-strength is positively correlated with the core resilience. “CorrCoef" indicates
Spearman’s rank correlation coefficient.

nodes of core number 2, five for the nodes of core number 3, and six for total.
Note that our method does not always afford the maximum anchor availabilities for all nodes. Different

deletion orders, governed by the tie-breaking scheme T, may result in different anchor availabilities for the
same node v, and not every order guarantees the maximum availability for v. In Appendix E.5, we conduct
additional analysis regarding the reasons why achieving the maximum anchor availabilities for all nodes is
not always guaranteed. As presented in Section 6.4, Theorem 2 shows that the sum C of anchor availabilities,
where the anchor availabilities of some nodes might be sub-optimal, is always constant with respect to G.
More importantly, however, Theorem 3 shows that C is actually the maximum number of hyperedges any
method can augment to G, subject to conserving all core numbers of G. That is, any method that augments
more than C hyperedges, attempting to provide more anchor availabilities than COREA, certainly violates
the core-conserving constraint of Problem 1.

Given G and the tie-breaking scheme T, the first output of Step 1-1 (Algorithm 2) is the anchor avail-
abilities of the nodes in V, which are the number of hyperedges anchored at the respective nodes that can
be augmented while conserving all core numbers. The anchor availabilities are exclusive to COREA. Other
output results include the core numbers of the nodes in V, the deletion order O of the nodes in V in the
core decomposition process, and the degeneracy of G, which are the output of a core decomposition process.

6.2.2 Step 1-2: Build a Pool P of Candidate Hyperedges

Given the results of Step 1-1, Step 1-2 constructs a pool P of C candidate hyperedges guaranteed to conserved
all core numbers if augmented to G.

For each v, COREA constructs c(v) candidate hyperedges anchored at v to add to the pool P of
candidates. To conserve the size distribution D of the hyperedges in E, the size s of each candidate hyperedge
e is drawn from D. e includes v, and the other (s− 1) nodes have the core numbers ≥ NG(v).

As shown in Line 10 of Algorithm 1, those (s − 1) nodes are chosen from O[i + 1 :] by the sampling
scheme S, which are the nodes removed after v in the core decomposition process. As stated in Theorem 1,
it is guaranteed that augmenting e into G does not alter any core numbers. While our method does not
assume a particular sampling scheme S, we set S to choose each node u with a chance proportional to
CIG(u)/CSG(u), giving the nodes of high core influences and relatively low core strengths more incident
hyperedges, and include at least one node in the degeneracy core. In Section 5.3, we show that the core
influence-strength and degeneracy centralized index are positively correlated with the core resilience (see
Observations 4 and 5). The nodes of high CIG/CSG values are favored with higher anchor availabilities (due
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Figure 7: The degeneracy centralized index is positively correlated with core resilience. “CorrCoef" indicates
Spearman’s rank correlation coefficient.

to the tie-breaking scheme T described in Section 6.2.1) and in turn higher core strenghts in the augmented
hypergraph, making them more robust in keeping core numbers and indirectly improve the core influence-
strength of G. Therefore, the anchors of e can potentially benefit from the connections with such nodes.
Moreoever, to maximize the degeneracy centralized index of the augmented hyperedges, each hyperedge of
core number lower than N∗

G, the degenracy of G, needs to include at least one of in the degeneracy. The
choices for S reflect the results of Observations 4 and 5 and prove helpful in the empirical performance of
COREA in Sections 7.2 and 7.3.

6.3 Step 2: Select the Best Hyperedges from the Pool
As shown in Theorem 3, there is a maximum number M of hyperedges that can be augmented to G while
preserving all core numbers, and the total anchor availabilities C =

∑
v∈V c(v) is equal to M. As a result,

in order to satisfy all constraints of Problem 1, the maximum number b of hyperedges that COREA can
augment to G is not only ≤ B but also ≤ C. In other words, b = min{B, C}. In the case |P | > b, which is
usually true as the budget B is usually tight in practice, COREA needs to select b hyperedges from P to
augment to G.

Given the pool P of candidate hyperedges from Step 1, COREA ranks each candidate e in P by the
increase in the core influence-strength of the hypergraph. At each iteration, let the current hypergraph
snapshot be Gcur = (V,Ecur), where COREA has augmented q hyperedges from P to E to form Ecur (q = 0
at the beginning of Step 2). For each e ∈ P , COREA computes a score s(e) = CIS(Gnew) − CIS(Gcur),
with Gnew = (V,Enew),Enew = Ecur ∪ {e}.

COREA keeps greedily selecting c candidate hyperedges with the highest scores, augmenting them to
G, and updating the scores of the remaining hyperedges in P until b hyperedges have been augmented to G.

This scoring method is based on Observation 4 in which a higher core influence-strength implies a higher
core resilience. Since the core resilience is difficult to optimize directly for the computational challenges and
unpredictable behavior of attackers, we employ a surrogate objective that is the improvement to the core
influence-strength of G in Step 2. This surrogate objective reflects the goal of maximizing the core influence-
strength of G, which is positively correlated with core resilience, and is more convenient to maximize.

6.4 Theoretical Analysis
In this section, we present several theoretical results regarding COREA. All proofs can be found in Ap-
pendix E.

16



Algorithm 2 Compute anchor availabilities
Problem Input: (1) input hypergraph G = (V,E), no isolated nodes
Algorithm Input: (1) tie-breaking scheme T
Output: (1) anchor availabilities {c(v) | v ∈ V} of nodes in V,

(2) core numbers {NG(v) | v ∈ V} of nodes in V,
(3) removal order O of nodes,
(4) degeneracy N∗

G

1 V← V, E← E, G← (V,E), C(1, G)← G, O← empty queue, k ← 1

2 while V is not empty do
3 TD← {v ∈ V | dG(v) < k + 1}
4 while TD is not empty do
5 pop v from TD by according to T, add v to O
6 NG(v)← k, V← V \ {v}, c(v)← k − dG(v)

7 for e ∈ EG(v) do
8 for n ∈ e do
9 dG(n)← dG(v)− 1

10 if dG(v) < k + 1 then
11 TD← TD ∪ {n}
12 NG(e)← k; E← E \ {e}
13 C(k,G) = (V,E); k ← k + 1

14 N∗
G ← k − 1

15 return {c(v) | v ∈ V}, {NG(v) | v ∈ V}, O, N∗
G

Theorem 1 (Feasibility of COREA). Step 1 of COREA guarantees to construct a pool P of candidate
hyperedges that do not change the core number of any node when they are added together to G.

Theorem 2 (Invariance of COREA). The total number of anchor availabilities C =
∑

v∈V c(v) realized
by COREA is always constant with respect to G.

Theorem 3 (Exhaustiveness of COREA). There is a maximum number M of hyperedges that can be
augmented to G while conserving all core numbers, and the total number of anchor availabilities C realized
by COREA is equal to M.

Theorems 1 and 2 state that COREA always satisfies the constraint of preserving all core numbers
in Problem 1 and returns the same total number C of anchor availabilities regardless of the tie-breaking
scheme T in Step 1. According to Theorem 3, C, is equal to M, which is the maximum possible number of
hyperedges that can be augmented without altering any core numbers. That is, in a case where the budget
B exceeds M, COREA is guaranteed to augment the maximum number M of hyperedges while ensuring
the preservation of all core numbers. In general, COREA always augments b = min{B,M} hyperedges,
which is the maximum number of hyperedges that can be augmented subject to all constraints.

Theorem 4 (Time Complexity of COREA). Given the hypergraph G = (V,E) with maximum hyperedge
cardinality m, the budget B, the total number of anchor availabilities C of all nodes (constant with respect to
each dataset), and the batch size c by which COREA augments c hyperedges at a time in Step 2, the time
complexity of COREA is O

[
|V|log|V|+ Cm log|V|+ (|V|+

∑
e∈E|e|+ Cm2) bc

]
, where b = min{B, C}.

7 Empirical Evaluation of COREA
In this section, we answer the following questions:

• Q1. Time & Performance: how are different methods compared in terms of the running time and
improvement of the core resilience in real-world hypergraphs?

• Q2. Ablation Study: how do different variants of each component of COREA affect the performance
and running time?

• Q3. Effect of Hyperedge Size Distribution: what is the effect of the size distribution of the augmented
hyperedges on the performance?
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Figure 8: An illustration of Algorithm 2 with two different valid orders of node removals in the core
decomposition of hypergraph G. Incorporating the core decomposition process, the method computes the
anchor availability c(v) before removing node v of core number NG(v). While different orders lead to different
individual anchor availabilities, the sum of anchor availabilities is always 0 for the one node of core number
1, 1 for the nodes of core number 2, 5 for the nodes of core number 3, and 6 for total.

