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ABSTRACT
Graphs are a powerful mathematical model, and they are used to

represent real-world structures in various fields. In many applica-

tions, real-world structures with high connectivity and robustness

are preferable. For enhancing the connectivity and robustness of

graphs, two operations, adding edges and anchoring nodes, have

been extensively studied. However, merging nodes, which is a real-

istic operation in many scenarios (e.g., bus station reorganization,

multiple team formation), has been overlooked. In this work, we

study the problem of improving graph cohesiveness by merging

nodes. First, we formulate the problem mathematically using the

size of the 𝑘-truss, for a given 𝑘 , as the objective. Then, we prove the

NP-hardness and non-modularity of the problem. After that, we de-

velop BATMAN, a fast and effective algorithm for choosing sets of

nodes to be merged, based on our theoretical findings and empirical

observations. Lastly, we demonstrate the superiority of BATMAN

over several baselines, in terms of speed and effectiveness, through

extensive experiments on fourteen real-world graphs.

CCS CONCEPTS
• Mathematics of computing→ Combinatorial optimization;
Graph algorithms; • Information systems→ Data mining.
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1 INTRODUCTION
As a powerful mathematical model, graphs have been widely used

in various fields to represent real-world structures. Some typical

applications of graphs are recommendation systems [62], social

network analysis [59], and biological system analysis on molec-

ular graphs [51] and protein-protein interactions [9]. Moreover,

many optimization problems on real-world structures have been

formulated as ones on the abstracted graphs.

In many real-world applications, it is desirable to have a well-

connected and robust structure. For example, in transportation

systems, it is preferable that stations are connected tightly with

each other so that traffic routes are resilient even if some accidents

happen [32, 81]; in organizations like companies, often several

interconnected projects or tasks are carried out at the same time,

and thus several teams are supposed to form dense and highly-

connected communities in an underlying graph so that the teams

can closely collaborate with each other [2, 4, 29].

A straightforward operation to enhance the connectivity and

robustness of graph structures is adding edges [6, 64]. Besides,

anchoring nodes (i.e., forcefully including some nodes in a cohesive

subgraph) [7, 36, 44, 72, 75, 76] has also been widely studied.

However, merging nodes, which is another realistic operation

in many applications, has been overlooked. Merging nodes, or

formally vertex identification [55], is the operation where we merge

two nodes into one, and any other node adjacent to either of the

two nodes will be adjacent to the “new” node. Merging nodes may

strike you as too radical at first sight, but it is indeed a very realistic

and helpful operation in several real-world examples such as:

(1) Bus station reorganization.Merging some nearby stations

not only makes traffic networks more compact and systematic

but also reduces maintenance expenses since the total number

of stations is reduced [67]. For example, CTtransit, a bus-system

company in the united states, proposed to merge multiple bus

stations in New Haven and discussed the benefits [18].

(2) Multiple Team formation. Forming teams (i.e., “merging”

individuals) within an organization can increase individual per-

formance and cultivate a collaborative environment [15]. How

to form well-performing and synergic teams is an important

research topic [2, 4, 29] in business and management [35, 54].

In this paper, we study the problem of improving the connectivity

and robustness of graphs by merging nodes. To the best of our

knowledge, we are the first who study this problem. We propose

to use the size (spec., the number of edges) of a 𝑘-truss [17] as

the objective quantifying the connectivity and robustness. Given a

graph𝐺 and an integer 𝑘 , the 𝑘-truss of𝐺 is the maximal subgraph

of 𝐺 where each edge is in at least 𝑘 − 2 triangles; and we say that

an edge has trussness 𝑘 if the edge is in the 𝑘-truss but not the

(𝑘 + 1)-truss. Specifically, 𝑘-trusses have the following merits:

(1) Cohesiveness. 𝑘-Trusses require both engagements of the

nodes and interrelatedness of the edges compared to some other

cohesive subgraph models. Specifically, given any graph, a 𝑘-

truss is always a subgraph of the (𝑘 − 1)-core [60] but not vice
versa, and each connected component of a 𝑘-truss is (𝑘 − 1)-
edge-connected [10, 33] with bounded diameter [30].

1

(2) Computational efficiency. 𝑘-Trusses can be computed effi-

ciently with time complexity𝑂 (𝑚1.5) [66], where𝑚 is the num-

ber of edges; in contrary, given a graph, enumerating all the

cliques or many variants (𝑛-cliques [48], 𝑘-plexes [61], 𝑛-clans

and 𝑛-clubs [53]) is NP-hard.

(3) Applicability. 𝑘-Trusses, especially their sizes, ably capture

connectivity and robustness of transportation [20], social net-

works [78, 85], communication [27], and recommendation [69].

Specifically, 𝑘-trusses also have realistic meanings in the two

aforementioned real-world examples (bus station [19, 83] reor-

ganization and multiple team formation [8, 21]).
2

1
See Appendix F of [1] for detailed discussions on why the size of a 𝑘-truss is a

better measure of cohesiveness and robustness than the size of a 𝑘-core.
2
See Appendix C of [1] for more detailed real-world application scenarios.
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Figure 1: Merging nodes is much more effective than adding
edges in enhancing graph robustness. For each robustness
measure, we do 10 rounds ofmerging nodes (dotted) or adding
edges (dashed). In each round, we greedily choose the node
pair or edge that improves the measure most. In the legend,
we include theminimum times (≤ 3 for all measures) ofmerg-
ing nodes that are needed to achieve a better improvement
achieved by adding 10 edges. See Section 6.1 for the details.
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Figure 2: Maximizing the size of a 𝑘-truss is effective: graph
robustness improves when we enlarge a 𝑘-truss. For each
robustnessmeasure, we report the relation between it and the
truss size along the process of enlarging a 𝑘-truss by merging
nodes using our proposed method BATMAN. We include the
absolute value (0.97-0.99 for all measures) of Pearson’s 𝑟 in
the legend. See Section 6.1 for the details.
Due to the desirable theoretical properties and practical meaning-

fulness of 𝑘-trusses, several existing works [12, 13, 64, 73, 85] used

the size of a 𝑘-truss as the objective.

Therefore, we consider the problem of maximizing the size of a

𝑘-truss in a given graph by merging nodes. In Figures 1 and 2, we

show the effectiveness of merging nodes (spec., its superiority over

adding edges) and maximizing the size of a 𝑘-truss (spec., the cor-

relations between the truss size and various robustness measures),

respectively (see Section 6.1 for more details). We mathematically

formulate the problem as an optimization problem on graphs named

TIMBER (Truss-sIzeMaximization By mERgers), and prove the

NP-hardness and non-modularity of the problem.

For the TIMBER problem, we develop BATMAN (Best-merger

seArcher for TrussMAximizatioN), a fast and effective algorithm

equipped with (1) search-space pruning based on our theoreti-

cal analysis, and (2) simple yet powerful heuristics for choosing

promising mergers. Starting from a computationally prohibitive

naive greedy algorithm, we theoretically analyze the changes on a

graph after mergers and use the findings to design speed-improving

heuristics. For example, we prove that after merging two nodes,

the trussness of an edge that is not incident to either of the merged

nodes changes by at most one. Hence, we only need to consider

the edges with original trussness at least 𝑘 − 1 for an input 𝑘 . We

first reduce the search space by (1) losslessly pruning the space

of outside nodes (nodes that are not in the (𝑘 − 1)-truss) using a

maximal-set-based algorithm, (2) proposing and using a new heuris-

tic to efficiently find promising inside nodes (nodes that are in the

(𝑘 − 1)-truss), and (3) excluding the mergers of two outside nodes

with the rationality of doing so. Our fast and effective heuristics for

finding promising pairs among the selected nodes are based on the

number of edges with trussness 𝑘 − 1 gaining (and losing) support.

Through extensive experiments on 14 real-world graphs, we com-

pare our proposed algorithm, BATMAN, to several baselinemethods

and show that BATMAN consistently performs best w.r.t the final

Table 1: Notations.
Notation Definition

𝐺 = (𝑉 , 𝐸 ) a graph with node set𝑉 and edge set 𝐸
𝑁 (𝑣;𝐺 ) the set of neighbors of 𝑣 ∈ 𝑉
𝑑 (𝑣;𝐺 ) the degree of 𝑣 ∈ 𝑉
𝐺 [𝑉 ′ ] the induced subgraph of𝐺 on𝑉 ′ ⊆ 𝑉
𝑠 (𝑒 ;𝐺 ) the support of 𝑒 ∈ 𝐸
𝑇𝑘 (𝐺 ) the 𝑘-truss of𝐺
𝑡 (𝑒 ;𝐺 ) , 𝑡 (𝑣;𝐺 ) the trussness of 𝑒 ∈ 𝐸 and 𝑣 ∈ 𝑉
𝐸𝑘 (𝐺 ) the shell edges with trussness 𝑘 , i.e., 𝐸 (𝑇𝑘−1 ) \ 𝐸 (𝑇𝑘 )
𝑃𝑀 (𝑣1, 𝑣2;𝐺 ) the graph after merging 𝑣1 and 𝑣2 ∈ 𝑉 into 𝑣1 in𝐺

�̃�𝑘 (𝑣;𝐺 ) the inside neighbors of 𝑣 ∈ 𝑉 , i.e., 𝑁 (𝑣) ∩𝑉 (𝑇𝑘−1 )

increase in the size of 𝑘-trusses, achieving 1.38× to 10.08× perfor-

mance superiority over the baseline methods on all the datasets.

In short, our contributions are four-fold:

(1) A novel Problem:We introduce and formulate TIMBER (Prob-

lem 1), a novel optimization problem on graphs with several

potential real-world applications, as listed above.

(2) Theoretical Analysis:We prove the NP-hardness (Theorem 1)

and non-submodularity (Theorem 2) of TIMBER.

(3) A fast Algorithm:We design BATMAN (Algorithm 4), a fast

and effective algorithm for TIMBER, based on our theoretical

(Lemmas 1-7) and empirical findings (Section 6.3). We also theo-

retically analyze the time complexity of BATMAN (Theorem 4).

(4) Extensive Experiments: We compare BATMAN with several

baseline methods and demonstrate the advantages of BATMAN

and its components using 14 real-world graphs (Section 6).

For reproducibility, the code and datasets are available at [1].

2 RELATEDWORK
𝑘-Trusses. Based on the concept of 𝑘-cores [60], the concept of

𝑘-trusses is introduced in [17]. In [66], the authors propose an effi-

cient truss decomposition algorithm with time complexity𝑂 (𝑚1.5),
where 𝑚 is the number of edges in the input graph. In [30], the

authors use 𝑘-trusses to model the communities in graphs (see

also [3]) and study the update of 𝑘-trusses in dynamical graphs

(see also [49, 77]). Related problems are also studied for weighted

graphs [80], signed graphs [78], directed graphs [47], uncertain

graphs [31, 65], and simplicial complexes [56]. In [14], higher-order

neighbors are considered to generalize the concept of 𝑘-trusses.

Graph structure enhancement and attacks. Several studies of
graph structure enhancement or attacks are conducted based on

cohesive subgraph models. Specifically, the problems of maximizing

the size of a 𝑘-truss by anchoring nodes [72, 76] and by adding

edges [12, 64] have been studied; and the opposite direction, i.e.,

minimizing the size of a 𝑘-truss, has also been considered [12, 13].

There are also a series of counterparts considering the model of 𝑘-

cores [7, 36, 44–46, 52, 63, 73–76, 79, 82, 84] using the operations of

adding (or deleting) edges (or nodes) and anchoring nodes. However,

no existing work studies graph structure enhancement or attacks

by merging nodes, while merging nodes is indeed a basic operation

on graphs [55] and practically meaningful.

