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Background: Network Embedding (NE)

Represents nodes in a given network as low-dimensional vectors that
preserve the structural properties of the network

M e.g., proximity between nodes

- e

>

The learned embeddings can be used as informative features of nodes in
various downstream tasks

B Link prediction = our focus!
B Node clustering/classification
B Recommendation

Page2 /16



Background: Directed Network

Given a directed edge from i to j,

User i Influencer j

B Distinguish source node i and target node j according to their roles

B Learn a source embedding and a target embedding, which preserve the
node’s properties as sources and targets

I ['s source I J's source
, embedding _| embedding
i’s target L7 t t I
ge | J S e
Source Node § €Mbedding embedding |

s i =
learn!
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Motivation

Existing DNE methods lack out-of-distribution (OOD) generalization
abilities against degree-related distributional shifts

B They assume that, in link prediction, the degree distribution of the
training and test data are identical (i.e., identical distribution)

However, degree-related distributional shifts occur frequently

B Fithess model: it is also common that |z
dominant hubs are overtaken by “new |«

kids on the block” with higher fitness 5%
Ruining the identical s
distribution (ID) assumption! . I i B
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Motivation (cont’d)

Link prediction accuracy of the existing methods in ID / non-ID settings

B The accuracies of all methods significantly degrade in the non-ID settings
compared to the ID settings
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Proposed Method

Our idea: model and exploit biases related to node degrees for
robustness against degree-related distributional shifts in DNE

Propose ODIN (Out-of-Distribution Generalized Directed Network
Embedding), which is designed to answer the following questions:

1. How to model the formation of each directed edge?

Define six node factors that can influence the formation of
a directed edge from source to target

2. How to leverage such modeled factors for learning OOD generalized
embeddings?

Learn multiple factor embeddings, each of which preserves its desired
factor
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Overview of ODIN

(STAGE 1) Factor Modeling

Source v;  Target v;

v;’s source embedding

Authority
Factors

l Factors ‘\>_>‘ — ;s target embeddings
Factors . ) . I a-target h- target i-target 1

Disentangled Source/Target
Six Node Factors Embeddings of a node
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Overview of ODIN (cont’d)

(STAGE 1) Factor Modeling

Source v;  Target v;
N\
Authority ' \>a .
Factors //7
Hub .47 3 .
Factors N
Interest

*—>0

Factors

Six Node Factors

V;’s source embedding

(STAGE 2) Negative Sampling

’--J ------- L ----.--h--\
1 a-source h-source i-source 1
g G e ~4

\’-- ---L------; ----- \l
L a-target h-target |target I

Disentangled Source/Target
Embeddings of a node

V; \\)\ Vj V; Uj
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Overview of ODIN (cont’d)

(STAGE 2) Negative Sampling (STAGE 3) Disentangled
Embedding Learning

Vi \\>\ Vj Vi Vj L:al
.\__>‘/7 din(vj)) | @——>@ di(v)) disA Disentangling
AN \/ v S \\\ A | Authority Factor
CA N\ d,-n(vjr) CA } din(v]-,) '/__
> it < A L Preserving Disentangling
edge Asymmetric Interest
Vi //7, vj Vi Vj . Proximity Factor
doue(Vy) w dout (V) ‘__;’
L:oul
\Y e A M -7 disH Disentangling
doue(vy) 7 dout(vy) T 8 Hub Factor
vy g-[> vy \ H< Y
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Final Embeddings

Sub-embeddings capture degree-related biases and interest separately

Thus, final embeddings are robust to the shifts in degree distributions

Naturally infer the interest
factor through L s, Laisy

(STAGE 3) Disentangled V;’s source embedding —
Embedding Learning
"
Disentangling - Y Y — !
Authority Factor ( : a-source h-source i-source
kg i I
4 , , 0 : ‘ —— v;’s target embeddings —
Preserving Disentangling i
Asymmetric Interest | l I
Proximity Factor | ! A A SR
\_ 1 I a-target h-target i-target
- 1 |
Disentangling :\ j
i Hub Factor T~ Disentangled Source/Target Embeddings
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Experimental Settings

