
Page 1 / 16

Disentangling Degree-Related Biases and Interest
for Out-Of-Distribution Generalized Directed

Network Embedding

Prof. Sang-Wook Kim
Hanyang Univ

Prof. Kijung Shin
KAIST

Yeon-Chang Lee
Georgia Tech

Hyunsik Yoo
Hanyang Univ and UIUC

Page 2 / 16

Represents nodes in a given network as low-dimensional vectors that
preserve the structural properties of the network

◼ e.g., proximity between nodes

The learned embeddings can be used as informative features of nodes in
various downstream tasks

◼ Link prediction→ our focus!

◼Node clustering/classification

◼ Recommendation

Background: Network Embedding (NE)

Page 3 / 16

Given a directed edge from 𝒊 to 𝒋,

◼Distinguish source node 𝑖 and target node 𝑗 according to their roles

◼ Learn a source embedding and a target embedding, which preserve the
node’s properties as sources and targets

Background: Directed Network

Source Node 𝒊 Target Node 𝒋

𝒊’s source
embedding

𝒊’s target
embedding

𝒋’s source
embedding

𝒋’s target
embedding

learn!

User 𝒊 Influencer 𝒋

Page 4 / 16

Existing DNE methods lack out-of-distribution (OOD) generalization
abilities against degree-related distributional shifts

◼ They assume that, in link prediction, the degree distribution of the
training and test data are identical (i.e., identical distribution)

However, degree-related distributional shifts occur frequently

Motivation

Ruining the identical
distribution (ID) assumption!

◼ Fitness model: it is also common that
dominant hubs are overtaken by “new
kids on the block” with higher fitness

Page 5 / 16

Link prediction accuracy of the existing methods in ID / non-ID settings

◼ The accuracies of all methods significantly degrade in the non-ID settings
compared to the ID settings

Motivation (cont’d)

Page 6 / 16

Our idea: model and exploit biases related to node degrees for
robustness against degree-related distributional shifts in DNE

Propose ODIN (Out-of-Distribution Generalized Directed Network
Embedding), which is designed to answer the following questions:

1. How to model the formation of each directed edge?

 Define six node factors that can influence the formation of
a directed edge from source to target

2. How to leverage such modeled factors for learning OOD generalized
embeddings?

 Learn multiple factor embeddings, each of which preserves its desired
factor

Proposed Method

Page 7 / 16

Overview of ODIN

Directed Network 𝓖

𝒗𝟏
𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒗𝟓
𝒗𝟔

𝒗𝟕
𝒗𝟖

(STAGE 1) Factor Modeling

Source 𝒗𝒊 Target 𝒗𝒋

Authority
Factors

Interest
Factors

Hub
Factors

Six Node Factors

𝒗𝒊’s source embedding

a-source h-source i-source

𝒗𝒊’s target embeddings

a-target h-target i-target

Disentangled Source/Target
Embeddings of a node

Page 8 / 16

Overview of ODIN (cont’d)

(STAGE 1) Factor Modeling

Source 𝒗𝒊 Target 𝒗𝒋

Authority
Factors

Interest
Factors

Hub
Factors

Six Node Factors

𝒗𝒊’s source embedding

a-source h-source i-source

𝒗𝒊’s target embeddings

a-target h-target i-target

Disentangled Source/Target
Embeddings of a node

(STAGE 2) Negative Sampling

𝒗𝒊

𝒗𝒊′

𝒗𝒊

𝒗𝒊′

<

𝓐>

<

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒗𝒋 𝒗𝒋

𝒗𝒋

𝒗𝒋′

𝒗𝒋

𝒗𝒋′

<

<

𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊
𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊

𝓐<

𝓗> 𝓗<

Page 9 / 16

Overview of ODIN (cont’d)

(STAGE 2) Negative Sampling

𝒗𝒊

𝒗𝒊′

𝒗𝒊

𝒗𝒊′

<

𝓐>

<

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒗𝒋 𝒗𝒋

𝒗𝒋

𝒗𝒋′

𝒗𝒋

𝒗𝒋′

<

<

𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊
𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊

𝓐<

𝓗> 𝓗<

(STAGE 3) Disentangled
Embedding Learning

𝓛𝒅𝒊𝒔𝑯

𝓛𝒅𝒊𝒔𝑨

𝓛𝒆𝒅𝒈𝒆

Page 10 / 16

Sub-embeddings capture degree-related biases and interest separately

Thus, final embeddings are robust to the shifts in degree distributions

Final Embeddings

a-source h-source i-source

𝒗𝒊’s target embeddings

a-target h-target i-target

Disentangled Source/Target Embeddings

𝒗𝒊’s source embedding

Naturally infer the interest
factor through 𝑳𝒅𝒊𝒔𝑨, 𝑳𝒅𝒊𝒔𝑯

Page 11 / 16

Datasets

Nine competitors

◼ 2 undirected NE methods

 DeepWalk [KDD’14]

 Node2Vec [KDD’16]

◼ 7 directed NE methods

 APP [AAAI’17]

 ATP [AAAI’19]

 NERD [ECML-PKDD’19]

Experimental Settings

 GVAE [CIKM’19]

 DiGCN [NeurIPS’20]

MagNet [NeurIPS’21]

 DGGAN [AAAI’21]

Page 12 / 16

Design two types of non-ID settings by splitting the edges in an input
network into training and test sets with different degree distributions

1. Non-ID (in), where in-degree distributions are different

 Each edge (𝒗𝒊, 𝒗𝒋) is sampled into the test set with 𝒑𝒊𝒋
𝒊𝒏 ∝ 𝒅𝒊𝒏 𝒗𝒋

𝒌

2. Non-ID (out), where out-degree distributions are different

 Each edge (𝒗𝒊, 𝒗𝒋) is sampled into the test set with 𝒑𝒊𝒋
𝒐𝒖𝒕 ∝ 𝒅𝒐𝒖𝒕 𝒗𝒊

𝒌

Non-ID Settings

k=-1 k=0k=-0.8 k=-0.6 k=-0.4 k=-0.2

ID setting
(i.e., sampled randomly)

Shifts are strong
(i.e., sampled inversely proportional

to the node degrees)

Page 13 / 16

Comparison with nine competitors (when k=-1)

Results for RQ1

◼ Best competitors change depending on tasks, datasets, and non-ID settings

◼ ODIN is effective compared to all the competitors in addressing the OOD
generalization problem against degree-related distributional shifts on directed NE

Page 14 / 16

Effect of 𝒌 on the link prediction performance

Results for RQ2

◼ In the ID setting (i.e., 𝑘 = 0), the AUCs of ODIN are comparable to or higher than
that of the strongest competitors

◼ ODIN shows the smallest accuracy degradation and, accordingly, the accuracy gain
of ODIN against competitors steadily increases

◼ The results indicate that ODIN obtains OOD generalized embeddings robust to
degree-related distributional shifts

Page 15 / 16

 (Observation) We pointed out that the existing directed NE methods face
difficulties in effectively addressing the OOD generalization problem

 (Effective Algorithm) We proposed ODIN, which models multiple factors
in the formation of directed edges and learns disentangled embeddings

 (Extensive Experiments) Through extensive experiments, we showed
clearly the effectiveness of our strategies for factor modeling and
disentangled embedding learning

Conclusions

Source Code: https://github.com/hsyoo32/odin

https://github.com/hsyoo32/odin

Page 16 / 16

Thank You !

Contact: yeonchang@gatech.edu

Page 17 / 16

Appendix

Page 18 / 16

 In recent studies, additional information has been incorporated to
improve the accuracy of NE

◼ Edge directions [Tong et al. NeurIPS’20; Yoo et al. WSDM’22]

e.g., follower and followee

◼ Edge signs [Lee et al. SIGIR’20; Liu et al. KDD’21]

e.g., trust and distrust

◼ Node attributes [Gao et al. IJCAI’18; Pan et al. WSDM’21]

e.g., bag-of-words

Background: Network Embedding (NE) (cont’d)

trust

distrust

trust

(b) Signed Network (c) Attributed Network(a) Directed Network

Page 19 / 16

A directed network

◼A directed edge from node 𝑖 to 𝑗 expresses an asymmetric relationship
(or proximities) between two nodes