3 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸) be an unweighted, undirected graph without self-

loops, multiple edges, or isolated nodes. The set𝑁 (𝑣 ;𝐺) of neighbors
of a node 𝑣 consists of the nodes adjacent to 𝑣 , and the degree 𝑑 (𝑣 ;𝐺)
of 𝑣 in 𝐺 is the number of neighbors of 𝑣 . Given a subset 𝑉 ′ ⊆ 𝑉

of nodes, the induced subgraph 𝐺 [𝑉 ′] = (𝑉 ′, 𝐸′) of 𝐺 induced on
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Figure 3: Two different ways of merging a pair of nodes in a
graph with different consequences.

𝑉 ′ is defined by 𝐸′ = {𝑒 ∈ 𝐸 : 𝑒 ⊆ 𝑉 ′}, and we use 𝐺 \ 𝑉 ′ to
denote the graph𝐺 [𝑉 \𝑉 ′]3 obtained by removing the nodes in𝑉 ′

from 𝐺 . The support 𝑠 (𝑒;𝐺) of an edge 𝑒 = (𝑣1, 𝑣2) is the number

of triangles that contain both 𝑣1 and 𝑣2.

Definition 1 (𝑘-truss and trussness). Given a graph 𝐺 = (𝑉 , 𝐸)
and 𝑘 ∈ N,4 the 𝒌-truss of 𝐺 , denoted by 𝑇𝑘 = 𝑇𝑘 (𝐺), is the

maximal subgraph of 𝐺 where each edge in 𝑇𝑘 has support at least

𝑘 − 2 within 𝑇𝑘 , i.e., 𝑠 (𝑒;𝑇𝑘 ) ≥ 𝑘 − 2,∀𝑒 ∈ 𝐸 (𝑇𝑘 ).5 We call the

number |𝐸 (𝑇𝑘 ) | of edges in 𝑇𝑘 its size. The trussness 𝑡 (𝑒;𝐺) of
an edge 𝑒 (w.r.t 𝐺) is the largest 𝑘 such that 𝑒 is in 𝑇𝑘 (𝐺), i.e.,
𝑡 (𝑒;𝐺) = max{𝑘 ∈ N : 𝑒 ∈ 𝐸 (𝑇𝑘 (𝐺))}. The trussness 𝑡 (𝑣 ;𝐺) of a
node 𝑣 is the largest trussness among the trussness of all the edges

containing (i.e. incident to) 𝑣 , i.e., 𝑡 (𝑣 ;𝐺) = max{𝑡 (𝑒;𝐺) : 𝑣 ∈ 𝑒}.
In this paper, merging two nodes in a graph means identifying

the two nodes [55] into one node, as described in Definition 2.

Definition 2 (mergers). Given a graph 𝐺 = (𝑉 , 𝐸) and two nodes

𝑣1, 𝑣2 ∈ 𝑉 . If we merge 𝑣1 and 𝑣2 into 𝑣1 in𝐺 , then the post-merger
graph 𝑃𝑀 (𝑣1, 𝑣2;𝐺) = (𝑉 ′, 𝐸′) after themerger between 𝑣1 and 𝑣2
is defined by 𝑉 ′ = 𝑉 \ {𝑣2} and 𝐸′ derives from 𝐸 by “shifting” the

edges incident to 𝑣2 to 𝑣1 without adding multiple edges or self-loops,
i.e., 𝐸′ = 𝐸 ∪ {(𝑣1, 𝑢) : 𝑢 ∈ 𝑁 (𝑣2), 𝑢 ≠ 𝑣1} \ {(𝑣2, 𝑢) : 𝑢 ∈ 𝑁 (𝑣2)}.
We use 𝑃𝑀 (𝑃 ;𝐺) to denote the post-merger graph when we merge

multiple pairs in 𝑃 in 𝐺 (note that the order does not matter).

Recall the example in Figure 3. Let𝐺𝑜 denote the original graph

in the middle, then the two post-merger graphs on the left and right

are 𝑃𝑀 (𝑣𝑑, 𝑣𝑏;𝐺) and 𝑃𝑀 (𝑣 𝑓 , 𝑣𝑧;𝐺), respectively.
We summarize the notations in Table 1. In the notations, the

input graph 𝐺 can be omitted when the context is clear.

4 PROBLEM STATEMENT AND HARDNESS
Problem 1. (TIMBER: Truss-sIzeMaximization By mERgers)

• Given: a graph 𝐺 = (𝑉 , 𝐸), 𝑘 ∈ N, and 𝑏 ∈ N,
• Find: a set 𝑃 of up to 𝑏 node mergers in𝐺 , i.e., 𝑃 ⊆

(𝑉
2

)
and |𝑃 | ≤ 𝑏,

• to Maximize: the size of the 𝑘-truss after the mergers,6 i.e.,
𝑓 (𝑃) = 𝑓 (𝑃 ;𝐺,𝑘) = |𝐸 (𝑇𝑘 (𝑃𝑀 (𝑃 ;𝐺))) |.

As mentioned before, for the example in Figure 3, merging 𝑣 𝑓

and 𝑣𝑧 maximizes the size of the 3-truss, i.e., with the original graph

in Figure 3, 𝑘 = 3, and 𝑏 = 1 as the inputs, 𝑃 = {(𝑣 𝑓 , 𝑣𝑧)} is the
solution that maximizes our objective function 𝑓 (𝑃) = 𝑓 (𝑃 ;𝐺,𝑘).

Theorem 1. The TIMBER problem is NP-hard for all 𝑘 ≥ 3.7

Proof. See Appendix A for all the proofs. □
3
We use \ to denote the set subtraction operation.

4
We use N to denote the set {1, 2, 3, . . .} of positive integers.
5𝑘-Trusses are meaningful only when 𝑘 ≥ 3 since otherwise the 𝑘-truss is just

the whole graph. In this paper, we assume that 𝑘 ≥ 3 without further clarification.

6
The counterpart problem considering 𝑘-cores is technically similar to an existing

problem considered in [7]. See Appendices D and F of [1] for details.

7
That is, for all meaningful 𝑘 values.

Algorithm 1: Naive greedy algorithm

Input :graph𝐺 = (𝑉 , 𝐸 ) ; trussness 𝑘 ; budget 𝑏
Output :𝑃 : the pairs of nodes to be merged

1 𝑃 ← ∅
2 while |𝑃 | < 𝑏 do
3 𝑓 ({𝑝 }) ← |𝐸 (𝑇𝑘 (𝑃𝑀 (𝑝 ;𝐺 ) ) ) |, ∀𝑝 ∈

(𝑉 ′
2

)
4 𝑝∗ ← argmax𝑝 𝑓 ({𝑝 }) ; 𝑃 ← 𝑃 ∪ {𝑝∗}
5 if |𝑃 | < 𝑏 then𝐺 = (𝑉 , 𝐸 ) ← 𝑃𝑀 (𝑝∗;𝐺 )
6 return 𝑃

Theorem 2. The function 𝑓 (𝑃) is not submodular.

Considering the NP-hardness and non-submodularity of the TIM-

BER problem, we aim to find a practicable and efficient heuristic.

5 METHODOLOGY
In this section, starting from the naive greedy algorithm, we first

analyze the changes occurring when we merge a pair of nodes,

and then based on our findings, we improve the computational

efficiency while maintaining effectiveness as much as possible.

5.1 Naive greedy algorithm
First, we present the naive greedy algorithm in Algorithm 1. At

each iteration, we merge each possible pair, compute the size of the

𝑘-truss after each merger, and find and operate the merger with the

best performance. We repeat the above process until 𝑏 mergers are

selected. Although Algorithm 1 is algorithmically simple it suffers

from prohibitive complexity, as shown in the following theorem.

Theorem 3. Given an input graph 𝐺 = (𝑉 , 𝐸) and budget 𝑏,
Algorithm 1 takes 𝑂 (𝑏 |𝑉 |2 |𝐸 |1.5) time and 𝑂 ( |𝐸 |) space for any 𝑘 .

Remark 1. In the time complexity, |𝑉 |2 is from the space of all
possible pairs and |𝐸 |1.5 is from the truss decomposition algorithm.

5.2 Theoretical analyses: changes after mergers
We shall show several theoretical findings regarding the changes

occurring when we merge a pair of nodes. The following lemma

shows that when we merge two nodes, the trussness of each edge

containing neither of them changes (both increase and decrease

are possible) by at most 1.

Lemma 1. Given any𝐺 , 𝑣1, and 𝑣2, for any 𝑒 ∈ 𝐸 (𝐺), if 𝑣1, 𝑣2 ∉ 𝑒 ,
then |𝑡 (𝑒; 𝑃𝑀 (𝑣1, 𝑣2)) − 𝑡 (𝑒;𝐺) | ≤ 1.

Note that (1) the trussness can both increase and decrease and (2)

the above lemma does not apply to the edges incident to the merged

nodes. After a merger, only (1) the edges in the original (𝑘−1)-truss
and (2) those between a node in the original (𝑘 − 1)-truss and a

merged node are possibly in the new 𝑘-truss.

Corollary 1. Given any𝐺 ,𝑘 , and 𝑣1, 𝑣2 ∈ 𝑉 (𝐺),𝑇𝑘 (𝑃𝑀 (𝑣1, 𝑣2;𝐺))
= 𝑇𝑘 (𝐺 ′), where𝑉 (𝐺 ′) = 𝑉 (𝐺) and 𝐸 (𝐺 ′) = 𝐸 (𝑇𝑘−1 (𝐺)\{𝑣1, 𝑣2})∪
{(𝑣1, 𝑥) : 𝑥 ∈ (𝑁 (𝑣1) ∪ 𝑁 (𝑣2) \ {𝑣1, 𝑣2}) ∩𝑉 (𝑇𝑘−1)}).

The following lemma shows that each edge with trussness larger

than that of any merged node cannot lose its trussness.

Lemma 2. Given any 𝐺 and 𝑣1, 𝑣2 ∈ 𝑉 (𝐺), without loss of gen-
erality, we assume 𝑡 (𝑣1) ≥ 𝑡 (𝑣2). For any 𝑒 ∈ 𝐸 (𝐺), if 𝑡 (𝑒) > 𝑡 (𝑣2),
then 𝑡 (𝑒; 𝑃𝑀 (𝑣1, 𝑣2)) ≥ 𝑡 (𝑒;𝐺).

Notably, mergers between nodes with low trussness can result in

an increase in trussness for edges with higher trussness. Lemma 3

shows a connection to 𝑘-cores.



Lemma 3. Given any 𝐺 , 𝑘 , and 𝑣1, 𝑣2 ∈ 𝑉 (𝐺), let 𝑁 ∗ denote
𝑁 (𝑣1)∪𝑁 (𝑣2)\{𝑣1, 𝑣2}. For any𝑥 ∈ 𝑁 ∗, (𝑣1, 𝑥) is in𝑇 ′𝑘 B 𝑇𝑘 (𝑃𝑀 (𝑣1, 𝑣2))
if and only if 𝑥 is in the (𝑘 − 2)-core of 𝑇 ′

𝑘
[𝑁 ∗].

Based on the above analyses, we find it useful to consider the

nodes inside and outside 𝑇𝑘−1 separately and the neighbors inside
𝑇𝑘−1 of a node need our special attention. Below, we formally define

these concepts that will be frequently used throughout the paper.