Datasets Datasets GNU  Wiki JUNG Ciao
Nodes 6,301 7,115 6,120 4,658

Edges 20,777 103,689 50,535 40,133
Reciprocity  0.00% 5.64% 0.90% 34.90%

Types p2p Election  Software  Trust

Nine competitors

B 2 undirected NE methods
DeepWalk [KDD’14]
Node2Vec [KDD’16]

B 7 directed NE methods

APP [AAAI'17] GVAE [CIKM’19] DGGAN [AAAI'21]
ATP [AAAI'19] DiGCN [NeurlIPS’20]
NERD [ECML-PKDD’19] MagNet [NeurlPS'21]
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Non-ID Settings

Design two types of non-ID settings by splitting the edges in an input
network into training and test sets with different degree distributions

1. Non-ID (in), where in-degree distributions are different

Each edge (v;, V) is sampled into the test set with p‘" « dip (v )

2. Non-ID (out), where out-degree distributions are different

Each edge (v;, V) is sampled into the test set with p"“t o d gy (1)K

k=-1 k=-0.8 k=-0.6 k=-04 k=-0.2 k=0

f f
Shifts are strong ID setting
(i.e., sampled inversely proportional (i.e., sampled randomly)

to the node degrees)
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Results for RQ1

Comparison with nine competitors (when k=-1)

(a) Non-ID (in)

"""" i
Undirected NE Directed NE

Datasets Tasks . ODIN :
DeepWalk Node2Vec APP GVAE NERD ATP DiGCN MagNet DGGAN I
1
GNU U-LP | 0.593+0.005 0.587+0.004 | 0.675+0.003 0.675+0.003 0.683+0.008 0.731+0.003 0.7290+0.001 0.742+0.001 0.722+0.003 | 0.760+0.004 |
B-LP | 0.648+0.006 0.621+0.010 | 0.700+0.006 0.748+0.013 0.838+0.004 0.910+0.002 0.878+0.003 0.900+0.004 0.901+0.003 | 0.924+0.001 :
1
wiki U-LP | 0.806+0.001 0.804+0.002 | 0.795x0.001 0.820+0.005 0.828+0.001 0.827+0.002 0.729+0.002 0.865+£0.001 0.890+0.001 ! 0.905+0.001 |

iki -
B-LP | 0.852+0.002 0.855+0.007 | 0.637=0.008 0.901+0.012 0.915+0.002 0.954+0.001 0.862+0.002 0928+0.001 0.963+0.001 | 0.973+0.001 :
1
JUNG U-LP | 0.725+0005 0.777+0.006 | 0.741+0.002 0.820+0.003 0.784+0.006 0.864+0.001 0.817+0.004 0816+0.002 0.879+0.003 ! 0.884+0.002 :
B-LP | 0.810+0.005 0.861+0.005 | 0.772+0.005 0.902+0.006 0.883+0.005 0.961+0.001 0.926+0.001 0.891+0.003 0.964+0.002 | 0.969+0.001 |
Ciao U-LP | 0.776+0004 0.778+0.002 | 0.846+0.001 0.841+0.002 0.857+0.002 0.846+0.002 0.641+0.004 0847+0.001 0.886+0.001 | 0.892+0.001 :
B-LP | 0.688+0.005 0.725+0.006 | 0.768%=0.002 0.797+0.004 0.869+0.006 0.887+0.003 0.751x0.006 0.873+0.004 0912+0.003 | 0.914+0.003 |
(b) Non-ID (out) o
| Undirected NE | Directed NE '|

B Best competitors change depending on tasks, datasets, and non-ID settings

B ODIN is effective compared to all the competitors in addressing the OOD
generalization problem against degree-related distributional shifts on directed NE
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Results for RQ2