• Q4. Further Insights: what are interesting characteristics of the hyperedges returned by COREA?

• Q5. Applications: to what extent do the hyperedges augmented by COREA contribute to the
applications of core numbers discussed in Section 4?

7.1 Experiment Settings
Datasets: We used 10 real-world hypergraphs across several domains. The basic statistics of the datasets
are provided in Appendix A.
Proposed Method: For COREA, the tie-breaking scheme T in Step 1-1 selects v to delete first with the
chance proportional to CSG(v)/CIG(v) among several nodes up for removals. This defers removing nodes
having high CIG/CSG to potentially afford them higher anchor availabilities. The sampling scheme S in
Step 1-2 selects v with the chance proportional to CIG(v)/CSG(v) and ensures each candidate hyperedge
has at least one node in the degeneracy core. These options stem from Observations 4 and 5. Including one
node in the degeneracy core maximizes the degeneracy centralized index after augmentation. To improve
the core strengths of the nodes having high core influences, COREA prioritizes nodes of high CIG/CSG

with higher anchor availabilities and more incident hyperedges. COREA is implemented in Java.
Baselines: We consider the following baseline methods:

• MRKC-G: we apply the method MRKC in [13] to generate the augmented edges for the clique expansion.
We augment the edges (i.e., size-2 hyperedges) that satisfy the constraints of Problem 1 to the hypergraph.

• MRKC-D: we construct the decomposed pairwise graphs from the original hypergraph, as in [17], and then
apply MRKC [13] to each decomposed graph to generate edges. After that, we construct the hyperedges
from those edges (each edge in a decomposed graph corresponds to a hyperedge), select those that satisfy
the constraints of Problem 1, and augment them to G.

• MRKC-H: we generate the hyperedges of size 2 only in Step 2 of COREA and use the same scoring
function as MRKC in [13].

• Random: We replace the tie-breaking scheme T in Step 1-1 and the sampling scheme S in Step 1-2 of
COREA by uniform random selection. The selection of candidate hyperedges in Step 2 from the pool P
is also uniform at random.

MRKC-G and MRKC-D are extentions of the core-resilience improvement method for pair-wise graph [13]
with proper adjustments to hypergraphs, and we use the implementation provided by the authors for these
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two baselines. We implement MRKC-H as a variant of COREA that constructs size-2 hyperedges only.
Random is a simplified variant of COREA with randomization at each step outlined in Sections 6.2 and 6.3.
Experimental Details: We evaluate the performance of each method in terms of the improvement of core
resilience: RE′

G′(r, s) − RE
G(r, s) with G′ obtained by augmenting the hyperedges selected by each method

to G. The budget B is fixed to 5% × |E|. For hyperedge-deletion attacks, r% × |E| (r = 10, 20, 30, 40, 50)
hyperedges are deleted. For node-deletion attacks, r% × |V| (r = 5, 10, 15, 20, 25) nodes are deleted along
their incident hyperedges. For each method and each dataset, we report the average running time and
performance over 10 trials.

In this section, we present the results of hyperedge-deletion attacks when s is Core Strength Attack
only. The results for node-deletion attacks when s is Core Strength Attack are in Appendix D. The results
for all other attack strategies are in the supplementary material. In all cases, we draw similar conclusions
regarding the superior performance of COREA compared with the baselines and the roles each component
of COREA plays in the performance.

7.2 Q1. Time & Performance
Performance: The comparison of different methods in core resilience improvement across deletion ratios
is in Figure 9. The x-axis indicates the deletion ratios, the y-axis shows the performance, and the vertical
bars indicate the standard deviations. COREA consistently outperforms the others in all datasets. In each
dataset, the performance by COREA is 5% − 35% better than that of the best-performing baseline and
up to 70% superior to the performance of Random. While Random is consistently the worst-performing
baseline, for the three baselines MRKC-G, MRKC-D, and MRKC-H, they all perform slightly better than
Random, and no method surpasses the other two consistently in all datasets.
Time & Performance Trade-off: The time-performance tradeoff of the methods is illustrated in Figure 10.
The x-axis indicates the running time, the y-axis shows the performance when the deletion ratio r = 50%,
and the vertical bars indicate the standard deviations. COREA significantly outperforms other methods in
all datasets, while the running time of COREA is relatively close to the fastest baseline Random, which is
the worst-performing method.

In addition to Figures 9 and 10, for each dataset, we test the difference in the performance of our method
with that of the best-performing baseline using an one-tailed Student’s t-test as follows:

• H0: the mean performance of COREA is lower than or equal to the mean performance of the baseline.

• Ha: the mean performance of COREA is greater than the mean performance of the baseline.

At 95% confidence when α = 0.05, the test rejects H0 in favor of Ha (p-value < 0.05), confirming that
COREA is significantly superior to all the baselines.

7.3 Q2. Ablation Study
We investigate the role of each component of COREA in improving the core resilience of the hypergraphs.
Similar to Section 7.2, in each section of the ablation study, apart from highlighting the results in Fig-
ures 11, 12, 13, and 14, we also employ an one-tailed Student’s t-test, at 95% confidence, to verify that
our full-fledged method significantly outperforms all the other variants. In all cases, the p-value is smaller
than 0.05, so the test rejects H0 in favor of Ha that the full-fledged variant of COREA is superior to the
best-performing simplified variant.
Simplified Variants of COREA: We compare the full-fledged version of COREA, as described in Sec-
tion 7.1, with the following five simplified variants in terms of running time and performance:

• CoReA-CI: obtained by modifying the scoring function s(.) in Step 2 of COREA to the sum of the core
influences of the anchor. The score for each candidate hyperedge e is: s′(e) =

∑
v∈AG(e) CIG(v). This

scoring function gives high priority to hyperedges anchored at high-influence nodes, those contributing
to the core numbers of other nodes.

• RB1: obtained by replacing the tie-breaking scheme T in Step 1-1 of COREA by selecting a node
uniformly at random.

• RB2: obtained by replacing the sampling scheme S in Step 1-2 of COREA by selecting nodes from
O[i+ 1 :] uniformly at random.
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Figure 9: The comparison of different methods in terms of performance. The x-axis shows the deletion
ratios, and the y-axis shows the core resilience improvement of the methods. The vertical bars indicate the
standard deviations. COREA consistently brings better improvement of core resilience than the others in
all datasets regardless of deletion ratios.

• RB3: in Step 2 of COREA, choose candidate hyperedges uniformly at random.

• Random: the same as method Random in Sections 7.1 and 7.2.

For each method, if we increase the batch size c while keeping other components unchanged, the running time
decreases as there are fewer iterations of the loops in lines 15-21 of Algorithm 1. However, the performance
declines as the method augments more hyperedges at 1 iteration and undertakes fewer updates on the scores
of the candidate hyperedges in Step 2 of Algorithm 1. For the full-fledged version, we set the batch size c
equal to the budget b and record the running time as t. For the competitors, we set the batch size c′ to
afford them sufficient time and update iterations for potentially better performance. Specifically, for each
competitor, we set c′ = min{10, b} if the running time is at least as long as t, and otherwise, we set c′ = 1
to give it the most possible time. We compare the performance across deletion ratios in Figure 11 and the
time-performance trade-off of all methods when deletion ratio r = 50% in Figure 12. It is clear that the
full-fledged version of COREA consistently yields a better time-performance trade-off and outperforms the
others regardless of deletion ratios.
Degeneracy Core: We examine the effectiveness of the idea of including at least one node in the degeneracy
core in each candidate hyperedge, as proposed in Section 6.2.2. Figure 13 highlights the performance of
COREA in two scenarios: when the requirement of including at least one node in the degeneracy core
in each candidate hyperedge is enforced in Step 1-2 of COREA, and when the requirement is waived. A
better performance is achieved when this requirement is enforced, indicating that it is necessary to meet this
requirement in our method.
Tie-breaking Scheme: We also examine how different tie-breaking schemes T in Step 1-1 of COREA,
which is discussed in Section 6.2.1, leads to different performances. Recall that a tie-breaking scheme T
governs the order nodes are deleted in the core decomposition process and in turn determines the anchor
availabilities of nodes. We compare three schemes of selecting which node to delete first when facing multiple
nodes qualified for removal in Algorithm 2:

• CSG/CIG: the chance of selecting a node v is proportional to CSG(v)/CIG(v) as of COREA described
in Section 7.1.
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Figure 10: The trade-off of the methods in terms of time and performance. The x-axis shows the running
time, and the y-axis shows the core resilience improvement of each variant when the deletion ratio r = 50%.
The vertical bars indicate the standard deviations. COREA consistently provides a better time-performance
trade-off than the other methods in all datasets regardless of deletion ratios.