Definition 3 (inside/outside nodes and inside neighbors). Given

a graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ∈ N, we call a node 𝑣 ∈ 𝑉 an inside
node (w.r.t𝐺 and 𝑘) if 𝑣 ∈ 𝑉 (𝑇𝑘−1) (i.e., 𝑡 (𝑣) ≥ 𝑘 − 1) and we call 𝑣
an outside node (w.r.t 𝐺 and 𝑘) if 𝑣 ∉ 𝑉 (𝑇𝑘−1) (i.e., 𝑡 (𝑣) < 𝑘 − 1).
Given any node 𝑢, the set of 𝑢’s inside neighbors (w.r.t 𝐺 and 𝑘)

is defined as �̃�𝑘 (𝑢;𝐺) = 𝑁 (𝑢;𝐺) ∩𝑉 (𝑇𝑘−1).

Lemma 4 provides a simple way to compare the performance of

two outside nodes w.r.t. the considered objective.

Lemma 4. Given 𝐺 and 𝑘 , for any 𝑢1, 𝑢2 ∉ 𝑉 (𝑇𝑘−1), if �̃�𝑘 (𝑢1) ⊆
�̃�𝑘 (𝑢2), then 𝑇𝑘 (𝑃𝑀 (𝑣,𝑢1)) ⊆ 𝑇𝑘 (𝑃𝑀 (𝑣,𝑢2)),∀𝑣 ∈ 𝑉 ; if further
�̃�𝑘 (𝑢1) = �̃�𝑘 (𝑢2), then 𝑇𝑘 (𝑃𝑀 (𝑣,𝑢1)) = 𝑇𝑘 (𝑃𝑀 (𝑣,𝑢2)),∀𝑣 ∈ 𝑉 .

5.3 Reduce the number of pairs to consider
We shall first introduce several approaches to reduce the number

of pairs to consider for a merger.

Maximal-set-based pruning for outside nodes. Lemma 4 shows

that for any given outside node 𝑢 ∉ 𝑉 (𝑇𝑘−1), we do not need to

consider 𝑢 if there exists another outside node 𝑢′ ∉ 𝑉 (𝑇𝑘−1) with
𝑁 (𝑢′) ∩𝑉 (𝑇𝑘−1) ⊇ 𝑁 (𝑢) ∩𝑉 (𝑇𝑘−1). Therefore, we only need to

consider those nodes 𝑢 with maximal set �̃� (𝑢) of inside neighbors.

Lemma 5. Given𝐺 and𝑘 , let𝑉𝑜 = 𝑉 (𝐺)\𝑉 (𝑇𝑘−1) denote the set of
outside nodes, and let �̃�𝑜 = {𝑢 ∈ 𝑉𝑜 : �𝑢′ ∈ 𝑉 \𝑉 (𝑇𝑘−1) 𝑠 .𝑡 . �̃� (𝑢′) ⊋
�̃� (𝑢)} denote the set of outside nodes with a maximal set of in-
side neighbors. Then, max{|𝐸 (𝑇𝑘 (𝑃𝑀 (𝑣1, 𝑣2))) | : 𝑣1, 𝑣2 ∈ 𝑉 (𝐺)} =
max{|𝐸 (𝑇𝑘 (𝑃𝑀 (𝑣1, 𝑣2))) | : 𝑣1, 𝑣2 ∈ 𝑉 (𝑇𝑘−1) ∪ �̃�𝑜 }.

Moreover, by Lemma 4, if several outside nodes have the same

set of inside neighbors, only one of them needs to be considered.

Finding maximal sets among a given collection of sets is a well-

studied theoretical problem [70] with a number of fast algorithms.

Based on [26], we present in Algorithm 5 (in Appendix B) a simple

yet practical way to find the outside nodes with a maximal set of

inside neighbors. Lemma 6 shows the correctness, time complexity,

and space complexity of Algorithm 5.

Lemma 6. Given the set of outside nodes 𝑉𝑜 and the sets of their
inside neighbors �̃�𝑘 (𝑣),∀𝑣 ∈ 𝑉𝑜 , Algorithm 5 correctly finds the set
of nodes 𝑣 ′ ∈ 𝑉𝑜 with maximal �̃�𝑘 (𝑣 ′) in 𝑂 (

∑
𝑣∈𝑉𝑜 |�̃�𝑘 (𝑣) | |𝑉𝑜 |) =

𝑂 ( |𝑉 | |𝐸 |) time and 𝑂 ( |𝐸 |) space.

In our implementation, among all the outside nodes with a max-

imal set of inside neighbors, we further sort the outside nodes by

the number of inside neighbors and choose the ones with the most

inside neighbors as the candidates.

A heuristic for finding promising inside nodes. Notably, our
maximal-set-based pruning scheme does not apply to inside nodes,

and thus we need different techniques for inside nodes. We propose

and use a heuristic based on incident prospects (IPs) to evaluate the

inside nodes and select the promising ones.

Definition 4 (incident prospects). Given a graph𝐺 = (𝑉 , 𝐸) and
𝑘 ∈ N, for each 𝑣 ∈ 𝑉 , the set of the incident prospects (IPs) of 𝑣
is defined as �̃�𝑘 (𝑣) \ 𝑁 (𝑣 ;𝑇𝑘 ).

Intuitively, the IPs of a node 𝑣 correspond to the edges that are

not in the current 𝑘-truss but possibly enter the new 𝑘-truss after

a merger involving 𝑣 (see Corollary 1). Therefore, if a node 𝑣 has

more IPs, then a merger involving 𝑣 is preferable since it is more

likely that the size of the 𝑘-truss will increase more because more

edges incident to 𝑣 may enter the new 𝑘-truss after the merger.

Moreover, the number of the IPs of a node 𝑣 is a lower bound of

the number of inside neighbors of a node 𝑣 , and thus if a node

𝑣 has a larger number of IPs, then 𝑣 also has a larger number of

inside neighbors, i.e., more non-incident edges may benefit from the

merger. See Section 6.3 for the empirical support of the proposed

heuristic, including the comparison of multiple heuristics.

In our implementation, we sort the inside nodes by the number

of IPs of each inside node and choose the ones with the most IPs as

our candidate inside nodes.

Exclude outside-outside mergers. After dividing nodes into in-

side nodes and outside nodes, we now have three types of mergers:

(1) inside-inside mergers (IIMs) where two inside nodes are merged,

(2) outside-outside mergers (OOMs) where two outside nodes are

merged, and (3) inside-outside mergers (IOMs) where one inside

node and one outside node are merged. We shall show that OOMs

are less desirable than the other two types in general. Merging

two nodes 𝑣1 and 𝑣2 can equivalently be seen as (1) removing all

edges incident to 𝑣2 and (2) adding each “new” edge (𝑣1, 𝑥) for
𝑥 ∈ 𝑁 (𝑣2) \ 𝑁 (𝑣1) \ {𝑣1}. Proposition 7 shows that if we do not

include an inside node in the merger (i.e., for an OOM), then each

single “new” edge cannot increase the size of 𝑇𝑘 .

Lemma 7. Given any 𝐺 = (𝑉 , 𝐸), 𝑘 , and 𝑣1, 𝑣2 ∉ 𝑇𝑘−1, for any
𝑥 ∈ 𝑁 (𝑣1) ∪𝑁 (𝑣2) \ {𝑣1, 𝑣2},𝑇𝑘 (𝐺) = 𝑇𝑘 (𝐺 ′), where𝑉 (𝐺 ′) = 𝑉 (𝐺)
and 𝐸 (𝐺 ′) = 𝐸 (𝐺) ∪ {(𝑣1, 𝑥)}.

See also Section 6.3 for the empirical evidence supporting our

choice. Therefore, from now on we assume that we always include

at least one inside node in the merger. Then there are two cases

that we need to consider: IOMs and IIMs, and no one is necessarily

better than the other.

5.4 Promising pairs among promising nodes
Even with the above analyses, it is still computationally expen-

sive to compute the size of the new 𝑘-truss after each possible

merger, even when the number of candidate nodes is relatively

small. For example, in the youtube dataset (to be introduced in Sec-

tion 6) with 𝑘 = 10, the total number of possible IOMs and IIMs is

6.6 billion. Although after pruning the outside nodes, the number

is reduced to 374 million. Therefore, it is still imperative to further

reduce the number of times that we check the actual size of the

𝑘-truss. To this end, we shall propose and use some heuristics to

efficiently find promising mergers (IOMs and IIMs). For both cases,

our algorithmic framework is in the following form:

(1) We first find the promising nodes as described above.

(2) Among all the possible pairs between the promising nodes, we

use novel heuristics to find a small number of promising pairs.
(3) We check the increase in the size of the 𝑘-truss for each of the

promising pairs and merge a pair with the greatest increase.



Algorithm 2: Find IOM candidates

Input :pruned outside nodes𝑉 ∗𝑜 ; inside nodes𝑉𝑖 ; inside
neighbors �̃�𝑘 (𝑣), ∀𝑣 ∈ 𝑉 ∗𝑜 ∪𝑉𝑖 ; shell edges 𝐸𝑘 ; 𝑘-truss
𝑇𝑘 ; number of inside nodes to check 𝑛𝑖 ; number of outside

nodes to check 𝑛𝑜 ; number of pairs to choose 𝑛𝑐

Output :𝐶𝐼𝑂𝑀 : the chosen IOM candidates

1 �̂�𝑖 ← the 𝑛𝑖 inside nodes 𝑣𝑖 in𝑉𝑖 with most incident prospects

2 �̂�𝑜 ← the 𝑛𝑜 outside nodes 𝑣𝑜 in𝑉 ∗𝑜 with most inside neighbors

3 for 𝑣𝑖 ∈ �̂�𝑖 do
4 𝐻 (𝑡𝑖 ) ← �̃�𝑘 (𝑡𝑖 ) ∪ �̃�𝑘 (𝑣𝑖 ), ∀𝑡𝑖 ∈ 𝑉𝑖 \ �̃�𝑘 (𝑣𝑖 ) \ {𝑣𝑖 }
5 for 𝑣𝑜 ∈ �̂�𝑜 do
6 𝑍 = 𝑍 (𝑣𝑖 , 𝑣𝑜 ) ← (�̃�𝑘 (𝑣𝑖 ) ∪ �̃�𝑘 (𝑣𝑜 ) ) \ (𝑁 (𝑣𝑖 ;𝑇𝑘 ) ∪ {𝑣𝑖 })
7 𝐻𝑖 ←

⋃
𝑧∈𝑍 𝐻 (𝑧 )

8 𝐻𝑛 ← {(𝑥, 𝑦) ∈ 𝐸𝑘 : (𝑥 ∈ 𝑍 ∨ 𝑦 ∈ 𝑍 ) ∧ 𝑥 ∈
𝑍 ∪ �̃�𝑘 (𝑣𝑖 ) ∧ 𝑦 ∈ 𝑍 ∪ �̃�𝑘 (𝑣𝑖 ) }

9 �̂�𝑘 (𝑣𝑖 , 𝑣𝑜 ) ← 𝐻𝑖 ∪𝐻𝑛

10 𝐶𝐼𝑂𝑀 ← the 𝑛𝑐 IOMs (𝑣𝑖 , 𝑣𝑜 ) ∈ �̂�𝑖 × �̂�𝑜 with largest |�̂�𝑘 (𝑣𝑖 , 𝑣𝑜 ) |
(tie broken by |𝑍 (𝑣𝑖 , 𝑣𝑜 ) |)
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(4) We repeat the above process until we exhaust the budget.