Effect of k on the link prediction performance

&— ATP —F— MagNet —&— DGGAN —o— ODIN

(a) Non-ID (in)
GNU
0.80 I 0.95 1.00 0.92
0.78 0.95 0.90
O
5 0.76 -~ s | 0.90 0.9 0.88
\ E/Ef?' e 0.86
ﬂ‘Tq &___.--"'ﬂ&____‘ﬁ"-f "_']85 {]85 {} 34
gl .
0.72 & ' ' | |

1.0 -0.8 0.6 -0.4 -0.2 0 0.80 = 2710 08 06 04 02 0

k k k k

B |n the ID setting (i.e., kK = 0), the AUCs of ODIN are comparable to or higher than
that of the strongest competitors

B ODIN shows the smallest accuracy degradation and, accordingly, the accuracy gain
of ODIN against competitors steadily increases

B The results indicate that ODIN obtains OOD generalized embeddings robust to
degree-related distributional shifts
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Conclusions

(Observation) We pointed out that the existing directed NE methods face
difficulties in effectively addressing the OOD generalization problem

(Effective Algorithm) We proposed ODIN, which models multiple factors
in the formation of directed edges and learns disentangled embeddings

(Extensive Experiments) Through extensive experiments, we showed
clearly the effectiveness of our strategies for factor modeling and
disentangled embedding learning

Source Code: https://github.com/hsyoo032/odin
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https://github.com/hsyoo32/odin

Thank You !

Contact: yeonchang@gatech.edu
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Appendix



Background: Network Embedding (NE) (cont’d)

In recent studies, additional information has been incorporated to
improve the accuracy of NE
B Edge directions [Tong et al. NeurlPS’20; Yoo et al. WSDM’22]
[le.g., follower and followee
B Edge signs [Lee et al. SIGIR’20; Liu et al. KDD’21]
[Lle.g., trust and distrust
B Node attributes [Gao et al. JCAI’18; Pan et al. WSDM’21]
[e.g., bag-of-words

@ Q = XFDID
Y 5

(a) Directed Network (c) Attributed Network
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Background: Directed Network

A directed network

B A directed edge from node i to j expresses an asymmetric relationship
(or proximities) between two nodes

B A toy example on Instagram

follow

X

not follow
User i Influencer j

To capture such asymmetric relationships accurately, various directed
network embedding (DNE) methods have been proposed

B APP [AAAI'17] B DiGCN [NeurlPS'20]
B ATP [AAAI'19] B MagNet [NeurlPS’'21]
B NERD [ECML-PKDD'19]  m DGGAN [AAAI'21]

B GVAE [CIKM'19]
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Related Work

Methods

HOPE Asymmetric Transitivity Preserving Graph Embedding

i . [KDD-2016]
Matrix Factorization

(MF)-based Methods

ATP Directed Graph Embedding with Asymmetric Transitivity Preservation
[AAAI-2019]

GVAE Gravity-Inspired Graph Autoencoders for Directed Link Prediction

Deep Learning (DL)- [CIKM-2019]

based Methods

DiGCN Digraph Inception Convolutional Networks
[NeurlPS-2020]

APP Scalable Graph Embedding for Asymmetric Proximity

Random Walk (RW)- [AAAI-2017]

based Methods

NERD Node Representation Learning for Directed Grpahs
[ECML-PKDD-2019]
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MF-based and DL-based Methods

1. Represent the asymmetric proximities between source and target nodes
in the form of a matrix

B ATP [AAAI'19] uses a measurement that captures both the hierarchy and
reachability between nodes in the network

B GravityAE/VAE [CIKM’'19] and DIiGCN [NeurlPS’20] use the asymmetric adjacency
matrix of the input network

2. Obtain source and target embeddings of nodes
B By using MF techniques (e.g., SVD)
B By using DL techniques (e.g., autoencoders and GCNs)
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RW-based Methods

1. For each seed node,

B Sample a number of positive nodes visited during RWs

L1 APP [AAAI'17] employs a RW strategy that starts from a seed node and then follows out-going
edges randomly