• 1/CIG: the chance to select a node v, to delete first among several nodes up for removal in the core
decomposition process, is proportional to 1/CIG(v). This defers removing nodes of high CIG values to
potentially afford them higher anchor availabilities.

• Random: a node is selected uniformly at random. This is method RB1 in Section 7.3.

Figure 14 shows that the scheme CSG/CIG consistently leads to better performance than the other two.

7.4 Q3. Effect of Hyperedge Size Distribution
The distributions of hyperedge sizes in real-world hypergraphs are known to be positively skewed [36], where
most hyperedges have small sizes while only a small fraction of hyperedges have large sizes (see Figure 15).
To examine the effect of the size distribution, for each dataset, we reconfigure COREA to augment the
hyperedges whose size distribution follows the uniform distribution. In other words, we replace the original
hyperedge size distribution D of G in Algorithm 1 by the uniform distribution. The results are highlighted
in Figure 16. In the case of uniform distribution, as COREA creates and augments more hyperedges of
larger sizes, due to switching from a heavy-tailed to the uniform distribution, the augmented hyperedges
potentially help more nodes to maintain their core numbers, resulting in a better performance of core
resilience improvement. However, it would be unrealistic to assume such uniform distribution as we are
constrained to preserve the original skewed hyperedge size distributions in order to prevent attackers from
deliberately ignoring our augmented hyperedges, as discussed in Section 3.2.

7.5 Q4. Further Insights
We present three interesting characteristics of the hyperedges returned by COREA.

Insight 1. The augmentation by COREA is more helpful to the nodes of with medium to high original core
numbers.

For each dataset, we group the nodes into three groups based on core numbers: low, medium, and
high (each accounts for one-third of the range of core numbers) and measure the decrease in core numbers
in each group after 50% of the hyperedges are removed by the Core Strength Attack, with or without the
augmentation by COREA. As Figure 17 shows, COREA mitigates such decrease more clearly in the medium
and high groups.

Insight 2. A hypergraph of higher core resilience tends to possess less availability for augmentation and vice
versa.
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Figure 11: The comparison of different variants in terms of performance. The x-axis shows the deletion
ratios, and the y-axis shows the core resilience improvement of each variant. The vertical bars indicate the
standard deviations. The full-fledged version of COREA consistently outperforms the other variants in all
datasets regardless of deletion ratios.

For each dataset, we define the ratio of availability as the average of anchor availabilities of nodes, found by
COREA, normalized by their respective core numbers: r(G) = 1

|V|
∑N∗

G

k=2

∑
v∈Vk

c(v)
k = 1

|V|
∑N∗

G

k=2

∑
v∈Vk

c(v)

k

(Vk = {v ∈ V | NG(v) = k}). For each v ∈ Vk, 0 ≤ c(v) ≤ k. A dataset with high r(G) implies more
availability for augmentation, and this statistic is negatively correlated with core resilience, as shown in
Figure 18 (left). Intuitively, if we can augment more, i.e., a high value of r(G), the core structure of the
hypergraph is “less complete", resulting in weak core resilience against deletion attacks.

Insight 3. The skewness of the distributions of the core numbers of hyperedges in E is positively correlated
with that of the hyperedges constructed by COREA.

This positive correlation is shown in Figure 18 (right). For example, in threads-ask-ubuntu, the skewness of
the core number distribution of hyperedges in E is positive, indicating more hyperedges of low core numbers
but fewer hyperedges of high core numbers, and this tendency is also found in the pool of hyperedges
P returned by COREA. By contrast, such skewness for the set E in contact-primary-school is negative,
implying more hyperedges of high core numbers, and this is also true for the hyperedges in P from the
dataset.

7.6 Q5. Applications
In this section, we demonstrate that the hyperedges augmented by COREA support the applicability of
hypergraph core numbers, introduced in Section 4, when the networks face deletion attacks.
Identification of Influential Nodes: Table 3 reports the Spearman’s rank correlation coefficient between
the nodes’ influences in the original hypergraph with: the original core numbers (Before Attack), the core
numbers of the hypergraph after 50% of hyperedges have been deleted (No Augmentation), and the core
numbers of the hypergraph after several hyperedges are augmented by COREA and then 50% of hyperedges
are deleted (COREA). After the deletion attack, the ranking of core number is less correlated to the ranking
of node influences, i.e., core numbers become less useful in characterizing influential nodes. However, the
hyperedges augmented by COREA help alleviate that decrease in the usefulness of core numbers.
Anomaly Detection: Figure 19 highlights the AUC-PR of predicting abnormal nodes of the method Core
with the settings detailed in Section 4.2 before (Original) and after 50% of hyperedges have been deleted
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Figure 12: The trade-off of different variants in terms of time and performance. The x-axis shows the running
time, and the y-axis shows the core resilience improvement of each variant when the deletion ratio r = 50%.
The vertical bars indicate the standard deviations. The full-fledged version of COREA consistently provides
a better time-performance trade-off than the other variants in all datasets regardless of deletion ratios.

(COREA and No Augmentation). COREA and No Augmentation indicate the cases where hyperedges
are augmented by COREA before the attack and no augmentation is undertaken, respectively. After an
attack, the ranking of core numbers is less useful in detecting anomalies, but this decline of usefulness is
mitigated with the hyperedges augmented by COREA.

8 Conclusion
In this work, we formulate and study the problem of enhancing the core resilience of real-world hypergraphs.
We discuss the challenges of the problem, introduce the relevant concepts, and present the key patterns
regarding the core resilience of the hypergraphs

Based on these, we develop a two-step method, COREA, to consolidate the core structure of hypergraphs
by augmenting hyperedges within a given budget. COREA is fast, theoretically sound, and empirically ef-
fective in improving the core resilience of the hypergraphs. The hyperedges augmented by COREA not
only preserve the core structure of the hypergraphs but also enhance its resilience. Through our extensive
experiments in ten real-world hypergraphs, we demonstrate the superiority of COREA over the baseline
approaches, investigate the characteristics of the augmentation by COREA, and examine the role each
component plays in the performance of COREA. In addition, we show that COREA helps support the ap-
plications of hypergraph core numbers when the hypergraphs face deletion attacks. The code and datasets
are available at https://github.com/manhtuando97/CoReA.
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Figure 17: Hyperedges augmented by COREA are more helpful in mitigating the core number degree, due
to Core Strength Attack, of the nodes of medium and high core numbers.
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A Datasets
Throughout the paper, we use 10 real-world hypergraph datasets [15]. The basic statistics are provided in
Table 4. Their domains are:

• co-authorship (coauth-MAG-Geology and coauth-MAG-History): each node is an author, and each hy-
peredge is the list of coauthors in a publication.

• contact (contact-high-school and contact-primary-school): each node is an individual, and each hyperedge
is a group of people in contact at a high/primary school.

• email (email-Enron and email-Eu): each node is an email address, and each hyperedge consists of the
sender and recipients of an email.

• drugs (NDC-classes and NDC-substances): each node represents a drug class/substance, and each hy-
peredge represents a set of classifications/substances of a drug.

• threads (threads-ask-ubuntu and threads-math): each node is a user in an online forum, and each hyper-
edge is the list of users in a question thread.

Table 4: Basic statistics of real-world hypergraphs.

Dataset |V| |E| N∗
G

coauth-MAG-Geology 1,087,111 908,516 7
coauth-MAG-History 1,014,734 895,668 7
contact-high-school 327 7,818 39

contact-primary-school 242 12,704 74
email-Enron 143 1,457 22

email-Eu 979 24,399 70
NDC-classes 1,149 1,047 23

NDC-substances 3,438 6,264 46
threads-ask-ubuntu 90,054 115,987 12

threads-math 153,806 535,323 42
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B Core Decomposition Algorithm
The Core Decomposition process is outlined in Algorithm 3.