Inside-outside mergers. By Corollary 1, we know that an IOM

between an inside node 𝑣1 and an outside node 𝑣2, w.r.t. the size

of the 𝑘-truss, brings “new” edges (𝑣1, 𝑧) for each “new” neighbor

𝑧 ∈ (�̃�𝑘 (𝑣2) ∪ �̃�𝑘 (𝑣1)) \ (𝑁 (𝑣1,𝑇𝑘−1) ∪ {𝑣1}) into the current

(𝑘 − 1)-truss. Note that �̃�𝑘 (𝑣1) ⊋ 𝑁 (𝑣1,𝑇𝑘−1) may hold since an

edge between two nodes in the (𝑘−1)-truss may exist in the original

graph but not in the (𝑘 − 1)-truss.
To efficiently evaluate the candidate IOMs, we propose to use

the concept of potentially helped shell edges (PHSEs). For given 𝐺
and 𝑘 , we use 𝐸𝑘 (𝐺) to denote 𝐸𝑘 (𝐺) = 𝐸 (𝑇𝑘−1) \ 𝐸 (𝑇𝑘 ) (the edges
with trussness 𝑘 − 1) and call such edges shell edges (w.r.t 𝐺 and 𝑘).

Definition 5 (potentially helped shell edges). Given a graph 𝐺 =

(𝑉 , 𝐸), 𝑘 ∈ N, an inside node 𝑣1, and an outside node 𝑣2, the set

of the potentially helped shell edges (PHSEs) w.r.t the IOM

between 𝑣1 and 𝑣2, denoted by �̂�𝑘 (𝑣1, 𝑣2;𝐺), consists of the shell
edges (𝑥,𝑦) ∈ 𝐸𝑘 (𝐺) such that at least a triangle containing (𝑥,𝑦) is
newly formed because of the “new” edges brought into𝑇𝑘−1 by the

IOM. Formally, �̂�𝑘 (𝑣1, 𝑣2;𝐺) = {𝑒 ∈ 𝐸𝑘 (𝐺) : 𝑠 (𝑒;𝐺 ∪ {(𝑣1, 𝑧) : 𝑧 ∈
𝑍 }) > 𝑠 (𝑒 ;𝐺)}, where𝑍 = (�̃�𝑘 (𝑣2)∪�̃�𝑘 (𝑣1))\(𝑁 (𝑣1,𝑇𝑘−1)∪{𝑣1}).

In the above definition, we require that (𝑣1, 𝑧) and (𝑥,𝑦) are in the
same triangle, thus we have 𝑥 ∈ {𝑣1, 𝑧} or 𝑦 ∈ {𝑣1, 𝑧}. Accordingly,
there are two ways in which some shell edges (𝑥,𝑦) can be helped:

(1) the IOM brings a “new” neighbor 𝑧 to 𝑣1 and thus forms a new

triangle △𝑣1𝑧𝑧′ for some 𝑧′ that is adjacent to 𝑣1 in the original

graph, and (2) the IOM brings two “new” neighbors 𝑧1 and 𝑧2 and

thus forms a new triangle △𝑣1𝑧1𝑧2 . The first case (1) further includes
two sub-cases: (1a) some shell edge (𝑣1, 𝑧′) incident to 𝑣1 is helped,
and (1b) some shell edge (𝑧, 𝑧′) not incident to 𝑣1 is helped. In

Figure 4(a), we provide an illustrative example.

We present the whole heuristic-based procedure for choosing

IOM candidates in Algorithm 2. Among the inputs of Algorithm 2,

𝑉 ∗𝑜 , 𝑉𝑖 , �̃�𝑘 , 𝐸𝑘 , and 𝑇𝑘 are computed from the inherent inputs 𝐺

and 𝑘 of the TIMBER problem, while 𝑛𝑖 , 𝑛𝑜 , and 𝑛𝑐 are set by the

user to control the computational cost.
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Figure 4: Illustrative examples of the changes caused by an
IOM (left) or an IIM (right) between 𝑣1 and 𝑣2.

We first choose the most promising inside nodes and outside

nodes using some heuristics as presented in Section 5.3 (Lines 1-2).

After choosing the promising nodes, for each chosen inside node 𝑣𝑖 ,

we first compute the incident PHSEs that each “new” neighbor may

bring (Lines 3-4). Then, for each outside node 𝑣𝑜 , we compute the

“new” neighbors the IOM between 𝑣𝑖 and 𝑣𝑜 brings to 𝑣𝑖 (Line 6),

collect all the incident PHSEs of the “new” neighbors (Line 7),

compute the non-incident PHSEs (Line 8), and take the union to

get all the PHSEs (Line 9). Finally, we use the computed PHSEs to

select the most promising IOMs (Line 10). See Section 6.3 for the

empirical support of the proposed heuristics.

Lemma 8. Given pruned outside nodes 𝑉 ∗𝑜 , inside nodes 𝑉𝑖 , in-
side neighbors �̃�𝑘 , shell edges 𝐸𝑘 , and 𝑘-truss 𝑇𝑘 , Algorithm 2 takes
𝑂 ( |𝑉 ∗𝑜 | log𝑛𝑜 +𝑛𝑖𝑛𝑜 ( |𝑉𝑖 | + |𝐸𝑘 | + log𝑛𝑐 )) time to find 𝑛𝑐 IOM candi-
dates from 𝑛𝑖 and 𝑛𝑜 promising inside and outside nodes, respectively.

Inside-inside mergers. Consider an IIM between two nodes 𝑣1
and 𝑣2. In Figure 4(b), we provide an example of an IIM between 𝑣1
and 𝑣2. An IIM may incur three kinds of changes that may affect the

size of the 𝑘-truss. The first kind is support gains (SGs), which are

also caused by IOMs. For IIMs, SGs further include two sub-cases:

• SG-n (Support gains of non-incident edges). It may happen

for an edge between a node adjacent to 𝑣1 but not to 𝑣2 and

another node adjacent to 𝑣2 but not to 𝑣1. In Figure 4(b), (𝑧3, 𝑧4)
gains one support after the IIM between 𝑣1 and 𝑣2.

• SG-i (Support gains of incident edges). Incident edges are the
edges incident to either of the merged nodes. In Figure 4(b), both

(𝑣1, 𝑧3) and (𝑣2, 𝑧4) gain one support after the IIM.

The latter two kinds can only be caused by IIMs but not by IOMs:

• CL (Collisions). IIMs can directly make some edges collide

and disappear. Specifically, each pair of edges (𝑣1, 𝑥) and (𝑣2, 𝑥)
incident to the same node 𝑥 and the two merged nodes collide

and only one of them remains. In Figure 4(b), there are collisions

between (𝑧5, 𝑣1) and (𝑧5, 𝑣2); and between (𝑧6, 𝑣1) and (𝑧6, 𝑣2).
• SL (Support losses). IIMs can reduce the support of some edges

in the current (𝑘−1)-truss, potentially decreasing their trussness.
Specifically, each edge between the common neighbors of 𝑣1 and

𝑣2 loses a common neighbor after the merger between 𝑣1 and 𝑣2.

In Figure 4(b), the edge (𝑧5, 𝑧6) loses one support after the IIM.

Due to the new types of changes that we need to consider, there

are several noticeable points that we shall discuss below.

Lemma 4 tells us that for IOMs, outside nodes with large neigh-

borhoods are generally preferable, while including inside nodes

with large neighborhoods does not always give better performance.

One of the reasons is that including inside nodes with larger neigh-

borhoods may cause more collisions and support losses described

above.



Algorithm 3: Find IIM candidates

Input : inside nodes𝑉𝑖 ; inside neighbors �̃�𝑘 (𝑣), ∀𝑣 ∈ 𝑉𝑖 ; shell
edges 𝐸𝑘 ; 𝑘-truss𝑇𝑘 ; number of inside nodes to check 𝑛𝑖 ;

number of pairs to choose 𝑛𝑐

Output :𝐶𝐼 𝐼𝑀 : the chosen IIM candidates

1 �̂�𝑖 ← the 𝑛𝑖 inside nodes 𝑣𝑖 in𝑉𝑖 with most incident prospects

2 for (𝑣1, 𝑣2 ) ∈
(�̂�𝑖
2

)
do

3 ℎ (𝑣1, 𝑣2 ) ← −| {𝑢 ∈ 𝑉 (𝑇𝑘 ) : { (𝑣1,𝑢 ), (𝑣2,𝑢 ) } ⊆ 𝐸 (𝑇𝑘 ) } |
4 for (𝑥, 𝑦) ∈ 𝐸𝑘 with 𝑥, 𝑦 ∉ {𝑣1, 𝑣2} and

{𝑥, 𝑦} ⊆ �̃�𝑘 (𝑣1 ) ∪ �̃�𝑘 (𝑣2 ) do
5 if 𝑥, 𝑦 ∉ �̃�𝑘 (𝑣1 ) ∩ �̃�𝑘 (𝑣2 ) then
6 ℎ (𝑣1, 𝑣2 ) ← ℎ (𝑣1, 𝑣2 ) + 1
7 else if {𝑥, 𝑦} ⊆ �̃�𝑘 (𝑣1 ) ∩ �̃�𝑘 (𝑣2 ) then
8 ℎ (𝑣1, 𝑣2 ) ← ℎ (𝑣1, 𝑣2 ) − 1

9 𝐶𝐼 𝐼𝑀 ← the 𝑛𝑐 IIMs (𝑣1, 𝑣2 ) ∈
(�̂�𝑖
2

)
with largest ℎ (𝑣1, 𝑣2 )
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For IOMs, we have used the number of all potentially helped

shell edges (PHSEs, Definition 5) to find the candidate IOMs (Lines 7

to 9 in Algorithm 2). Specifically, we consider both incident PHSEs

(Line 7) and non-incident PHSEs (Line 8). However, there are two

subtleties: (a) for IIMs, the computation of incident PHSEs becomes

tricky due to the collisions mentioned above; (b) moreover, we also

need to additionally take the support losses into consideration. To

address the two subtleties, we slightly modified the heuristic we

have used for IOMs. Regarding subtlety (a), since the incident shell

edges have been considered when we choose the inside nodes w.r.t

the incident prospects (IPs), for simplicity, we only consider the

immediate collisions among the edges in the current𝑘-truss without

computing the support gains and support losses of the incident shell

edges. Regarding subtlety (b), we count both the shell edges with

support gains and those with support losses. To conclude, for each

shell edge with support gains, we give +1 score (reward) to the

corresponding IIM; for each shell edge with support losses and

each collision between two edges in the current 𝑘-truss, we give

−1 score (penalty). See Section 6.3 for the empirical comparisons

of different heuristics in choosing candidate IIMs.

In Algorithm 3, we present the whole procedure for choosing

candidate IIMs. Among the inputs,𝑉𝑖 , �̃�𝑘 , 𝐸𝑘 , and𝑇𝑘 are computed

from the inherent inputs𝐺 and 𝑘 of the TIMBER problem, while 𝑛𝑖
and 𝑛𝑐 are set by the user to control the computational cost.

We first choose the most promising inside nodes and outside

nodes using the heuristics mentioned in Section 5.3 (Lines 1). After

that, for each pair (𝑣1, 𝑣2) between two chosen inside nodes, we

compute its score using the heuristic described above. Specifically,

for each pair, we first initialize the score by giving −1 score to each
collision between two edges in the current 𝑘-truss (Line 3), then for

each non-incident shell edge (𝑥,𝑦) whose support changes (Line 4),
add +1 score for each one whose support increases (Line 6), and give
−1 score for each one whose support decreases (Line 8). Finally, we

use the computed scores to select the most promising IIMs (Line 9).