[ NERD [ECML-PKDD’19] proposes an alternating RW strategy that starts from a seed node and
follows out-going/in-coming edges alternately

B Sample negative nodes uniformly at random as well

2. Obtain source and target embeddings of nodes

B Maximize the proximities between source embedding of each seed node and target
embedding of positive nodes

B Minimize the proximities between source embedding of each seed node and target
embedding of negative nodes
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(STAGE 1) Factor Modeling

Model the formation of each directed edge (v;, v;) based on six node
factors grouped as follows:

1. Authority factors

B (a) The target v;’s authority status (a-target) and (b) the source v;’s bias toward
authorities (a-source)

B They together model a bias related to target v;’s authority status (i.e., in-degree)

Source v; Target v;

Authority
Factors
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(STAGE 1) Factor Modeling (cont’d)

Model the formation of each directed edge (v;, v;) based on six node
factors grouped as follows:

2. Hub factors

B (a) The source v;’s hub status (h-source) and (b) the target v;’s bias toward hubs
(h-target)
B They together model a bias related to source v;’s hub status (i.e., out-degree)

Source v; Target v;

A

Page 24 / 16



(STAGE 1) Factor Modeling (cont’d)

Model the formation of each directed edge (v;, v;) based on six node
factors grouped as follows:

3. Interest factors

B (a) The source v;’s intrinsic property as a source (i-source) and (b) the target v;’s
intrinsic property as a target (i-target)

B They together model the pure interest in forming an edge from v; to v; after
removing degree-related biases

Source v; Target v;

o—©O
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(STAGE 1) Factor Modeling (cont’d)

Represent a node v; as six factor LlConcatenate the three factor

sub-embeddings sub-embeddings as a source/target
sSrce Src 3;Src — Src sSrc *STC

B Source role: a;" “, h;" %, i; Bs,=a;"Dh;"Di;",
tar tar :tar — tar tar tar

M Target role: a;™", h;™, i; Bt; =a;" ©h" D i

— p;’s source embedding —
Sourcev; Target v;

—
Authority Factors @——=@
7 -y
.//'7 P
N\

Interest Factors @—>@

Six Node Factors Disentangled Source/Target Embeddings
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(STAGE 1) Factor Modeling (cont’d)

Compute three factor scores based on the six factor sub-embeddings

B Represent how much (a) the authority factor, (b) the hub factor, and (c)
the interest factor affect the formation of the directed edge (v;, vj)

(a) Sauth asrc qtar (b) Shub hsT¢ o ptar () Slnt lsrc jtar
g j

Compute the overall edge score by adding the three factor scores

B Represent the likelihood of the formation of a directed edge (v;, vj)

edge __ gauth hub mt _
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(STAGE 2) Negative Sampling

For each existent edge (v;,v;), sample different types of training
instances (i.e., triplets) for embedding learning

BTypel v N\ ----- ., EType2 Vi R .
‘ >‘i din(v)) | - "i din(v)) |
VAR M \ A

o : N :

N\ :‘ din(vj'),: /\'; :‘ din(vjl) ':

Positive Negative

target ?rget
v
Add (v;, vj, ;) to the sets A, (for type 1) or A (for type 2)

Source

B Aid in capturlng the influence of bias related to the target’s in-degree
HBA=A.UA_
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(STAGE 2) Negative Sampling (cont’d)

For each existent edge (v;,v;), sample different types of training
instances (i.e., triplets) for embedding learning

- Type S Vi V: O Type 4 Vi 'U]'
Re ™ //7’ j g N ’
i dout(vi)i % >7‘ i dout(vi) i /-,.
| 1 ,/ - I /,
A S o TN R/
! ! < | 1 7’
| doue (V)| 07 | dowe(V)}
1 Yout i'/1 1 Aout i)
e J vy e J vy \
Positive Negative
Target

source SOU rce

.
Add (v;, v}, v; ,) to the sets H-, (for type 3) or H_ (for type 4)