Algorithm 3 Core Decomposition
Input: input hypergraph G = (V,E), no isolated nodes
Output: (1) core numbers {NG(v) | v ∈ V} of nodes in V,

(2) core numbers {NG(e) | e ∈ E} of hyperedges in E,
(3) degeneracy N∗

G of G,
(4) k-core C(k,G) of G for k = 1, ..., N∗

G

1 V← V, E← E, G← (V,E), C(1,G)← G
2 k ← 1

3 while V is not empty do
4 TD← {v ∈ V | dG(v) < k + 1}
5 /* Remove nodes of degrees < k + 1 */
6 while TD is not empty do
7 pop v from TD NG(v)← k, V← V \ {v}
8 /* Remove hyperedges incident to v */

for e ∈ EG(v) do
9 /* Decrement degrees of nodes in e */

for n ∈ e do
10 dG(n)← dG(n)− 1
11 if dG(n) < k + 1 then
12 TD← TD ∪ {n}
13 NG(e)← k, E← E \ {e}
14 C(k,G)← (V,E); k ← k + 1

15 N∗
G ← k − 1

16 return {NG(v) | v ∈ V }, {NG(e) | e ∈ E}, N∗
G, and {C(k,G) | k = 1, ..., N∗

G}
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C Algorithm for SIR on Hypergraphs
The SIR model generalized to the hypergraph setting is outlined in Algorithm 4.

Algorithm 4 Hypergraph SIR
Input: (1) input hypergraph G = (V,E),

(2) initial infected node i,
(3) transmission rate t ∈ (0, 0.5),
(4) recovery rate r ∈ [0, 1]

Output: number of ever-infected nodes |R|
17 S, I,R← V \ {i}, {i}, ∅
18 while I ̸= ∅ do
19 ps(vs)← 1, ∀vs ∈ S

20 for e ∈ E s.t e ∩ I ̸= ∅ ∧ e ∩ S ̸= ∅ do
21 Ie, Se ← e ∩ I, e ∩ S
22 ps(u)← ps(u)(1− 2t|Ie|/|e|), ∀u ∈ Se

23 v moves to R with probability r, ∀v ∈ I
24 n moves to I with probability 1− ps(n), ∀n ∈ S

25 return |R|

For the results reported in Sections 4 and 7.6, we set r = 1 and t = 0.025 in all datasets. Similar
conclusions regarding the applicability of hypergraph core numbers (Section 4) and how the hyperedges
augmented by COREA help support the applications of core numbers (Section 7.6) are drawn with different
values of t in {0.05, 0.025, 0.01, 0.005}.
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D Results on Node-deletion Attacks
We present the results of node-deletion attacks. The five observations, similar to those in Section 5.3, are
reported for all attack strategies in Figures 20, 21, 22, and 23. The results in Figures 21, 22, and 23 are of
the cases where 25% of nodes are deleted.

The method evaluation results reported in Figures 24-30 are of Core Strength Attack. Similarly to
Section 7, we also report the mean of 10 trials together with the standard deviations indicated by the
vertical bars. Overall, our full-fledged method COREA significantly outperforms and provides a better
time-performance trade-off than the baselines and simplified variants. The statistical significance of the gap
is also verified by the one-tailed Student’s t-test, as in Section 7.2, at 95% confidence (p-values < 0.05 in all
cases).

For all other attack strategies, we draw the same conclusion about the superiority in performance and
time-performance trade-off of the full-fledged version of COREA compared to the baselines and simplified
variants. Due to the large number of figures, we present the results of all other attack strategies in the
supplementary material.

When switching from the real hyperedge size distribution, heavy-tailed, to the uniform distribution,
COREA achieves a better performance as more larger-size hyperedges are augmented. However, assuming
a uniform hyperedge distribution is both unrealistic and violative of the constraints of Problem 1.
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Figure 20: The core resilience of real-world hypergraphs against node-deletion attacks varies among the
attack strategies and across deletion ratios. The x-axis shows the deletion ratio, and the y-axis indicates
Spearman’s rank correlation coefficient between the original and the post-attack core number distributions.
Core Strength Attack is consistently the most destructive to the core resilience, while Random Attack is the
least destructive.
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Figure 21: The skewness of the distribution of core strengths is negatively correlated with the core resilience
against node-deletion attacks. “CorrCoef" indicates Spearman’s rank correlation coefficient. It is worth
noting that datasets within the same domain exhibit similarities in terms of both skewness and core resilience.
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Figure 22: The core influence-strength is positively correlated with the core resilience, against node-deletion
attacks. “CorrCoef" indicates Spearman’s rank correlation coefficient.
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Figure 23: The degeneracy centralized index is positively correlated with core resilience, against node-
deletion attacks. “CorrCoef" indicates Spearman’s rank correlation coefficient.
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Figure 24: The comparison of different methods in terms of performance against node-deletion attacks. The
x-axis shows the node deletion ratios, and the y-axis shows the core resilience improvement of the methods.
The vertical bars indicate the standard deviations. COREA consistently brings better improvement of core
resilience than the others in all datasets regardless of deletion ratios.
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Figure 25: The trade-off of the methods in terms of time and performance against node-deletion attacks.
The x-axis shows the running time, and the y-axis shows the core resilience improvement of each variant when
the node deletion ratio r = 25%. The vertical bars indicate the standard deviations. COREA consistently
provides a better time-performance trade-off than the other methods in all datasets regardless of deletion
ratios.
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Figure 26: The comparison of different variants in terms of performance against node-deletion attacks.
The x-axis shows the node deletion ratios, and the y-axis shows the core resilience improvement of each
variant. The vertical bars indicate the standard deviations. The full-fledged version of COREA consistently
outperforms the other variants in all datasets regardless of deletion ratios.
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Figure 27: The trade-off of different variants in terms of time and performance against node-deletion attacks.
The x-axis shows the running time, and the y-axis shows the core resilience improvement of each variant
when the node deletion ratio r = 25%. The vertical bars indicate the standard deviations. The full-fledged
version of COREA consistently provides a better time-performance trade-off than the other variants in all
datasets regardless of deletion ratios.
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Figure 28: The performance of COREA when the degeneracy requirement is enforced and waived. The
x-axis shows the node deletion ratios and the y-axis shows the core resilience improvement of each variant.
The vertical bars show the standard deviations. Enforcing the degeneracy requirement of having at least
one node in the degeneracy core in each candidate hyperedge is helpful to the performance.
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Figure 29: The performance of COREA against node-deletion attacks with different tie-breaking schemes
in Step 1-1. The x-axis shows the node deletion ratios, and the y-axis shows the core resilience improvement
of each variant. The vertical bars show the standard deviations. The tie-breaking scheme CSG/CIG, leads
to the highest improvement of core resilience among the three schemes.

5 10 15 20 25

0.05

0.10

0.15

0.20

Pe
rfo

rm
an

ce

coauth-MAG-Geology

5 10 15 20 25

0.05

0.10

0.15

coauth-MAG-History

5 10 15 20 25
0.03
0.04
0.05
0.06
0.07
0.08

contact-high-school

5 10 15 20 25
0.03

0.04

0.05

0.06

0.07

0.08
contact-primary-school

5 10 15 20 25

0.03

0.04

0.05

0.06

0.07
email-Enron

5 10 15 20 25
Deletion Ratio

0.03

0.04

0.05

0.06

0.07

Pe
rfo

rm
an

ce

email-Eu

5 10 15 20 25
Deletion Ratio

0.04
0.05
0.06
0.07
0.08
0.09

NDC-classes

5 10 15 20 25
Deletion Ratio

0.02

0.03

0.04

0.05

0.06 NDC-substances

5 10 15 20 25
Deletion Ratio

0.04

0.06

0.08

0.10

0.12

0.14
threads-ask-ubuntu

5 10 15 20 25
Deletion Ratio

0.04
0.06
0.08
0.10
0.12
0.14

threads-math

Distribution: original uniform

Figure 30: The performances of COREA against node-deletion attacks when following the original and
uniform hyperedge size distributions, respectively. The x-axis shows the node deletion ratios, and the y-
axis shows the core resilience improvement. The vertical bars indicate the standard deviations. For the
uniform distribution, COREA augments larger-size hyperedges, potentially helping more nodes with the
augmentation, and results in a better performance.
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E Theoretical Results and Proofs
In this section, we present detailed theoretical results with the accompanying proofs to support the soundness
of COREA.