Lemma 9. Given inside nodes 𝑉𝑖 , inside neighbors �̃�𝑘 , shell edges
𝐸𝑘 , and the 𝑘-truss 𝑇𝑘 , Algorithm 3 takes 𝑂 ( |𝑉𝑖 | log𝑛𝑖 + 𝑛2𝑖 ( |𝐸𝑘 | +
log𝑛𝑐 )) time to find𝑛𝑐 IIM candidates from𝑛𝑖 promising inside nodes.

Algorithm 4: BATMAN: final proposed algorithm

Input :graph𝐺 = (𝑉 , 𝐸 ) ; trussness 𝑘 ; budget 𝑏; number of inside

nodes to check 𝑛𝑖 ; number of outside nodes to check 𝑛𝑜 ;

number of pairs to choose 𝑛𝑐

Output :𝑃 : the pairs of nodes to be merged

1 𝑃 ← ∅; 𝑛𝑖𝑜 ← ⌊𝑛𝑐/2⌋
2 while |𝑃 | < 𝑏 do
3 compute or update 𝑡 (𝑒 ) using truss decomposition

4 𝐸𝑘 ← {𝑒 ∈ 𝐸 : 𝑡 (𝑒 ) = 𝑘 − 1}
5 𝑡 (𝑣) ← max𝑒∋𝑣 𝑡 (𝑒 ), ∀𝑣 ∈ 𝑉
6 𝑉𝑖 ← {𝑣 ∈ 𝑉 : 𝑡 (𝑣) ≥ 𝑘 − 1};𝑉𝑜 ← {𝑉 } \𝑉𝑖
7 �̃�𝑘 (𝑣) ← 𝑁 (𝑣) ∩𝑉 (𝑇𝑘−1(𝐺 ) ), ∀𝑣 ∈ 𝑉
8 𝑉 ∗𝑜 ← Alg. 5 with inputs𝑉𝑜 and �̃�𝑘

9 𝐶𝐼𝑂𝑀 ← Alg. 2 with inputs𝑉 ∗𝑜 ,𝑉𝑖 , �̃�𝑘 , 𝐸𝑘 ,𝑇𝑘 (𝐺 ), 𝑛𝑖 , 𝑛𝑜 , 𝑛𝑖𝑜
10 𝐶𝐼 𝐼𝑀 ← Alg. 3 w/ inputs𝑉𝑖 , �̃�𝑘 , 𝐸𝑘 ,𝑇𝑘 (𝐺 ), 𝑛𝑖 , 𝑛𝑐 − 𝑛𝑖𝑜
11 𝑝∗ ← argmax𝑐=(𝑣1,𝑣2 ) ∈𝐶𝐼𝑂𝑀∪𝐶𝐼 𝐼𝑀

𝑇𝑘 (𝑃𝑀 (𝑣1, 𝑣2 ) )
⊲ Corollary 1 is used for simplification

12 𝑃 ← 𝑃 ∪ {𝑝∗}
13 if |𝑃 | < 𝑏 then
14 𝐺 = (𝑉 , 𝐸 ) ← 𝑃𝑀 (𝑝∗;𝐺 )
15 if 𝑝∗ ∈ 𝐶𝐼𝑂𝑀 then
16 𝑛𝑖𝑜 ← min(𝑛𝑖𝑜 + ⌊𝑛𝑐/𝑏 ⌋, ⌈𝑛𝑐 (𝑏 − 1)/𝑏 ⌉ )
17 else
18 𝑛𝑖𝑜 ← max(𝑛𝑖𝑜 − ⌊𝑛𝑐/𝑏 ⌋, ⌊𝑛𝑐/𝑏 ⌋ )

19 return 𝑃

5.5 Considering both IIMs and IOMs
Theoretically, merging IOMs is not always better than IIMs, and

vice versa. Indeed, as empirically shown in Section 6.2, neither IOMs

nor IIMs can be consistently superior to the other. In general, when

𝑘 is small, IIMs are more desirable, while IOMs gain strength when

𝑘 increases. Intuitively, when 𝑘 increases, the 𝑘-truss is denser, and

thus IIMs inevitably cause more collisions and support losses due

to the high overlaps among the neighborhoods of the inside nodes.

Therefore, it is necessary to consider both IOMs and IIMs.

We propose a strategy to take both IIMs and IOMs into consider-

ation without wasting too much computation on the less-promising

case. The key idea is to adaptively distribute the number of candi-

dates between the two cases. Specifically, we fix the total number of

pairs to choose in each round (i.e., the sum of 𝑛𝑐 ’s for Algorithms 2

and 3) and divide it into two parts for IIMs and IOMs. Initially,

the number is equally divided. Then in each round, we shift 1/𝑏
fraction of the total number, to the case where the best-performing

pair in this round belongs from the other case. We make sure that

the 𝑛𝑐 for each case does not decrease to zero. See Section 6.2 for

the empirical support for considering both IIMs and IOMs and the

adaptive distribution of the number of candidates. The pseudo-code

of the process mentioned above is given in Algorithm 4 (see Lines 15

to 18), which will be described in detail in Section 5.7.

5.6 Check the result after each merger
By proposing techniques to reduce the search space and propos-

ing heuristics to find promising pairs efficiently, we have been

addressing the problem of the 𝑂 ( |𝑉 |2) space of all possible pairs.
Another overhead (see Remark 1) is the truss decomposition which

takes 𝑂 ( |𝐸 |1.5) time.



For checking the size of the 𝑘-truss after each possible merger

between two nodes 𝑣1 and 𝑣2, we do not need to compute it from

the whole post-merger graph. We use Corollary 1 by which the

computation takes only 𝑂 ( |𝐸 (𝑇𝑘−1) |1.5) time since |{(𝑣1, 𝑥) : 𝑥 ∈
(𝑁 (𝑣1) ∪ 𝑁 (𝑣2) \ {𝑣1, 𝑣2}) ∩𝑉 (𝑇𝑘−1)}| = 𝑂 ( |𝐸 (𝑇𝑘−1) |).

Remark 2. It is theoretically possible to use incremental algorithms
for updating 𝑘-trusses after edge additions and removals [30, 49].
However, their efficiency is limited in our case since even a single node
merger can cause a large number of edge additions and removals.

5.7 Overall algorithm (BATMAN)
In Algorithm 4, we present the procedure of the proposed algo-

rithm BATMAN (Best-merger seArcher for Truss MAximizatioN).
The inputs are the inherent inputs of the TIMBER problem (an

input graph𝐺 , trussness 𝑘 , and a budget 𝑏) and the parameters that

control the computational cost (𝑛𝑖 , 𝑛𝑜 , and 𝑛𝑐 ).

In each round, we first compute or update the edge trussness

(Line 3), and prepare the information that we need later (Lines 4 to

7). Then we use Algorithm 5 to prune the set of outside nodes using

the maximal-set-based technique (Line 8). After that, we use Algo-

rithms 2 and 3 to obtain the candidate IOMs and IIMs, respectively

(Lines 9 and 10). Then we check the performance of all the candi-

date mergers and find the best one (Line 11), and update the graph

together with its edge trussness accordingly if not all budget has

been exhausted (Line 13). Regarding the distribution of the number

of pairs to check in each round, initially the number is equally

distributed between IOMs and IIMs (Line 1), and in each round we

increase the number of the case where the best-performing pair

belongs and decrease that of the other case (Lines 15 to 18). We

make sure that both cases are considered throughout the process.

Theorem 4. Given an input graph 𝐺 , trussness 𝑘 , a budget 𝑏,
and the parameters 𝑛𝑖 , 𝑛𝑜 , and 𝑛𝑐 , Algorithm 4 takes 𝑂 (𝑏 ( |𝐸 |1.5 +
𝑛𝑐 |𝐸 (𝑇𝑘−1) |1.5 + |𝑉 ∗𝑜 | log𝑛𝑜 + 𝑛𝑖𝑛𝑜 ( |𝑉𝑖 | + |𝐸𝑘 | + log𝑛𝑐 ) + 𝑛2𝑖 ( |𝐸𝑘 | +
log𝑛𝑐 ))) time and 𝑂 ( |𝐸 | + 𝑛𝑐 ) space to find 𝑏 pairs to be merged.8

6 EXPERIMENTAL EVALUATION
In this section, through extensive experiments on fourteen real-

world graphs, we shall answer each of the following questions:

• Q1: how effective are merging nodes and maximizing the size of

a 𝑘-truss in enhancing graph robustness?

• Q2: how effective and computationally efficient is BATMAN in

maximizing the size of a 𝑘-truss by merging nodes?

• Q3: how effective is each algorithmic choice in BATMAN?

Experimental settings. For each dataset, we conduct experiments

for each 𝑘 ∈ {5, 10, 15, 20}. We use 𝑏 = 10, check 100 inside nodes

and 50 outside nodes (𝑛𝑖 = 100, 𝑛𝑜 = 50 in Algorithm 4), and the

number of pairs to check in each round (𝑛𝑐 in Algorithm 4) is set to

10 by default. We conduct all the experiments on a machine with

i9-10900K CPU and 64GB RAM. All algorithms are implemented in

C++, and complied by G++ with O3 optimization.

Datasets. In Appendix B, we report some statistics (the number of

nodes/edges, max trussness, and sizes of 𝑘-trusses for different 𝑘

values) of the real-world graphs used for the experiments.
9

8
See Appendix G.3 of [1] for more discussions on the time complexity.

9
See Appendix E of [1] for additional experiments on real-world bus station

datasets, where we consider distance constraints and the proposed method still out-

performs the baseline methods overall.

6.1 Q1: Effectiveness of merging nodes and
truss-size maximization

We shall first show that merging nodes is an effective operation

to enhance graph robustness. Then, we show that when we maxi-

mize the size of a 𝑘-truss, we effectively improve graph robustness.

Effectiveness of merging nodes. First, we show that merging

nodes is an effective way to enhance cohesiveness and robustness,

specifically, compared to adding edges. We consider different ro-

bustness measures [22, 25]: (1)VB (average vertex betweenness), (2)
EB (average edge betweenness), (3) ER (effective resistance) [23, 28],

(4) SG (spectral gap) [50], and (5) NC (natural connectivity) [11].

On the Erdös-Rényi model [24] with 𝑛 = 50 and 𝑝 = 0.1,10 for each

measure, we use greedy search to find the mergers or new edges

that improve the measure most. In Figure 1, we report the change of

the measure in each setting when we merge nodes or add edges 10

times, where merging nodes is much more effective. Mean values

over five independent trials are reported.

Effectiveness of enlarging a 𝑘-truss. Second, we conduct a case
study on the email dataset. In Figure 2, we show how the five

robustness measures mentioned above change along with the truss

size, when we apply our proposed algorithm BATMAN on the email
dataset to maximize the size of its 10-truss by 100 mergers. The

measures are linearly normalized so that all the original values

correspond to 1. The chosen mergers increase the robustness even

though BATMAN only directly aims to increase the size of a 𝑘-truss,

showing that maximizing the size of a 𝑘-truss is indeed a reasonable

way to reinforce graph cohesiveness and robustness.
11

6.2 Q2: Effectiveness & efficiency of BATMAN
We shall compare BATMAN with several baseline methods,

showing BATMAN’s high effectiveness and high efficiency.