M Aid in capturing the influence of bias related to the source’s out-degree
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(STAGE 3) Disentangled Embedding Learning

Learn the disentangled source and target embeddings of each node based
on the sampled instances via the three objectives

1. Legge: preserve asymmetric proximity between nodes in input network

2. Lgisa: disentangle the authority factor from the other two factors
3. Lgisg: disentangle the hub factor from the other two factors

Naturally infer the interest

(STAGE 2) Negative Sampling (STAGE 3) Disentangled
Embedding Learning factor through Lgisa, Laish
Vi "} Yj Vi vj L 4 ( -
h’. din(v;) H din(v)) disA Disentangling I 1
NSV S\ A \ Authority Factor : 1
N di“(vjr) 3 din (vjr) 2 |
i " [ i
A> Vi A< 7 Vi L Preserving Disentanglingl :
edge | Asymmetric Interest | I
Vi A, U Vi Yi Proximity Factor : :
doue (V1) Q—;’ douv) @—0 N I I
% - A b Lo | , . i I
- A disH Disentangling i I
dout(”f’) j{ deut(”;') -3 j{. Hub Factor -
vy > vy N < L
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Loss Function: Multi-Objective Learning

L = | edge (A U H) + a{LdlSA (A)"l"LdlsH(H))

ST T " ST
@ Preserving (2) Disentangling the authority (3 Disentangling the authority

asymmetric proximities factor from the others factor from the others
% ed e _edge) _ edge edge
@ Legge(AU H) = BPR (5777, 5¢7°) = ~tog (o (57 - 531%°))

Y. BPR(ss) - D meR (s )

(vi,v]-,vj/)EA (vi,vj,v;r)EH

= For (v, vj,vy)in 4, =» For (v;,vj,vy) in H,
edge edge
S.. > g . edge edge
i ij' Sij = S

However, L.;4. alone does not contribute to preserving the desired
factor in each factor sub-embedding
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Loss Function: Multi-Objective Learning (cont’d)

L = | edge (A U H) + a{LdlSA (A)"l"LdlsH(H))

ST T 7 - R
(D Preserving (2 Disentangling the authority () Disentangling the authority

asymmetric proximities factor from the others factor from the others

®) LdisA (A) — Lauth(A>) T Lauth(A<) + Lhub+int(A<)

D For (v, v, vp) in A, st > i

The authority status (i.e., in-degree) of v; is higher than that of v

Thus, if authority-factor scores capture the biases towards authorities,

as desired, S‘;“th > S‘;“th should hold!
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Loss Function: Multi-Objective Learning (cont’d)

L = | edge (A U H) + a{LdlSA (A)"l"LdlsH(H))

S TTTTTTTTTLO T ' - N
@ Preserving (2) Disentangling the authority () Disentangling the authority

asymmetric proximities factor from the others factor from the others

®) LdisA (A) — Lauth(A>) + Lauth(A<) + Lhub+int(A<)

> For (v;, vj, v]-r) inA., g”th < s‘;“th

The authority status (i.e., in-degree) of v; is lower than that of v

Thus, if authority-factor scores capture the biases towards authorities,

as desired, S‘;“th < S‘;“th should hold!
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Loss Function: Multi-Objective Learning (cont’d)

L = | edge (A U H) + a{LdlSA (A)"l"LdlsH(H))

ST T 7 ST
(D Preserving (2 Disentangling the authority () Disentangling the authority

asymmetric proximities factor from the others factor from the others
@ LdisA (A) — Lauth(A>) + Lauth(A<) + Lhub+int(A<)

=> For (vl, ) inA_,

hub mt hub int

Even though s““th < S“uth holds, s°*9° should become higher than s‘.gj‘,ige

lj ij
hub

+ s‘"t!