We first define a valid deletion order in a hypergraph G = (V,G) as a particular permutation O =
[vi1 , vi2 , ..., vin ] of the nodes in V = {v1, ..., vn} such that the nodes in V are removed exactly in the
order of O in an execution of the core decomposition process. Different tie-breaking schemes T, described in
Section 6.2.1 determine differently which node to delete first when several nodes are up for removal, resulting
in different executions of the core decomposition process of G and in turn different valid deletion orders. In
addition, we refer to any augmentation method that augments several hyperedges of its choice to hypergraph
G while preserving all core numbers of G as a feasible augmentation of G.

E.1 Feasibility of COREA
In this section, we prove that COREA is a feasible augmentation method, i.e., the hyperedges augmented
by COREA to G are guaranteed to preserve all core numbers of G.

Lemma 1. Assuming that after applying F , a feasible augmentation of G, a subsequence of a valid deletion
order in the core decomposition process for the nodes having core number k is: Sk = [a1, ..., aq]. Without F ,
Sk is still a subsequence of a valid deletion order for the nodes having core number k in the pruning process
of obtaining the (k + 1)-core in the original hypergraph G.

Proof. Let G′ denote the result of applying F to G. For i = 1, ..., q, let EF (ai) be the set of hyperedges
augmented by F , each of which has {ai} ∪ s, with s ⊆ {ai+1, ..., aq} (s may be an empty set) as the set of
anchors. Let F (ai) = |EF (ai)|. Following the core decomposition process, all the hyperedges in EF (ai) are
removed when ai is removed.

For a1, as a1 can be removed first in the process of obtaining the (k + 1)-core from the k-core of
G′, its degree at the k-core of G′ is dkG′(a1) ≤ k. As the degree of a1 in the k-core of G is equal to
dkG(a1) = dkG′(a1) − F (a1) ≤ k, a1 can also the first node of core number k to be deleted in the core
decomposition process of G.

For any ai, i > 1, during the pruning process of obtaining the (k + 1)-core, after nodes a1, ..., ai−1 have
been removed along with their incident hyperedges, the degree of ai in G′ must be lower than or equal to k.
In other words, the degree of ai at this point is equal to k − g(ai) ≤ k with g(ai) ≥ 0. This value is equal
to F (ai) plus the degree of ai in a sub-hypergraph of G, obtained by removing a1, ..., ai−1 along with their
incident hyperedges. If the order Sk is followed in the core decomposition process of the original hypergraph
G (without the augmentation F ), the degree of ai at this point, after nodes a1, ..., ai−1 have been removed
along with their incident hyperedges, would be: k − g(ai)− F (ai) ≤ k, which also qualifies ai for deletion.

Therefore, without the hyperedges augmented by F , Sk is still a subsequence of a valid deletion order
for the nodes having core number k in the pruning process of obtaining the (k + 1)-core in the original
hypergraph G.

Theorem 1 (Feasibility of COREA). Step 1 of COREA guarantees to construct a pool P of candidate
hyperedges that do not change the core number of any node when they are added together to G.

Proof. We show that after COREA augments all the candidate hyperedges in P , the pool of candidate
hyperedges constructed in Step 1 of COREA (Section 6.2), to G = (V,E) to form G′ = (V,E′), the
original deletion order O = [vi1 , vi2 , ..., vin ] of an execution of the core decomposition process on G in
Algorithm 2 is still a valid deletion order in G′ and returns the original core numbers.

We prove by induction on the elements vi1 , ..., vin in O that in G′, O is still a valid deletion order and
NG(vij ) = NG′(vij ), j = 1, ..., n.

- Base case: As vi1 is the first node deleted in G, immediately prior to the removal of vi1 , dG(vi1) <
NG(vi1) + 1, and dG(vi1) ≥ NG(vi1) (no hyperedges have been removed at this point and the degree of vi1
must be sufficient for the core number of vi1). Therefore, dG(vi1) = NG(vi1), so the anchor availability c(vi1)
realized for vi1 is c(v) = NG(vi1) − dG(vi1) = 0. As a result, in G′, dG′(vi1) = dG(vi1), so vi1 can also be
the first node deleted in the core decomposition process in G′ and NG(vi1) = NG′(vi1).

- Inductive hypothesis: Assume that in an execution of the core decomposition process on G′, the nodes
vi1 , ..., vih−1

have been deleted exactly in this order (same order as in G) and NG(vij ) = NG′(vij ), j =
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1, ..., h − 1. We need to show that vih can now also be deleted and NG(vih) = NG′(vih). Indeed, suppose
NG(vih) = k and c(vih) is the anchor availability realized for vih by COREA. COREA constructs c(vih)
hyperedges, formed by grouping vih with other nodes from {vih+1

, ..., vin} (Line 10 of Algorithm 1) and
augments those c(vih) hyperedges to G.

Firstly, these c(vih) hyperedges do not affect the core numbers of the nodes that have been deleted before
v in O, which are vi1 , ..., vih−1

.
In addition, as E ⊆ E′, NG′(vij ) ≥ NG(vij ) for j = h, ..., n. Moreover, after vi1 , ..., vih−1

have been
removed in the core decomposition process of G′, the degree of vij in G′ is no less than the degree of vij in
G after vi1 , ..., vih−1

have been removed in the core decomposition process of G, for j = h, ..., n.
Following the removal order O in the pruning process of obtaining the (k+1)-core from the k-core in G,

after the nodes vi1 , ..., vih−1
have been removed, the degree of vih in G immediately prior to its removal is

k − c(vih). Therefore, in G′, at this point of the core decomposition process when vi1 , ..., vih−1
along with

their incident hyperedges have been deleted, the degree of vih is dG′(vih) = k−c(vih)+c(vih) = k < k+1, so
NG′(vih) ≤ k. Therefore, NG′(vih) = k = NG(vih), and the degree of vih at this point is equal to k. Thus,
in G′, vih can be removed immediately after vi1 , ..., vih−1

have been removed. Such removal deletes vih and
all of its incident hyperedges, including the newly augmented c(vih) hyperedges, thus having no impacts on
vih+1

, ..., vin .
By the principle of mathematical induction, in G′, O is still a valid deletion order and NG(vij ) =

NG′(vij ), j = 1, ..., n. Thus, Step 1 of COREA guarantees to construct a pool P of candidate hyperedges
that do not change the core number of any node when they are added together to G.

When the given budget B is tight, which is usually true in practice, only a subset of P is chosen to
augment to G in Step 2 of COREA 6.3. Whether all hyperedges in P are augmented or only a subset of P
is augmented to G, in all cases, the hyperedges augmented by COREA are guaranteed to preserve all the
original core numbers.

E.2 Invariance of COREA
Lemma 2. Let S = {a1, ..., an} be a set of n elements, F(S) be the set of all subsets of S , and t : F(S) 7→ N
be a function that maps each subset of S to a natural number. Denote S(i) ∈ F(S) as the set of all subsets
of S contaning the element ai. Then, the following equality holds:

n∑
i=2

∑
s∈

i−1⋃
j=1

(S(i)∩S(j))

t(s) =
∑

s⊆S,|s|≥2

(|s| − 1)t(s). (2)

Proof. It suffices to show the sum on the left-hand side of Equation (2) only involves the subsets of S whose
cardinalities are no less than 2 and that each term t(s) for each s ⊆ S, |s| ≥ 2, appears exactly (|s|−1) times
in this sum.

Indeed, the set
i−1⋃
j=1

(S(i) ∩ S(j)) is the set of all subsets of S that contain ai and at least 1 element among

a1, ..., ai−1. In addition, on the left-hand side of Equation (2), the sum only involves all subsets of S having
at least 2 elements. It is because each subset needs to involve at least 2 distinct elements and for any subset

s′ ⊆ S such that |s′| ≥ 2, take 2 elements ap, aq ∈ s′, p < q, then s′ ∈
q−1⋃
j=1

(S(q) ∩ S(j)).

Let s = {ak1
, ..., akm

} with k1 < ... < km and |s| = m ≥ 2 be a subset of S. For each i = k2, ..., km, s

appears exactly once in
i−1⋃
j=1

(S(i) ∩ S(j)) because for each of those i = k2, ..., km, the set s is a subset of S

that contains ai and ak1
(k1 < i).

For each i ∈ S \ {k2, ..., km}, s does not appear in
i−1⋃
j=1

(S(i) ∩ S(j)) as s fails to contain both ai and an

element aj(j < i).
Therefore, the term t(s) corresponding each set s, s ⊆ S, |s| ≥ 2, appears exactly (|s| − 1) times on the

left-hand side of Equation (2). Since both sides of Equation (2) involve exactly all the subsets of S whose
cardinalities are greater than or equal to 2, the two sides of Equation (2) are equal to each other.
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Lemma 3 (Invariance of COREA in each k-core). For k = k0, ..., N
∗
G, with k0 as the minimum core

number of a node in G, the total number of anchor availabilities of nodes having core number k, realized by
COREA, remains unchanged regardless of the order of nodes removed in the core decomposition.