Considered algorithms. Since the TIMBER problem is formulated

for the first time by us, no existing algorithms are directly avail-

able. Therefore, we use several intuitive baseline methods as the

competitors and also compare several variants of the proposed

algorithm. For all algorithms, the maximal-set-based pruning for

outside nodes described in Section 5.3 is always used. In each round,

all the algorithms find candidate mergers and operate the best one

after checking all the candidates. The considered algorithms are:

• RD (Random): uniform random sampling among all the IIMs

and IOMs. Average performances over five trials are reported.

• NE (Most new edges): among all the IOMs,
12

choosing the ones

that increase the number of edges among the nodes in the current

(𝑘 − 1)-truss most.

• NT (Most new triangles): among all the IIMs and IOMs, choos-

ing ones that increase the number of triangles consisting of the
nodes in the current (𝑘 − 1)-truss most.

• BM (BATMAN): the proposed method (Algorithm 4).

• EQ (BATMAN-EQ): a BATMAN variant always equally dis-
tributing the number of pairs to check between IIMs and IOMs.

• II (BATMAN-II): a BATMAN variant considering IIMs only.
• IO (BATMAN-IO): a BATMAN variant considering IOMs only.

10
See Appendix I of [1] for the results using other random graph models.

11
Considering the size of a 𝑘-core is less reasonable. See Appendix F of [1].

12
Note that IIMs cannot increase the number of such edges.
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Figure 5: The first three subfigures on the left: The average increase in the truss size of each considered algorithm on each
dataset over all the considered 𝑘 values. The proposed algorithm (BM), with its variants (EQ, II, and IO) consistently outperforms
the baseline methods (NT, NE, and RD) by 1.38× to 10.08×. Overall, BM performs better than its variants, showing the usefulness
of our algorithmic designs. The rightmost subfigure: The results with each algorithm with different budget 𝑏. The proposed
method (BM) and its variants consistently outperform the baseline methods by 2.4× to 4.1×.

baselinesproposed BMBM variants EQ II IOEQ II IO NT NE RDNT NE RD

Figure 6: The first three subfigures on the left: The average performance and running time of each considered algorithm over
all datasets and 𝑘 values when the number of candidate pairs checked in each round varies. The proposed algorithm (BM) and
its variants (EQ, II, and IO) clearly outperform the baseline methods (NT, NE, and RD). BM outperforms the baseline methods
even when the baseline methods check more candidates; and BM is more effective and more stable than its variants, especially
when we check more candidates (see Appendix J of [1] for the tests for statistical significance of the superiority of the proposed
method over the variants). The rightmost subfigure: The average performance of each algorithm overall datasets when the
trussness 𝑘 varies. The proposed method (BM) and its variants (EQ, II, and IO) outperform the baseline methods (NT, NE, and
RD) for both low and high 𝑘 values.

Evaluation metric.We evaluate the performance of each algo-

rithm by the increase in the size of the 𝑘-truss, i.e., we measure

|𝐸 (𝑇𝑘 (𝑃𝑀 (𝑃 ;𝐺))) | − |𝐸 (𝑇𝑘 (𝐺)) |, for each output 𝑃 for a graph 𝐺 .

Results on each dataset. In Figure 5 (the first 3 subfigures), for

each dataset, we report the average performance over all 𝑘 ∈
{5, 10, 15, 20} of each algorithm. The proposed algorithm BATMAN

with its variants consistently outperforms the baseline methods,

and the overall performance of BATMAN is better than that of its

variants. Specifically, compared to the best baseline method on each

dataset, BATMAN gives 1.38× to 10.08× better performance, and

the ratio is above 2× on 9 out of 14 datasets. Overall, BATMAN

performs better than its variants that consider only IIMs or IOMs, or

always equally distribute the number of candidate mergers to check.

This shows the usefulness of considering both IIMs and IOMs and

adaptive distribution of the number of candidate mergers.

Results on different budgets 𝑏. In Figure 5 (the 4th subfigure),

for each 1 ≤ 𝑏 ≤ 100, we report the average performance of each

algorithm over all datasets and all 𝑘 values. As shown in the results,

BATMAN clearly outperforms the baseline methods regardless of 𝑏

values. When 𝑏 = 10, 50, and 100, BATMAN performs 4.1×, 2.7×,
and 2.4× better than the best baseline method, respectively.

Results on different # candidates. In Figure 6 (the first 3 subfig-

ures), for each algorithm checking different numbers (1, 2, 5, 10, 15, 20)

of candidates in each round, we report the average running time

and the average performance over all datasets and all 𝑘 values. The

proposed algorithm BATMAN clearly outperforms the baseline

methods, even when the baseline methods check more candidate

mergers than BATMAN in each round; BATMAN is also more ef-

fective and more stable than its variants, especially when we check

a larger number of candidate pairs. Also, for different algorithms

(except NT), the running time is similar when we check the same

number of candidate pairs in each round, validating the theoretical

analyses on the time complexity of BATMAN.

Results on different 𝑘 . We divide the considered 𝑘 values into

two groups: low (5/10) and high (15/20), and compare the perfor-

mance of the algorithms in each group. In Figure 6 (the 4th subfig-

ure), for each group, we report the average increase in the truss size

of each algorithm over all the datasets and over the two 𝑘 values in

the group. Again, BATMAN consistently outperforms the baseline

methods, regardless of the 𝑘 value. Notably, when 𝑘 is low, IIMs

perform much better than IOMs w.r.t the increase in the truss size;

but when 𝑘 is high, this superiority is decreased, even reversed, and

thus considering both IIMs and IOMs shows higher necessity.

The above results show from different perspectives that BAT-

MAN overall outperforms the baselines as well as its variants. The



Table 2: Empirical support of our algorithmic choices: exclud-
ing outside-outside (OO)mergers and the proposed heuristics
(IP and SE). The results are averaged over all the datasets. See
Appendix H of [1] for the results on each individual dataset.
(a) Justification of
excluding outside-
outside mergers.

Type Perf. #

II* 408.9 10
8.76

IO* 269.1 10
9.81

OO 152.1 10
11.39

* used in BATMAN

(b) Justification of us-
ing the heuristic IP to
choose inside nodes.

Performance

Heur. IOM IIM

IP* 562.3 1496.3

IN 547.9 1407.9

RD 397.9 326.3

* used in BATMAN

(c) Justification of us-
ing the heuristic SE to
choose mergers.

Performance

Heur. IOM IIM

SE* 524.1 1445.5

NN/AE 203.9 1348.9

RD 182.8 339.7

BE 562.3 1496.3

* used in BATMAN

full results in each considered setting (datasets and parameters)

are in Appendix H of [1].

Case Study. In Appendix I of [1], we provide a case study on the

relato dataset showing which nodes (companies) are merged to-

gether by BATMAN. We observe, e.g., that in many cases, a giant

company gets merged with a large number of companies in various

fields, which is also a common case in the real world [37].

6.3 Q3: Effectiveness of the algorithmic choices
We shall show several results that empirically support our three

algorithmic choices: (1) excluding outside-outside mergers, and (2 &

3) the heuristics for choosing promising inside nodes and mergers.

The considered heuristics for choosing inside nodes are:
• IP (Most inside prospects): choosing the inside nodes with

most inside prospects (Definition 4);

• IN (Most inside neighbors): choosing the inside nodes with

most inside neighbors (Definition 3);

• RD (Random): sampling inside nodes uniformly at random. We

report the average performance over three independent trials.

The considered heuristics for choosing IOMs are:
• SE (Most potentially helped shell edges): choosing the merg-

ers with most potentially helped shell edges (Definition 5);

• NN (Most new neighbors): choosing the mergers that bring

most “new” neighbors to the inside node in the mergers;

• RD (Random): sampling mergers uniformly at random.
13

The considered heuristics for choosing IIMs are:
• SE14 (Scoring using shell edges): choosing the mergers with

highest scores that are described in Section 5.4,
15

• AE (Scoring using all edges in the (𝑘 − 1)-truss): choosing
the mergers that with highest scores that are measured as in SE

but based on all edges in the (𝑘 − 1)-truss instead of shell edges;

• RD (Random): sampling mergers uniformly at random.
13

We provide summarized results in Table 2 and full results in

Appendix H of [1]. We summarize the results in the table as follows:

• In Table 2(a), we show the best performance (Perf.) among 10000

random inside-inside (II) / inside-outside (IO) / outside-outside

(OO) mergers, and the total number of mergers (#) of each case.

Compared to IIMs and IOMs, the number of OOMs ismuch higher,

13
We report the average performance over three independent trials.

14
The SE for IOMs can be seen as a special case of the SE for IIMs since the -1

scores are only possible for IIMs, and thus we use the same abbreviation for both cases.

15
+1 / -1 for each non-incident shell edge with support gains / losses; also -1 for

each collision between two edges in the current 𝑘-truss;

while their performance is much lower, which justifies excluding

them in BATMAN.

• In Table 2(b), we show the best performance among all the IOMs /

IIMs using the 100 inside nodes chosen by each heuristic. Overall,

the heuristic used in BATMAN for choosing inside nodes, IP,

outperforms the competitors.

• In Table 2(c), we show the best performance among all the IOMs

/ IIMs using the 10 outside nodes chosen by each heuristic and

the 100 inside nodes chosen by IP. Overall, the heuristic used in

BATMAN for choosingmergers, SE, outperforms the competitors,

achieving a performance close to the best possible (BE) results

achievable using the 100 inside nodes chosen by IP.

7 CONCLUSION
In this work, motivated by real-world scenarios and applications,

we formulated and studied the problem of improving the connec-

tivity and robustness of graphs by merging nodes (Problem 1),

for which we used the number of edges in the 𝑘-truss for some

given 𝑘 as the objective. Then, we proved the NP-hardness and

non-submodularity of the problem (Theorems 1 and 2). For the

problem, based on our theoretical findings regarding mergers be-

tween nodes and 𝑘-trusses (Lemmas 1-5), we proposed BATMAN

(Algorithm 4), a fast and effective algorithm equipped with strong

search-space-pruning schemes (Algorithms 2-3 and 5) and analyzed

its time and space complexity (Theorem 4). Through experiments

on real-world graphs, we demonstrated the superiority of BATMAN

over several baselines and the effectiveness of every component of

BATMAN (Figures 5-6). For reproducibility, we made the code and

datasets publicly available at [1]. We plan to consider this problem

on weighted/uncertain graphs and explore other cohesive models.
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Figure 7: The constructed instance of the TIMBER problem
corresponding to the maximum cover problem with 𝑘 = 4,
where 𝑆1 = {𝑡1, 𝑡2}, 𝑆2 = {𝑡2, 𝑡3}, and 𝑆𝑛 = {𝑡3, 𝑡𝑚}.
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A PROOFS
In this section, we provide proofs for the theoretical claims in the

main text.

A.1 Proof of Theorem 1
Proof of Theorem 1. We show the NP-hardness by reducing the NP-

hard maximum coverage (MC) problem to the TIMBER problem.