Thus, we can imply the following inequality sh“b + S‘"t > S
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Loss Function: Multi-Objective Learning (cont’d)

|' ______________________________
L= | edge (A U H) + a{LdlSA (A)"l"LdlsH(H))
ST T Z" "'fi"' _ _
@ Preserving (2) Disentangling the authority () Disentangling the authority
asymmetric proximities factor from the others factor from the others

@ LdisH (H) — Lhub (H>) T Lhub (H<) + Lauth+int(H<)

l

For (v, vj,vy) in He, sit*? < sh,“b

ij
For (v, v, vy) in Hs, For (v;, vj, vy ) in H,
hub hub auth int auth int
] > S ] l] —+ S > S. / + S. /]
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Why we use all factor-embeddings in OOD link prediction?

Learn (bias-aware) hub/authority and (bias-free) interest embeddings

B If degree-related biases entirely disappear in test data, it could be beneficial to use
interest embeddings only

B However, in reality, degree-related biases remain but the level of them shifts over
time
B Also, it is not trivial to predict accurately the level of biases in the future

B Therefore, we leverage all factor-embeddings jointly to achieve high accuracy in any
scenario
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Evaluation Task: Link Prediction (LP)

How accurately we can predict the directed edges
removed from the input directed network?

Evaluation protocol

B Consider the existent edges as positive examples

B Perform two LP tasks, which depend on how we sample the negative
examples

Uniform LP (U-LP): consider the non-existent edges sampled uniformly at
random as negative examples

Biased LP (B-LP): consider the edges with the opposite directions to
(unidirectional) positive examples as negative examples

B Measure classification accuracy using area under curve (AUC)
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Evaluation Task

. ini Test
@ split the edges ~ '™2Nine =
(:__(g%)___\‘__.(_ (20 f’z_:s‘
l, E—— —} \:
Existent edges | — |
(positive examples) : , i _
! ——— (2 Obtain node
\ — 1 .
. Nezzoooo oA N embeddings
(3 sample nonexistent edges Far- N RN D
Non-existent edges | -— :
(negative examples) | -- i
|\ - /l
Training examples Test examples
L+ *{ label 4 icti )
— , 1apbe Logistic
1 e
i—j OEEEEEES 1 > | regression | [y ( — CEEEEEEEED
— — | I I I I I I I I I I . o e . . oy . .
> 0 Train classifier Classify positive or negative
g J

@ Train a classifier by using concatenated
embeddings as inputs

@ Classify whether each testing example
is positive or negative
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Evaluation Task: Link Prediction (LP)

Example of B-LP

Existent edges
(i.e., positive examples)

Training Set (80%)

vy —>

@)

Test Set (2

V1 —>v4

vz — vs

d

0%)

/' positive examples

el

unidirectional

negative examples with
the opposite directions

Non-existent edges
(i.e., negative examples)

o-®
-
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Implementation Details

Competitors

B Dimensionality of embeddings = 120

B Number of walks € {10, 20,40, 80} (DeepWalk, Node2Vec)
B Walk length € {60,80,100} (DeepWalk, Node2Vec)
Hye{510,15,20} (NERD)

m 1€ {0.0050.051,5,610} (GVAE)

B« €{0.050.1,0.15,0.2} (DIGCN)

g€ {0.050.1,0.15,0.2,0.25} (MagNet)

ODIN

B Dimensionality of embeddings = 120 (i.e., dimensionality of each of six
factor sub-embeddings = 20)

Ba=05
H S5 =001
B n =2 (ie., total number of negative samples per edge is 8)
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Questions to Be Answered

RQ1: Does ODIN outperform its competitors under distributional shifts in
degree distributions?

RQ2: How robust is ODIN under various levels of distributional shifts in
degree distributions?

RO3: Is factor disentanglement effective in ODIN?