Proof. Without loss of generality, assume a particular order in which the nodes are deleted in the pruning
process of obtaining the (k + 1)-core from the k-core is [a1, ..., aq], and their respective anchor availabilities
realized by COREA are c(a1), ..., c(aq). Note that S = {a1, ..., aq} is the set of all nodes having core number
k. Denote S(i) as the set of all subsets of S containing ai. For each subset s ⊆ S, |s| ≥ 1, let t(s) be the
number of hyperedges that have s as the set of anchors: t(s) = |{e ∈ E | AG(e) = s}|. Denote the set of all
subsets of S that contain ai as S(i). The set of subsets of S that contain ai and at least one element among

a1, ..., ai−1 is
i−1⋃
j=1

(S(i) ∩ S(j)).

At the k-core, the degree dG(vi1) of node ai ∈ S is k + R(ai) with R(ai) ≥ 0 since the degree of each
node among {a1, ..., aq} has to be at least k. It should be noticed that R(ai) = dG(vi1) − k is independent
of the order of node deletions.

Assuming that Algorithm 2 is now at the k-core and undertakes the pruning process to obtain the (k+1)-
core while simultaneously obtaining the anchor availability for each node that has core number k. As node
a1 is the first node to delete, its degree is ≤ k. However, since no hyperedges at the k-core have been deleted
yet, the degree of a1 at this point is k + R(a1) ≤ k. Therefore, R(a1) = 0, and according to COREA, the
anchor availability realized for a1 is c(a1) = 0.

For each i = 2, ..., q, after nodes a1, ..., ai−1 have been removed, all of the hyperedges anchored at any of
those nodes have also been removed from the network. Among those hyperedges, the ones that affect the
degree of ai are the ones co-anchored by ai and at least 1 among a1, ..., ai−1. The number of such hyperedges
is:

∑
s∈

i−1⋃
j=1

(S(i)∩S(j))
t(s). Due to the removals of these hyperedges, the degree of ai immediately prior to its

deletion is k + R(ai) −
∑

s∈
i−1⋃
j=1

(S(i)∩S(j))
t(s). To qualify for deletion, the degree of ai must be lower than

(k + 1). In other words, k + R(ai) −
∑

s∈
i−1⋃
j=1

(S(i)∩S(j))
t(s) ≤ k, or −R(ai) +

∑
s∈

i−1⋃
j=1

(S(i)∩S(j))
t(s) ≥ 0. The

anchor availability realized for node ai by COREA is then equal to: c(ai) = −R(ai)+
∑

s∈
i−1⋃
j=1

(S(i)∩S(j))
t(s).

The sum of anchor availabilities realized by COREA for all nodes in the k-core is: ck =
∑q

i=1 c(ai) =
−
∑n

j=1 R(aj) +
∑q

i=2

∑
s∈

i−1⋃
j=1

(S(i)∩S(j))
t(s). Lemma 2 implies the following equality:

q∑
i=2

∑
s∈

i−1⋃
j=1

(S(i)∩S(j))

t(s) =
∑

s⊂S,|s|≥2

(|s| − 1)t(s). (3)

Thus, c(k) = −
∑q

j=1 R(aj) +
∑

s⊂S,|s|≥2(|s| − 1)t(s). This value is symmetric with respect to each of
a1, ..., aq, which is independent of any particular ordering of S = {a1, ..., aq}.

Therefore, the total number of anchor availabilities realized by COREA for the nodes in the k-core is
constant regardless of the order of deletions.

Lemma 4. For each k = k0, ..., N
∗
G, with k0 as the minimum core number of a node in G, in the pruning

process of obtaining the (k+1)-core from the k-core, assume that in two different valid deletion orders O and
O′, ap is the p-th node having core number k deleted and a1, ..., ap−1 are the (p − 1) nodes of core number
k deleted before ap (with different orders). The anchor availability realized for ap is the same in both O and
O′.

Proof. We employ all the notations as in Lemma 3. According to the proof of Lemma 3, the anchor availability
realized for ap in either O or O′ is −R(ap) +

∑
s∈

p−1⋃
j=1

(S(p−1)∩S(j))
t(s), which is symmetric with respect to

a1, ..., ap−1 and does not depend on any particular ordering or a1, ..., ap−1. This demonstrates that the anchor
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availability realized for each node is only dependent on the set of nodes deleted before it and independent
of the deletion order by which those nodes are deleted.

Theorem 2 (Invariance of COREA). The total number of anchor availabilities C =
∑

v∈V c(v) realized
by COREA is always constant with respect to G.

Proof. According to Lemma 3, for each k = k0, ..., N
∗
G, with k0 as the minimum core number of a node in G,

the total anchor availabilities realized by COREA for the nodes having core number k is the same regardless
of the order O of deletion (O is a valid deletion order).

Since the total anchor availabilities realized by Algorithm 1 can be obtained by summing up all anchor
availabilities realized at each core level, the total number of anchor availabilities realized by COREA is
constant regardless of the order of deletions.

E.3 Exhaustiveness of COREA
Lemma 5 (Exhaustiveness of COREA in each k-core). For k = k0, ..., N

∗
G, with k0 as the minimum

core number of a node in G, the total anchor availabilities for the nodes having core number k realized by
COREA always is the maximum number of hyperedges anchored at the nodes of core number k that can be
augmented, subject to the constraint of preserving the core number k of those nodes.

Proof. According to Lemma 3, the total anchor availabilities realized by Algorithm 1 for the nodes having
core number k, is always the same regardless of the order of node deletions, and let Tk be such total number.

Assume the contradiction that Tk is not the maximum number of hyperedges anchored at the nodes of
core number k that can be augmented to G while conserving all core numbers. As a result, there is a feasible
augmentation method I that augments Ik hyperedges anchored at the nodes having core number k-core that
preserve all core numbers with Ik ≥ Tk+1. Without loss of generality, assume that with I, in a valid deletion
order of the core decomposition process, all nodes having core number k are deleted in the order [a1, ..., aq]
in the pruning process to obtain the (k + 1)-core from the k-core. Immediately before the deletion of ai, its
degree is k − x(ai) ≤ k, with x(ai) ≥ 0. Denote I

(i)
k as the number of hyperedges augmented by I whose

anchors involve ai and a subset s of {ai+1, ..., aq} (s maybe an empty subset). We then have
∑q

i=1 I
(i)
k = Ik

By Lemma 1, we know that without I, [a1, ..., aq] is still a subsequence, involving all the nodes having core
number k, of a valid deletion order in the core decomposition of the original hypergraph G. That is, without
I, in the original hypergraph G, the pruning process can still delete nodes a1, ..., aq in this particular order to
obtain the (k+1)-core from the k-core. The degree of ai immediately prior to its deletion is k−x(ai)− I

(i)
k .

As a result, COREA realizes the anchor availability c(ai) = x(ai) + I
(i)
k for node ai. Lemma 3 proves

that the value of Tk is always equal to: Tk =
∑q

i=1 c(ai) =
∑q

i=1[x(ai) + I
(i)
k ] =

∑q
i=1 I

(i)
k +

∑q
i=1 x(ai) =

Ik +
∑q

i=1 x(ai) ≥ Ik ≥ Tk + 1, which is a contradiction.
Therefore, the initial assumption is false, which proves that COREA returns the maximum number of

hyperedges anchored at the nodes having core number k, subject to the constraint of preserving all core
numbers.

Theorem 3 (Exhaustiveness of COREA). There is a maximum number M of hyperedges that can be
augmented to G while conserving all core numbers, and the total number of anchor availabilities C realized
by COREA is equal to M.