Consider theMCproblemwith the collection of𝑛 setsS = {𝑆1, 𝑆2, . . . , 𝑆𝑛}
and budget 𝑏. Let 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑚} =

⋃𝑛
𝑖=1 𝑆𝑖 . Consider the de-

cision version where we shall answer whether there is a subset

S′ ⊆ S with |S′ | ≤ 𝑏 such that at least𝑋 elements in𝑇 are covered

by S′. We shall construct a corresponding instance of the TIMBER

problem. We construct the graph 𝐺 as follows. For each 𝑡 𝑗 ∈ 𝑇 , we
create 2𝑑 nodes 𝑡 𝑗𝑝1 and 𝑡 𝑗𝑝2,∀1 ≤ 𝑝 ≤ 𝑑 , where 𝑑 is sufficiently

large (𝑑 > 10𝑘𝑚𝑛), and add edges (𝑡 𝑗𝑝1, 𝑡 𝑗𝑝′2) for all 𝑝 ≠ 𝑝′. For
each 𝑆𝑖 ∈ S, we create two nodes 𝑠𝑖1 and 𝑠𝑖2, and for each 𝑡 𝑗 ∈ 𝑆𝑖 ,
we add edges (𝑠𝑖1, 𝑡 𝑗𝑝1) and (𝑠𝑖2, 𝑡 𝑗𝑝2),∀1 ≤ 𝑝 ≤ 𝑑 . Fix any 𝑘 ≥ 3,

we create 𝑘 − 3 nodes 𝑟1, 𝑟2, . . . , 𝑟𝑘−3, each of which is connected

with all 𝑡-nodes (i.e., 𝑡 𝑗𝑝1 and 𝑡 𝑗𝑝2,∀𝑗, 𝑝). See Figure 7 for an exam-

ple of the construction. We also consider the decision version of

the TIMBER problem where we shall answer whether there is a set

𝑃 ′ of pairs of nodes with |𝑃 ′ | ≤ 𝑏 such that 𝑓 (𝑃 ′) ≥ 𝑋𝑑2.

⇒) Given a YES-instance S′ = {𝑆𝑖1 , 𝑆𝑖2 , . . . , 𝑆𝑖𝑏′ } with |S′ | = 𝑏′ ≤
𝑏 for the MC problem, we claim that 𝑃 ′ = {(𝑠𝑖11, 𝑠𝑖12)}𝑏

′
𝑖=1

is a

YES-instance 𝑃 ′ for the TIMBER problem. By our construction and

|⋃𝑆 ′∈S′ 𝑆
′ | ≥ 𝑋 , merging all pairs in 𝑃 ′ makes all the edges among

the at least 𝑋 corresponding groups of 𝑡-nodes enter the 𝑘-truss,

and the total number is at least 𝑋𝑑2.

⇐) Given a YES-instance 𝑃 ′ with |𝑃 ′ | = 𝑏′ ≤ 𝑏 for the TIMBER

problem, we claim that (1) those edges entering the 𝑘-truss are

distributed in at least 𝑋 groups of 𝑡-nodes corresponding to the

elements in 𝑇 , and (2) there exists 𝑃 ′′ ⊆ {(𝑠𝑖1, 𝑠𝑖2)}𝑛𝑖=1 with |𝑃
′′ | =

𝑏′ that is also a YES-instance of the TIMBER problem. For (1),

assume the opposite, i.e., less than 𝑋 groups are involved, then the

size of the new 𝑘-truss is at most (𝑋 − 1)𝑑2 + 2(𝑘 − 3)𝑚𝑑 + 2𝑚𝑛𝑑 <

𝑋𝑑2, which contradicts the fact that 𝑃 ′ is a YES-instance. For (2), it
is easy to see that each non-(𝑠𝑖1, 𝑠𝑖2)-type pair can be replaced an

(𝑠𝑖1, 𝑠𝑖2)-type pair without decreasing the size of the 𝑘-truss. Hence
we can replace each element in 𝑃 ′ by an (𝑠𝑖1, 𝑠𝑖2)-type pair without
decreasing the number of groups of edges among 𝑡-nodes entering

the 𝑘-truss. So we can find 𝑃 ′′ ⊆ {(𝑠𝑖1, 𝑠𝑖2)}𝑛𝑖=1 with |𝑃
′′ | = 𝑏′ and

𝑓 (𝑃 ′′) ≥ 𝑋𝑑2, completing the proof. □

A.2 Proof of Theorem 2
Proof of Theorem 2. Consider the example in Figure 7, but with 𝑘 =

5 (there are 𝑟1 and 𝑟2 connected to all 𝑡-nodes). Let 𝑋 = {(𝑠11, 𝑠12)},
𝑌 = {(𝑠11, 𝑠12), (𝑠21, 𝑠22)} ⊃ 𝑋 , and 𝑥 = (𝑠𝑛1, 𝑠𝑛2), 𝑓 (𝑋 ∪ {𝑥}) −
𝑓 (𝑋 ) = 0 < 𝑓 (𝑌 ∪ {𝑥}) − 𝑓 (𝑌 ), completing the proof. □

A.3 Proof of Theorem 3
Proof of Theorem 3. Truss decomposition algorithm takes𝑂 ( |𝐸 |1.5)
time and𝑂 ( |𝑉 | + |𝐸 |) space [66]. Since we only consider connected

graphs, |𝐸 | = 𝑂 ( |𝑉 |) and thus𝑂 ( |𝑉 | + |𝐸 |) = 𝑂 ( |𝐸 |). Computing the

size of the 𝑘-truss after each merger takes 𝑂 ( |𝐸 |1 .5) time. Because

there are 𝑂 ( |𝑉 |2) pairs and 𝑏 iterations, the total time complexity

is 𝑂 (𝑏 |𝑉 |2 |𝐸 |1.5). The space complexity is determined by that of

storing the graphs and truss decomposition, which is 𝑂 ( |𝐸 |). □

A.4 Proof of Lemma 1
Proof of Lemma 1. Let 𝐺 ′ denote 𝑃𝑀 (𝑣1, 𝑣2;𝐺). First, we show the

decrease is limited. For each 𝑘 , for each edge in the current 𝑘-truss,

merging a pair of nodes can decrease the support by at most 1.

Therefore, each current 𝑘-truss at least satisfies the condition of

(𝑘 − 1)-truss after the merger, completing the proof of the limited

decrease. Regarding the increase, consider the inverse operation

of merging two nodes, and we shall show the decrease is limited.

Formally, we split 𝑣1 in 𝐺 ′ back into two nodes 𝑣1 and 𝑣2 in 𝐺 ,

with 𝑁 (𝑣1;𝐺 ′) = 𝑁 (𝑣1;𝐺) ∪ 𝑁 (𝑣2;𝐺). Regarding the trussness

of each edge, this operation is no worse than deleting the node.

Similarly, when we delete a node, for each 𝑘 , for each edge in the

current 𝑘-truss, the support decreases by at most 1, completing the

proof. □

A.5 Proof of Corollary 1
Proof of Corollary 1. Recall that𝑇𝑘−1 (𝐺) \ {𝑣1, 𝑣2} is defined as the
subgraph obtained by removing 𝑣1, 𝑣2, and all their incident edges

from 𝑇𝑘−1 (𝐺). Since 𝐺 ′ ⊆ 𝑃𝑀 (𝑣1, 𝑣2), 𝑇𝑘 (𝐺 ′) ⊆ 𝑇𝑘 (𝑃𝑀 (𝑣1, 𝑣2)).
Hence, it suffices to show that 𝑇𝑘 (𝑃𝑀 (𝑣1, 𝑣2)) ⊆ 𝑇𝑘 (𝐺 ′). First,
by Lemma 1, for 𝑒 ∈ 𝐸 (𝐺 \ {𝑣1, 𝑣2}), if 𝑡 (𝑒;𝐺) < 𝑘 − 1, then

𝑡 (𝑒; 𝑃𝑀 (𝑣1, 𝑣2)) < 𝑘 and thus 𝑒 ∉ 𝐸 (𝑇𝑘 (𝑃𝑀 (𝑣1, 𝑣2))), completing

the proof for the first part (𝑇𝑘−1 (𝐺) \ {𝑣1, 𝑣2}). Second, for an edge

(𝑣1, 𝑥), such an edge exists iff 𝑥 ∈ 𝑁 (𝑣1) ∪ 𝑁 (𝑣2) \ {𝑣1, 𝑣2}; if
𝑥 ∉ 𝑉 (𝑇𝑘−1), then 𝑣1 will be the only neighbor of 𝑥 and thus (𝑣1, 𝑥)
cannot be in the 𝑘-truss after the merger, completing the proof. □

A.6 Proof of Lemma 2
Proof of Lemma 2. If 𝑡 (𝑣2) < 𝑡 (𝑒), then 𝑣2 ∉ 𝑉 (𝑇𝑡 (𝑒 ) (𝐺)). So merg-

ing 𝑣1 and 𝑣2 can only bring new edges into the 𝑡 (𝑒)-truss, and thus
the trussness of 𝑒 cannot decrease, completing the proof. □

A.7 Proof of Lemma 3
Proof of Lemma 3. ⇐) Put {(𝑣1, 𝑥) : 𝑥 is in the (𝑘 − 2)-core of 𝑇 ′

𝑘
[𝑁 ∗]}

and 𝐸 (𝑇 ′
𝑘
[𝑁 ∗]) together, each such (𝑣1, 𝑥) is in at least𝑘−2 triangles

△𝑣1𝑥𝑥 ′ with 𝑥 ′ ∈ 𝑁 ∗, completing the proof.

⇒) Let 𝑋 denote {𝑥 : (𝑣1, 𝑥) ∈ 𝑇 ′𝑘 }. For each 𝑥 ∈ 𝑋 , we have at

least 𝑘 − 2 triangles △𝑣1𝑥𝑥 ′ with all three constituent edges in 𝑇 ′
𝑘
.

Hence 𝑑 (𝑥 ;𝑇 ′
𝑘
[𝑁 ]) ≥ 𝑘 − 2,∀𝑥 ∈ 𝑋 , completing the proof. □

A.8 Proof of Lemma 4
Proof of Lemma 4. Given any𝐺 , by Lemmas 1 and 2, if𝑢 ∉ 𝑉 (𝑇𝑘−1),
then 𝑇𝑘 ⊆ 𝑇𝑘 (𝑃𝑀 (𝑣,𝑢)) ⊆ 𝑇𝑘 ⊆ 𝑃𝑀 (𝑣,𝑢), where 𝑇𝑘 = 𝑇𝑘 (𝑣,𝑢) =
𝑇𝑘−1 ∪ {(𝑣, 𝑥) : 𝑥 ∈ 𝑁 (𝑣) ∪ 𝑁 (𝑢) \ {𝑢, 𝑣}},∀𝑣 . If 𝑥 ∉ 𝑉 (𝑇𝑘−1) ∪



Table 3: The basic statistics of the 14 real-world datasets. Notations: 𝑛 denotes the number of nodes, 𝑛𝑘 the number of nodes in
𝑇𝑘 ,𝑚 the number of edges,𝑚𝑘 the number of edges in 𝑇𝑘 , and 𝑘𝑚𝑎𝑥 the maximum 𝑘 such that 𝑇𝑘 is non-empty.