◼A toy example on Instagram

To capture such asymmetric relationships accurately, various directed
network embedding (DNE) methods have been proposed

◼APP [AAAI’17]

◼ATP [AAAI’19]

◼NERD [ECML-PKDD’19]

◼GVAE [CIKM’19]

Background: Directed Network

User 𝑖 Influencer 𝑗

follow

not follow

◼DiGCN [NeurIPS’20]

◼MagNet [NeurIPS’21]

◼DGGAN [AAAI’21]

Page 20 / 16

Related Work

Methods

Matrix Factorization
(MF)-based Methods

HOPE Asymmetric Transitivity Preserving Graph Embedding
[KDD-2016]

ATP Directed Graph Embedding with Asymmetric Transitivity Preservation
[AAAI-2019]

Deep Learning (DL)-
based Methods

GVAE Gravity-Inspired Graph Autoencoders for Directed Link Prediction
[CIKM-2019]

DiGCN Digraph Inception Convolutional Networks
[NeurIPS-2020]

Random Walk (RW)-
based Methods

APP Scalable Graph Embedding for Asymmetric Proximity
[AAAI-2017]

NERD Node Representation Learning for Directed Grpahs
[ECML-PKDD-2019]

Page 21 / 16

MF-based and DL-based Methods

1. Represent the asymmetric proximities between source and target nodes
in the form of a matrix

◼ ATP [AAAI’19] uses a measurement that captures both the hierarchy and
reachability between nodes in the network

◼ GravityAE/VAE [CIKM’19] and DiGCN [NeurIPS’20] use the asymmetric adjacency
matrix of the input network

2. Obtain source and target embeddings of nodes

◼ By using MF techniques (e.g., SVD)

◼ By using DL techniques (e.g., autoencoders and GCNs)

Page 22 / 16

RW-based Methods

1. For each seed node,

◼ Sample a number of positive nodes visited during RWs
 APP [AAAI’17] employs a RW strategy that starts from a seed node and then follows out-going

edges randomly

 NERD [ECML-PKDD’19] proposes an alternating RW strategy that starts from a seed node and
follows out-going/in-coming edges alternately

◼ Sample negative nodes uniformly at random as well

2. Obtain source and target embeddings of nodes

◼ Maximize the proximities between source embedding of each seed node and target
embedding of positive nodes

◼ Minimize the proximities between source embedding of each seed node and target
embedding of negative nodes

Page 23 / 16

Model the formation of each directed edge (𝒗𝒊, 𝒗𝒋) based on six node

factors grouped as follows:

(STAGE 1) Factor Modeling

1. Authority factors

◼ (a) The target 𝑣𝑗’s authority status (a-target) and (b) the source 𝑣𝑖’s bias toward

authorities (a-source)

◼ They together model a bias related to target 𝑣𝑗’s authority status (i.e., in-degree)

Source 𝒗𝒊 Target 𝒗𝒋

Authority
Factors

Page 24 / 16

Model the formation of each directed edge (𝒗𝒊, 𝒗𝒋) based on six node

factors grouped as follows:

(STAGE 1) Factor Modeling (cont’d)

2. Hub factors

◼ (a) The source 𝑣𝑖’s hub status (h-source) and (b) the target 𝑣𝑗’s bias toward hubs

(h-target)

◼ They together model a bias related to source 𝑣𝑖’s hub status (i.e., out-degree)

Hub
Factors

Source 𝒗𝒊 Target 𝒗𝒋

Page 25 / 16

Model the formation of each directed edge (𝒗𝒊, 𝒗𝒋) based on six node

factors grouped as follows:

(STAGE 1) Factor Modeling (cont’d)

3. Interest factors

◼ (a) The source 𝑣𝑖’s intrinsic property as a source (i-source) and (b) the target 𝑣𝑗’s

intrinsic property as a target (i-target)