Proof. Lemma 5 shows that COREA always returns the maximum total number of anchor availabilities
Tk of nodes having core number k for k = k0, ..., N

∗
G, with k0 as the minimum number of core number

of a node in G. According to Theorem 2, the total anchor availabilities realized by COREA is always
C =

∑
v∈V c(v) =

∑N∗
G

k=k0
Tk. Below, we prove that C is actually the maximum number of hyperedges that

can be augmented to G while conserving all core numbers.
Indeed, assume that a feasible augmentation method F augments Ik hyperedges, anchored at the nodes

having core number k, for each k = k0, ..., N
∗
G, without changing any core numbers of the nodes in G. The

total anchor availability realized by F is I =
∑N∗

G

k=1 Ik. According to Lemma 5, Ik ≤ Tk, so: I =
∑D

k=k0
Ik ≤∑N∗

G

k=k0
Tk = C. In other words, the total number of hyperedges augmented by F is ≤ C.
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Thus, the total anchor availabilities C found by COREA is the maximum number of hyperedges that
any feasible augmentation method can add to G, subject to the constraint of preserving all core numbers.
Theorem 2 states that C is always constant with respect to G, indicating that C is the maximum number
M of hyperedges that can be augmented to G while conserving all core numbers, and M = C.

E.4 Time Complexity of COREA
Theorem 4 (Time Complexity of COREA). Given the hypergraph G = (V,E) with maximum hyperedge
cardinality m, the budget B, the total number of anchor availabilities C of all nodes (constant with respect to
each dataset), and the batch size c by which COREA augments c hyperedges at a time in Step 2, the time
complexity of COREA is O

[
|V|log|V|+ Cm log|V|+ (|V|+

∑
e∈E|e|+ Cm2) bc

]
, where b = min{B, C}.

Proof. As described in Section 5.1, computing the core influences of all nodes requires initializing the value 1
for each node and iterating through each node in each hyperedge once, so the time complexity of computing
core influences is O(|V|+

∑
e∈E|e|).

Step 1-1 of COREA, presented in Algorithm 1, undertakes the core decomposition process and computes
the anchor availability of each node. The core decomposition process requires iterating through each node
v for its removal and each hyperedge e for its removal and updating the degrees of its constituent nodes.
The total time complexity for these operations is O(|V| +

∑
e∈E|e|). Computing the anchor availability of

each node v, NG(v) = k, requires some primitive operations (subtracting the degree immediately prior to
the removal from k), so the time complexity of removing nodes, along with their incident hyperedges, and
computing anchor availabilities for all nodes is O(|V|), which is dominated by O(|V|+

∑
e∈E|e|).

If the tie-breaking scheme T is being proportional to CSG/CIG (or 1/CIG), the core strength and core
influence of each node v can be computed when v becomes qualified for removal in the core decomposition
process. The reason is that the core influences of all the nodes in the k-core can be computed by the time
Algorithm 2 completes finding the (k − 1)-core (the core influence of v only depends on the hyperedges
incident to v having lower core numbers than that of v). Also, when a node v becomes qualified for removal
in Algorithm 2, its core strength can be updated with constant time (based on its degree at the beginning
of the k-core and its core number, which is determined to be k at this point already). Therefore, computing
core strengths and core influences of all nodes for the scheme T does not affect the time complexity. For
each k = k0, ..., N

∗
G, with k0 as the minimum core number of a node in G, denote Nk as the number of

nodes in G that have core number k. For each k, in the pruning process of obtaining the (k + 1)-core
from the k-core, at each step, among the nodes in TD (Line 4 in Algorithm 2) that are the nodes qualified
for removal, the tie-breaking scheme T needs to conduct weighted sampling to select a node to delete first.
For each node v among Nk nodes of core number k, according to [58], adding v to TD takes O(1) time,
sampling v from TD takes O(log|TD|) time, and removing v after sampling from TD takes O(log|TD|) time.
Since |TD| ≤ Nk, the total time complexity the tie-breaking scheme T to decide the order of nodes to
delete in the k-core is O(NklogNk). Therefore, the total time complexity for T to decide the deletion order
O for G is

∑N∗
G

k=k0
O(NklogNk). We have:

∑N∗
G

k=k0
Nk logNk ≤

∑N∗
G

k=k0
Nk log|V| = |V| log|V|. Therefore,∑N∗

G

k=k0
O(NklogNk) = O(|V|log|V|).

As a result, the total time complexity of Step 1-1 of COREA is O(|V| +
∑

e∈E|e|) + O(|V|log|V|) =
O(|V|log|V|+

∑
e∈E|e|).

In Step 1-2 of COREA, for each node v, we need to construct c(v) hyperedges anchored at v. For
each hyperedge e among those c(v) hyperedges, this requires sampling a hyperedge size (constant time) and
sampling other nodes from O[i + 1 :] (as shown in Line 10 of Algorithm 1). For the sampling scheme S
described in Section 6.2.2, the sampling step of other nodes to fill up e takes O(m log|V|) time, according
to [58]. Therefore, the total time complexity of Step 1-2 is O(

∑
v∈V c(v)m log|V|) = O(Cm log|V|).

In Step 2, we go through b/c iterations, and in each iteration, we add c hyperedges to Gcur. At each
iteration, before choosing the hyperedges to augment to Gcur, for each candidate hyperedge e in the pool P ,
COREA needs to evaluate how much augmenting e improves the term f(Gcur) =

∑
v∈V CIGcur(v)CSGcur(v),

with Gcur as the current hypergraph snapshot. To do this, we maintain a measurement g(v) for each
node v, quantifying how much f(Gcur) increases if CIGcur(v) is incremented by 1 unit. Particularly, if
CIGcur(v) increases by 1 unit, f(Gcur) increases by g(v). In order to achieve this, we reverse the process
of calculating all core influences. In the formula of core influence in Section 5.1, suppose CIGcur(v) =
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1+
∑

e∈E<
Gcur

(v)(1+
∆

NGcur (v)−1 )
[
(1− CSGcur (t)−1

|E=
Gcur

(t)| )CIGcur(t)
]
, for each e ∈ E<

Gcur
(v), if CIGcur(t) increases by

1 unit, CIGcur(v) increases by (1 + ∆
NGcur (v)−1 )

[
(1− CSGcur (t)−1

|E=
Gcur

(t)| )
]

units. As a result, g(t) needs to increase

by (1 + ∆
NGcur (v)−1 )

[
(1− CSGcur (t)−1

|E=
Gcur

(t)| )
]
g(v) units. To compute such value g(v) for each node v, we first

initialize g(v) = CSGcur(v), start from the nodes with the highest core number, update the values g(.) until
reaching the nodes with the lowest core number. The whole process requires iterating through each node
once and each node in each hyperedge once, accounting for the total time complexity of O(|V|+

∑
e∈Ecur

|e|).
Once the values g(.) are up-to-date, for each candidate hyperedge e anchored at {v1, ..., va}, and the

other nodes in e that are not anchors of e are {u1, ..., ub}. Suppose adding e increases the core influences of
u1, ..., ub by β1, ..., βb, respectively, which can be calculated in O(|e|2) time that is upper-bounded by O(m2).
The contribution of e into f(Gcur) if augmented is then:

∑a
i=1 CIGcur(vi) +

∑b
j=1 βj × g(uj), which can

be calculated in O(m) time. Assume that we are at iteration t, for t = 1, ..., b/c, when (t − 1)c candidate
hyperedges have been added to G, there are C − (t− 1)c hyperedges remaining in P . The time complexity
of calculating the scores for the candidate hyperedges and choosing c hyperedges with the highest scores is
then O([C − (t− 1)c]m2).

At each iteration t, for t = 1, ..., b/c, of Step 2, after calculating the g(.) values and the score of each
candidate hyperedge in P , we add c candidate hyperedges with the highest scores to the hypergraph. Once
we augment c more hyperedges into Gcur, we need to update all core strengths, core influences, and the
values g(.), whose complexity is O(|V|+

∑
e∈Ecur

|e|).
At each iteration t, since tc hyperedges have been added to G, O(|V|+

∑
e∈Ecur

|e|) = O(|V|+
∑

e∈E|e|+
tcm) holds. Thus, the total time complexity of iteration t, for t = 1, ..., b/c, of Step 2 is: O(|V|+

∑
e∈E|e|+

tcm) +O([C − (t− 1)c]m2) +O(|V|+
∑

e∈E|e|+ tcm) = O(|V|+
∑

e∈E|e|+ [C − (t− 1)c]m2 + tcm).
Summing over all iterations t = 1, ..., b/c, the total time complexity of Step 2 of COREA is

∑b/c
t=1 O[|V|

+
∑

e∈E|e|+ [C − (t− 1)c]m2 + tcm] = O
[
(|V|+

∑
e∈E|e|+ Cm2) bc

]
.

Summing up the time complexities of Steps 1-1, 1-2, and 2, the total time complexity of COREA is
O
[
|V|log|V|+ Cm log|V|+ (|V|+

∑
e∈E|e|+ Cm2) bc

]
.