Dataset 𝑛 𝑚 𝑘𝑚𝑎𝑥 𝑛5 𝑚5 𝑛10 𝑚10 𝑛15 𝑚15 𝑛20 𝑚20

email (EM) [41, 71] 986 16,064 23 743 14,771 492 10,494 257 5,308 73 1,622

facebook (FB) [43] 4,038 87,887 97 3,599 85,336 2,509 74,436 1,707 62,567 1,196 52,884

enron (ER) [42, 71] 33,696 180,811 22 13,983 139,351 2,159 53,913 769 21,837 192 4,441

brightkite (BK) [16] 56,739 212,945 43 8,009 74,498 1,454 27,742 544 15,950 353 12,274

relato (RL) [34] 54,007 251,370 44 6,897 144,787 2,386 89,041 1,282 60,093 781 41,808

epinions (EP) [57] 75,877 405,739 33 9,706 218,990 3,138 111,694 1,357 55,560 593 25,679

hepph (HP) [40] 34,401 420,784 25 22,760 298,416 5,011 75,343 864 14,065 124 2,109

slashdot (SD) [39] 77,360 469,180 35 4,048 72,554 638 19,174 372 13,036 237 9,554

syracuse (SC) [58] 13,640 543,975 59 12,274 484,914 8,696 301,374 5,446 185,365 3,672 128,992

gowalla (GW) [16] 196,591 950,327 29 42,860 434,483 7,163 140,993 2,060 52,009 531 16,381

twitter (TT) [43] 81,306 1,342,296 82 61,162 1,255,418 35,354 961,958 21,911 697,239 13,592 479,795

stanford (SF) [42] 255,265 1,941,926 62 151,955 1,569,406 49,199 934,901 33,980 694,205 16,157 383,159

youtube (YT) [68] 1,134,890 2,987,624 19 42,508 543,739 4,061 120,055 998 33,637 0 0

wikitalk (WT) [38, 39] 2,388,953 4,656,682 53 34,509 811,728 6,577 405,501 3,349 281,684 2,259 214,676

Algorithm 5: Prune outside nodes (based on [26])

Input :outside nodes𝑉𝑜 ; inside neighbors �̃�𝑘 (𝑣), ∀𝑣 ∈ 𝑉𝑜
Output :𝑉 ∗𝑜 : the outside nodes with maximal set of inside neighbors

1 𝑆,𝑉 ′𝑜 ← ∅
2 for 𝑣 ∈ 𝑉𝑜 do
3 if �̃�𝑘 (𝑣) ∉ 𝑆 then {𝑆 ← 𝑆 ∪ {�̃�𝑘 (𝑣) };𝑉 ′𝑜 ← 𝑉 ′

0
∪ {𝑣}}

4 𝑖 ← 0;𝑚 (𝑣) ← 0, ∀𝑣 ∈ 𝑉𝑜 ;𝑉 ∗𝑜 ← ∅
5 for 𝑣 ∈ 𝑉 ′𝑜 do
6 for 𝑢 ∈ �̃�𝑘 (𝑣) do𝑚 (𝑢 ) ← BitwiseOr(𝑚 (𝑢 ), 2𝑖 )
7 𝑖 ← 𝑖 + 1
8 𝑟 (𝑣) ← BitwiseAnd({𝑚 (𝑢 ) : 𝑢 ∈ �̃�𝑘 (𝑣) } ), ∀𝑣 ∈ 𝑉 ′𝑜
9 𝑉 ∗𝑜 ← {𝑣 : 𝑟 (𝑣) is a power of 2}

10 return𝑉 ∗𝑜

{𝑣,𝑢}, then 𝑑 (𝑥 ;𝑇𝑘 (𝑃𝑀 (𝑣,𝑢))) ≤ 𝑑 (𝑥 ;𝑇𝑘 (𝑣,𝑢)) = 0. By Lemma 3,

𝑥 ∉ 𝑉 (𝑇𝑘 (𝑃𝑀 (𝑣,𝑢))), and thus 𝑇𝑘 (𝑃𝑀 (𝑣,𝑢)) = 𝑇𝑘 (𝑇𝑘 (𝑣,𝑢)) =

𝑇𝑘 (𝑣,𝑢), where 𝑇𝑘 (𝑣,𝑢) = 𝑇𝑘−1 ∪ {(𝑣, 𝑥) : 𝑥 ∈ (𝑁 (𝑣) ∪ 𝑁 (𝑢) \
{𝑣,𝑢}) ∩ 𝑉 (𝑇𝑘−1)}. For 𝑢1, 𝑢2 ∉ 𝑉 (𝑇𝑘−1), if 𝑁 (𝑢1) ∩ 𝑉 (𝑇𝑘−1) ⊆
𝑁 (𝑢2) ∩𝑉 (𝑇𝑘−1), then 𝑇𝑘 (𝑣,𝑢1) ⊆ 𝑇𝑘 (𝑣,𝑢2). If �̃�𝑘 (𝑢1) = �̃�𝑘 (𝑢2),
i.e., �̃�𝑘 (𝑢1) ⊆ �̃�𝑘 (𝑢2) ∧ �̃�𝑘 (𝑢2) ⊆ �̃�𝑘 (𝑢1), then 𝑇𝑘 (𝑃𝑀 (𝑣,𝑢1)) ⊆
𝑇𝑘 (𝑃𝑀 (𝑣,𝑢2))∧𝑇𝑘 (𝑃𝑀 (𝑣,𝑢2)) ⊆ 𝑇𝑘 (𝑃𝑀 (𝑣,𝑢1)), i.e.,𝑇𝑘 (𝑃𝑀 (𝑣,𝑢1)) =
𝑇𝑘 (𝑃𝑀 (𝑣,𝑢2)), completing the proof. □

A.9 Proof of Lemma 5
Proof of Lemma 5. It suffices to show that for any 𝑢 ∈ 𝑉𝑜 \ �̃�𝑜 , if a
merger includes 𝑢, then there exists another merger consisting of

two nodes in 𝑉 (𝑇𝑘−1) ∪ �̃�𝑜 with no worse performance. And this

is an immediate corollary of Lemma 4. □

A.10 Proof of Lemma 6
Proof of Lemma 6. Lines 1 to 3 remove the outside nodes with dupli-

cate inside neighborhood and take𝑂 ( |𝑉𝑜 |) times. Lines 4 to 7 build

the membership function𝑚 where for a inside node 𝑢, the 𝑖-th bit

of𝑚(𝑢) indicates the membership relation between 𝑢 and the 𝑖-th

element of𝑉 ′𝑜 , which takes𝑂 (∑𝑣∈𝑉𝑜 |�̃�𝑘 (𝑣) |) time. Lines 8 to 9 use

𝑚 to check the maximality of each unique inside neighborhood and

take𝑂 (∑𝑣∈𝑉𝑜 |�̃�𝑘 (𝑣) | |𝑉𝑜 |). For the correctness, 𝑟 (𝑣) consists of the
nodes 𝑣 ′ with �̃�𝑘 (𝑣 ′) ⊇ �̃�𝑘 (𝑣). If the final 𝑟 is a power of 2, i.e.,

exactly a single bit of 𝑟 is 1, then this bit represents 𝑣 itself, which

means that no other 𝑣 ′ satisfies that �̃�𝑘 (𝑣 ′) ⊇ �̃�𝑘 (𝑣). Regarding the
space complexity, the inputs and all the variables (𝑆 ,𝑉 ′𝑜 , and𝑉

∗
𝑜 ) take

𝑂 ( |𝐸 |) space,𝑚(𝑣) for all 𝑣 ∈ 𝑉 ∗𝑜 takes𝑂 (∑𝑣∈𝑉 ′𝑜 |�̃�𝑘 (𝑣) |) = 𝑂 ( |𝐸 |)
space if we represent the binary arrays in a sparse way [5]. □

A.11 Proof of Lemma 7
Proof of Lemma 7. If an edge 𝑒0 is inserted into 𝐺 such that the

trussness of 𝑒0 after the insertion is 𝑙 , then all edges with original

trussness at least 𝑙 will not gain any trussness, and the remaining

edges can gain at most 1 trussness [30]. Hence, it suffices to show

that for each considered 𝑥 , after inserting (𝑣1, 𝑥) into 𝐺 , the truss-
ness of (𝑣1, 𝑥) is at most 𝑘 − 1. Indeed, since 𝑣1 ∉ 𝑇𝑘−1, all edges
incident to 𝑣1 have original trussness at most 𝑘 − 2 and thus have

trussness at most 𝑘 − 1 after the insertion. Therefore, all triangles
containing (𝑣1, 𝑥) will not be in𝑇𝑘 and thus neither will (𝑣1, 𝑥). □
A.12 Proof of Lemma 8
Proof of Lemma 8. Finding the top-𝑛𝑖 inside nodes and top-𝑛𝑜 out-

side nodes (Lines 1 and 2) takes 𝑂 ( |𝑉𝑖 | log𝑛𝑖 + |𝑉 ∗𝑜 | log𝑛𝑜 ). For all
inside nodes and all “new” neighbors, computing the incident PHSEs

(Lines 3 to 4) takes𝑂 (𝑛𝑖 |𝑉 (𝑇𝑘−1) |) time; and computing PHSEs for

all pairs (Lines 5 to 9) takes 𝑂 (𝑛𝑖𝑛𝑜 ( |𝑉 (𝑇𝑘−1) | + |𝐸𝑘 |)) time. Main-

taining the candidate set takes𝑂 (𝑛𝑖𝑛𝑜 log𝑛𝑐 ) time. Hence, the total

time complexity is𝑂 ( |𝑉 ∗𝑜 | log𝑛𝑜 +𝑛𝑖𝑛𝑜 ( |𝑉𝑘−1 | + |𝐸𝑘 | + log𝑛𝑐 )). □
A.13 Proof of Lemma 9
Proof of Lemma 9. Finding the top-𝑛𝑖 inside nodes (Line 1) takes

𝑂 ( |𝑉𝑖 | log𝑛𝑖 ) time. For all pairs among the chosen inside nodes,

computing the scores (Lines 2 to 8) takes𝑂 (𝑛2
𝑖
|𝐸𝑘 |) time. Maintain-

ing the set of candidates IOMs takes 𝑂 (𝑛2
𝑖
log𝑛𝑐 ) time. Therefore,

the total time complexity is 𝑂 ( |𝑉𝑖 | log𝑛𝑖 + 𝑛2𝑖 ( |𝐸𝑘 | + log𝑛𝑐 )). □

A.14 Proof of Theorem 4
Proof of Theorem 4. In each round, truss decomposition (Line 3)

takes 𝑂 ( |𝐸 |1.5) time. Collecting all the information (Lines 4 to 8)

takes𝑂 ( |𝐸 |) time. By Lemmas 8 and 9, obtaining the candidatemerg-

ers (Lines 9 and 10) takes𝑂 ( |𝑉 ∗𝑜 | log𝑛𝑜 +𝑛𝑖𝑛𝑜 ( |𝑉𝑖 | + |𝐸𝑘 | + log𝑛𝑐 ) +
𝑛2
𝑖
( |𝐸𝑘 | + log𝑛𝑐 )) time. Checking the results after all candidates

(Line 11) takes𝑂 (𝑛𝑐 |𝐸 (𝑇𝑘−1) |1.5) time. Updating the graph (Line 14)

takes 𝑂 ( |𝐸 |) time. Hence, it takes 𝑂 (𝑏 ( |𝐸 |1.5 + 𝑛𝑐 |𝐸 (𝑇𝑘−1) |1.5 +
|𝑉 ∗𝑜 | log𝑛𝑜 + 𝑛𝑖𝑛𝑜 ( |𝑉𝑖 | + |𝐸𝑘 | + log𝑛𝑐 ) + 𝑛2𝑖 ( |𝐸𝑘 | + log𝑛𝑐 ))) time in

total. All the inputs and variables take 𝑂 ( |𝐸 | + 𝑛𝑐 ) space, including
the intermediate ones in Algorithms 2 and 3 (note that we only

maintain the set of best candidate nodes and pairs). By Lemma 6,

Algorithm 5 takes 𝑂 ( |𝐸 |) space. Hence, the total space complexity

is 𝑂 ( |𝐸 | + 𝑛𝑐 ). □

B DETAILS OF ALGORITHMS AND DATASETS
See Algorithm 5 and Table 3 for details omitted in the main text.
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