RQ4: How sensitive is ODIN to its hyperparameters?
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Results for RQ3-1

RQ3-1: Is each of two disentanglement losses effective in ODIN?
m ODIN, vs ODIN B ODINy vs ODIN g,

---------- 1 e ————
i I . |
Datasets Tasks | ODIN,4 : ODINgjsa ! ODIN,: only uses the Datasets Tasks | ODINg | ODINg; g ! ODINp: only uses the
1 1
- i _ I edge loss based on A i 1 edge loss based on H
U-LP | 0.632+0.005 1 0.763+0.004 | U-LP |0.6040.010 | 0.678+0.001 |
GNU ! ! . GNU ! ' o . 2dditionall
B-LP | 0.704+0.010 ! 0.927+0.001 ; ODINg;q,: additionally B-LP |0.669+0.015 | 0.820£0.010 | DINg;sy: additionally
) —T I uses the disA loss based 1 I uses the disH loss based
wikg  ULP | 084220.002 | 0.89620.001 | on A wikg  ULP [0.793£0007 | 08980001 § op by
| |
B-LP | 0.918+0.001 | 0.965+0.001 | B-LP |0.863£0.011 | 0.968+0.001 |
. § : I
JUNG U-LP | 0.825+0.004 | 0.8780.003 : JUNG U-LP |0.714£0.006 | 0.884+0.002 !
| |
B-LP | 0.929+0.003 I 0.966+0.002 | B-LP |0.830:£0.004 | 0.970:£0.001 !
I ! - ]
. U-LP | 0.820+0.003 | 0.890£0.001 | . U-LP |0.853+0.001 | 0.886:0.001 :
120 -1 1ao |
B-LP | 0.788+0.009 | 0.912+0.002 | B-LP |0.8670.005 | 0.909+0.002 |
S p————— - | e ———— -

B Each of the
robust to distributional shifts in degree distributions

disentanglement losses is effective in obtaining embeddings
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Results for RQ3-1 (cont’d)

(a) Non-ID (in)

RQ3-1: Is each of two disentanglement losses effective in ODIN?

(b) Non-ID (out)

Datasets Tasks | ODINy  ODINg;4 | ODINg  ODINg.x Datasets Tasks | ODINg,  ODINgi4 | ODINg  ODINgep
GNU U-LP | 0.632+0.005 0.763+0.004 | 0.604+0.010 0.678x0.001 GNU U-LP | 0.64820.004 0.78620.006 | 0.668+0.005 0.6920.007
B-LP 0.704+0.010 092720001 | 0.6692£0.015 0.820+0.010 B-LP | 0.718+0.005 0.934+0.003 | 0.770+0.010 0.835x0.008

Wiki U-LP | 0.842+0.002 0.896+0.001 0.79320.007 0.895+0.001 Wiki U-LP | 0.853+0.002 0.895+0.001 0.8330.003 0.85953+0.001
1K1 - 1K1 -
B-LP 0.918+0.001 0.9650.001 0.863+0.011 0.968+0.001 B-LP | 0.918+0.001 0.9560.001 0.594 0,004 0.959+0.001
JUNG U-LP | 0.825+0.004 0.878+0.003 0.714+0.006 0.884+0.002 G U-LP | 0.957+0.003 0.961+0.002 0849010007  0.963120.002
B-LP 0.929+0.003  0.9660.002 08300004 0.970+0.001 B-LP | 0.99320.001 0.995£0.001 | 0.969+0.003 0.995+0.001

Ci U-LP | 0.820+0.003 0.890+0.001 0.853+£0.001 0. 836+0.001 Ci U-LP | 0.814+0.003 0877200073 0. 841 +0.002 0.873x0.002

1320 - 1Ay -

B-LP 0. 78810009  0.912+0.002 0.867+0.005 0.909+0.002 B-LP | 0.764+0.007 0.875x0.002 081600006 086700003
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Results for RQ3-2