E.5 Maximum Anchor Availability of a Node
In this section, we discuss the cases when COREA cannot guarantee to afford maximum anchor availabilities
for all nodes and the sufficient conditions to achieve the maximum anchor availability of a particular node
v. While Theorem 2 shows that the sum of anchor availabilities of all nodes, realized by COREA, is always
constant with respect to G, different deletion orders in Step 1 of COREA, governed by the tie-breaking
scheme T in Line 5 of Algorithm 2, may result in different anchor availabilities for each node.

In the pruning process of obtaining the (k+1)-core form the k-core, at any point, there might be several
nodes qualified for removal, i.e., they all have degrees ≤ k. We first show that, deferring the removal of
v, while choosing another node to delete first, potentially helps afford a higher anchor availability for v, as
stated in Lemma 6.

Lemma 6. In the pruning process of obtaining the (k + 1)-core from the k-core, assume that both u and v
are up for removal, and a valid deletion order O chooses to remove v immediately before u. If we obtain a
valid deletion order O′ by switching the positions of nodes v and u in O, the anchor availability realized by
COREA for v remains the same or increases.

Proof. Assume that by the ordering of O, immediately prior to the deletion of v, the degrees of u and v are
d(u) and d(v), respectively, with d(u), d(v) ≤ k. Also assume that there remain t({u, v}) ≥ 0 hyperedges
anchored by both u and v. In O, we remove v then u and the deletion of v will remove all of its incident
hyperedges, along with those t({u, v}) hyperedges anchored by u and v, so the respective degrees of v and
u immediately prior to removals are d(v) and d(u)− t({u, v}). As a result, COREA realizes the respective
anchor availabilities for v and u as c(v) = k − d(v) and c(u) = k − d(u) + t({u, v}), respectively.

Switching the positions of v and u in O, we obtain another valid deletion order O′. In O′, the deletion of
u will remove all of its incident hyperedges, along with those t({u, v}) hyperedges anchored by u and v, so
the respective degrees prior to removals of u and v are d(u) and d(v) − t({u, v}). As a result, the afforded
anchor availabilities of u and v become c′(u) = k − dG(u) and c′(v) = k − d(v) + t({u, v}).
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As t({u, v}) ≥ 0, c′(v) ≥ c(v). Therefore, if we switch the positions of nodes v and u to obtain another
valid deletion order, the anchor availability realized by COREA for v remains the same or increases.

In the proof for Lemma 6, in the case that t({u, v}) > 0, if we swap from a valid deletion order, deleting
v first then deleting u, to obtain another valid deletion order, deleting u first then deleting v, the anchor
availability for u decreases and that of v increases. Since COREA needs to remove one node at a time, it is
clear that if u is deleted before v, u is certainly not afforded its maximum anchor availability, and the same
holds for v in the case when v is removed before u. Therefore, if there are several nodes up for deletion and
there are hyperedges co-anchored by them, those nodes cannot be afforded their respective maximum anchor
availabilities simultaneously.

Lemma 7. In the pruning process of obtaining the (k+1)-core from the k-core, in 2 different valid deletion
orders O and O′ where the removal of node v is deferred until a point when v is the only node up for removal,
the anchor availabilities of v realized by Algorithm 2 in both O and O′ are the same.

Proof. For each x ∈ V and NG(x) = k, refer to the degree of x at the beginning of the pruning process
to obtain the (k + 1)-core from the k-core, when no nodes of core number k have been deleted, as the core
degree of x, denoted as d(x). Denote SO(x) and SO′(x) as the sets of nodes that have core number k and get
removed before x in O and O′, respectively.

We first show that in both O and O′, the sets of nodes deleted before v, denoted as SO(v) and SO′(v)
respectively, are the same.

If SO(v) = ∅, starting at the k-core, O has to begin with v in the pruning process of obtaining the
(k + 1)-core from the k-core. It implies that among the nodes of core number k, v is the only node whose
core degree is equal to k. As a result, in O′, v also has to be the first node of core number k to delete, i.e.,
SO′(v) = ∅. Therefore, SO(v) = SO′(v). A similar argument is made for the case in which SO′(v) = ∅.

Assume the case that both SO(v) and SO′(v) are non-empty sets. Note that starting at the k-core, both
O and O′ need to begin with a node, other than v, whose core degree is exactly equal to k. Furthermore,
all of the nodes, of core number k and other than v, whose core degrees are exactly equal to k must belong
to both SO(v) and SO′(v) as these nodes are always qualified for removal at the beginning of the pruning
process. It implies that SO(v) ∩ SO′(v) ̸= ∅.

Assume by contradiction that there exists u ∈ SO(v) such that u /∈ SO′(v). In other words, in O′, u
is deleted after v, so d(u) > k. For u to be deleted before v in O, the necessary and sufficient condition
is that the removals of the nodes in SO(u), along with their incident hyperedges, result in the degree of u
dropping lower than k + 1. We have SO(u) ⊂ SO(v). In O′, as we defer removing v to the point when v is
the only node up for removal and u is deleted after v, the degree of u never drops lower than k + 1 before v
is removed. If all nodes in SO(u) are also in SO′(v), u can be qualified for removal before v is removed in O′.
Therefore, ∃t ∈ SO(u) and t /∈ SO′(v), which also implies that t ∈ SO(v) and d(t) > k. t is removed before u
in O, t ̸= u, t ∈ SO(v), and t /∈ SO′(v). We now repeat the argument for u on t to derive that ∃y ∈ SO(v), y
is removed before t in O, d(y) > k, y ̸= u, y ̸= t, and y /∈ SO′(v). Applying the same argument on y and so
on, we can repeat it infinitely many times. However, that is impossible because SO(v) has a finite number
of elements. Therefore, the assumption that u /∈ SO′(v) is false, i.e., u ∈ SO′(v).

Thus SO(v) ⊆ SO′(v). Similarly, we can also show SO′(v) ⊆ SO(v). It implies that SO(v) = SO′(v)
According to Lemma 4, even though the orders of the nodes preceding v are different in O and O′, since

they are the same set of nodes, the anchor availabilities of v in both O and O′, are the same.

Theorem 5 (Maximum Anchor Availability of a Node). If the tie-breaking scheme T in Algorithm 2
always defers the removal of node v, NG(v) = k, until the point when v is the only node qualified for removal
during the pruning process to obtain the (k + 1)-core, COREA achieves the maximum anchor availability
c∗(v) for v. For all tie-breaking schemes, the anchor availability c(v) realized for v, in Algorithm 2, is always
≤ c∗(v).

Proof. Denote S1 as a valid deletion order resulting from a tie-breaking scheme T that always defers the
removal of v, NG(v) = k, in the core decomposition process until the point when v is the only node qualified
for removal.

According to lemma 7, in all valid deletion orders that defer removing v to the point when v is the only
node qualified for removal, the anchor availability realized for v by COREA is always the same, and equal
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to cS1(v), the anchor availability realized by following S1. If there exists a valid deletion order O0 such
that when v and at least another node are qualified for removal, v is chosen to be deleted first and afforded
anchor availability cOo

(v), we can always form another valid deletion order by deferring the removal of v and
deleting the other node first until v is the only node qualified for removal. According to Lemma 6, each time
we do so, the new anchor availability for v is higher than or equal to the previous value, so cOo

(v) ≤ cS1
(v).

Therefore, cS1(v) is the maximum anchor availability for v that can be realized by COREA in any valid
deletion order.

Thus, if the tie-breaking scheme T in Algorithm 2 always defers the removal of v until the point when v
is the only node qualified for removal, COREA achieves the maximum anchor availability for c∗(v) for v.

Given a particular valid deletion order O of nodes in the core decomposition, governed by the tie-
breaking scheme T, the anchor availability for each node is either the maximum possible or sub-optimal.
While not guaranteeing to afford the maximum anchor availabilities for all nodes, in Theorem 5, we provide
sufficient conditions to achieve the maximum anchor availability for a particular node v. That is, in the core
decomposition process, COREA needs to always defer the deletion of v until the point when v is the only
node qualified for removal.

However, as previously mentioned, it is important to note that, regardless of whether the availability for
each node is sub-optimal, the sum C of all anchor availabilities realized by COREA is always constant with
respect to each hypergraph (Theorem 2) and equal to the maximum number of hyperedges any method can
augment to the hypergraph without altering any core numbers (Theorem 3). Therefore, given the constraint
of preserving all core numbers, no feasible augmentation method can augment more than C hyperedges.
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