Datasets Tasks | ODINs  ODINg;.4 | ODINg  ODINg;.p ODIN |
1
| i |
GNU U-LP | 0.632+0.005 : 0.7631£0.004 { 0.604£0.010 0.678+£0.001 0.760+0.004 :
|
B-LP | 0.704+0.010 : 0.927+0.001 | 0.669£0.015 0.820+0.010 0.924+0.001 i
| . r ¢ 1
(a ) Wiki U-LP | 0.842+0.002 0.896+0.001 0.793+0.007 : 0.5898+0.001 : 0.905+0.001 :
iki I ! I
. B-LP | 0.918+0.001 0.965+£0.001 | 0.863+£0.011 1 0.968+0.001 : 0.973+£0.001 1
Non-ID (in) ! ! :
|
JUNG U-LP | 0.825x0.004 0.878x0.003 0.714+0.006 : I].H-E*‘-l:l:ﬂ.ll]ﬂﬂ: 0.884+0.002 :
| |
B-LP | 0.929+0.003 0.966+0.002 0.830+0.004 : 0.970+0.00 1: 0.969+0.001 :
e e g | I
Ci U-LP | 0.820+0.003 : 0.890+0.001 0.553+0.001 (0.886+0.001 0.892+0.001 :
140 | |
B-LP | 0.788+0.009 : 0.912+0.002 08670005 09090002 §{ 0.914+0.003 :

B Superiority between ODIN ;.4 and ODIN ;. varies depending on datasets
B ODIN outperforms ODIN ;54 and ODIN ;. in most cases

L1That is, ODIN can selectively adopt the factor(s) beneficial in each dataset,
thereby improving the robustness of embeddings in all datasets
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Results for RQ3-2 (cont’d)

i
Datasets Tasks | ODINg  ODINg;4 | ODINg  ODINgep ODIN !
r 1
|
GNU U-LP | 0.648+0.004 : 0.78620.006 ) 0.668+0.005 0.69210.007 0.782+0.005 :

|
B-LP | 0.718+0.005 : 0.9341+0.003 { 0.770+0.010 0.835x0.008 0.927+0.003 :
> N e———————————— 1
e — | Ll 1
( b) Wiki U-LP | 0.853x0.002 0.89320.001 0.8330.003 : 0.895x0.001 : 0.900+0.001 :

1H1 1 |

B-LP | 0.9150.001 0.956x0.001 0.594+0.004 1 0.959120.001 : 0.962+0.001 :
Non-ID (out) ! = |
G U-LP | 0.957+0.003 0.9611+0.002 0.890+0.007 : ﬂ.ﬂﬁ:i:l:ﬂ'.ﬂﬂﬂi 0.962+0.002 :
JUN I I
B-LP | 0.993+0.001 0.995+0.001 | 0.9569+0.003 : ﬂ'.ﬂﬂﬂ:l:'l]'.l]ﬂl: 0.995+0.001 :
gmLmm ey S | 1

|
Ci U-LP | 0.814+0.003 : 087720003 |} 0.841+0.002 0.87310.002 0.883+0.003 :
130 |
B-LP | 0.764+0.007 : 087520002 j 0.8160.006 0.86720.003 0.883+0.003 :

B Superiority between ODIN ;.4 and ODIN ;. varies depending on datasets

B ODIN outperforms ODIN ;.4 and ODIN ;¢ in most cases

L1That is, ODIN can selectively adopt the factor(s) beneficial in each dataset,

thereby improving the robustness of embeddings in all datasets
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Results for RQ4

How the parameter a affects the accuracy of ODIN

—&— GNU —5— Wiki —&— JUNG —&— Ciao

(a) Non-ID(in) (b) Non-ID(out)
1.00 ———— —1 1.00 I
B—F B8—5 | .90 a9~ &—6—6—0 f--L — Ledge (AU B)
{é 0.80 = 0.80 S A oA -II_‘E(_édisA (A) + LdisH(H))
0.60 0.70 K
0 02 04 06 08 1 0 02 04 06 08 1
cx cx

B AUCs of ODIN steadily increase until @ reaches 0.4 and then the AUCs converge
B ODIN is not highly sensitive to the weight for factor disentanglement
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