◼ They together model the pure interest in forming an edge from 𝑣𝑖 to 𝑣𝑗 after

removing degree-related biases

Interest
Factors

Source 𝒗𝒊 Target 𝒗𝒋

Page 26 / 16

Represent a node 𝒗𝒊 as six factor
sub-embeddings

◼ Source role: 𝐚𝒊
𝒔𝒓𝒄, 𝐡𝒊

𝒔𝒓𝒄, 𝐢𝒊
𝒔𝒓𝒄

◼ Target role: 𝐚𝒊
𝒕𝒂𝒓, 𝐡𝒊

𝒕𝒂𝒓, 𝐢𝒊
𝒕𝒂𝒓

(STAGE 1) Factor Modeling (cont’d)

Concatenate the three factor
sub-embeddings as a source/target

◼ 𝐬𝒊 = 𝒂𝒊
𝒔𝒓𝒄 ⊕𝒉𝒊

𝒔𝒓𝒄 ⊕ 𝒊𝒊
𝒔𝒓𝒄,

◼ 𝐭𝒊 = 𝒂𝒊
𝒕𝒂𝒓 ⊕𝒉𝒊

𝒕𝒂𝒓 ⊕ 𝒊𝒊
𝒕𝒂𝒓

Source𝒗𝒊 Target 𝒗𝒋

Authority Factors

Interest Factors

Hub Factors

Six Node Factors

a-source h-source i-source

𝒗𝒊’s target embeddings

a-target h-target i-target

Disentangled Source/Target Embeddings

𝒗𝒊’s source embedding

Page 27 / 16

Compute three factor scores based on the six factor sub-embeddings

◼ Represent how much (a) the authority factor, (b) the hub factor, and (c)
the interest factor affect the formation of the directed edge (𝒗𝒊, 𝒗𝒋)

(a) 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 = 𝐚𝒊

𝒔𝒓𝒄 ∘ 𝐚𝒋
𝒕𝒂𝒓 (b) 𝒔𝒊𝒋

𝒉𝒖𝒃 = 𝐡𝒊
𝒔𝒓𝒄 ∘ 𝐡𝒋

𝒕𝒂𝒓 (c) 𝒔𝒊𝒋
𝒊𝒏𝒕 = 𝐢𝒊

𝒔𝒓𝒄 ∘ 𝐢𝒋
𝒕𝒂𝒓

Compute the overall edge score by adding the three factor scores

◼ Represent the likelihood of the formation of a directed edge (𝒗𝒊, 𝒗𝒋)

𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

= 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 + 𝒔𝒊𝒋

𝒉𝒖𝒃 + 𝒔𝒊𝒋
𝒊𝒏𝒕(= 𝐬𝒊 ∘ 𝐭𝒊)

(STAGE 1) Factor Modeling (cont’d)

Page 28 / 16

For each existent edge (𝒗𝒊, 𝒗𝒋) , sample different types of training

instances (i.e., triplets) for embedding learning

Add (𝒗𝒊, 𝒗𝒋, 𝒗𝒋′) to the sets 𝑨> (for type 1) or 𝑨< (for type 2)

◼Aid in capturing the influence of bias related to the target’s in-degree

◼𝑨 = 𝑨> ∪ 𝑨<

(STAGE 2) Negative Sampling

𝒗𝒋

𝒗𝒋′

<

𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊
𝒗𝒋

𝒗𝒋′

<

𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊◼ Type 1 ◼ Type 2

Source
Positive
target

Negative
target

Page 29 / 16

For each existent edge (𝒗𝒊, 𝒗𝒋) , sample different types of training

instances (i.e., triplets) for embedding learning

Add (𝒗𝒊, 𝒗𝒋, 𝒗𝒊′) to the sets 𝑯> (for type 3) or 𝑯< (for type 4)

◼Aid in capturing the influence of bias related to the source’s out-degree

◼𝑯 = 𝑯> ∪ 𝑯<

(STAGE 2) Negative Sampling (cont’d)

◼ Type 3 ◼ Type 4𝒗𝒊

𝒗𝒊′

𝒗𝒊

𝒗𝒊′
<

<

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒗𝒋
𝒗𝒋

Positive
source Target

Negative
source

Page 30 / 16

Learn the disentangled source and target embeddings of each node based
on the sampled instances via the three objectives

1. 𝑳𝒆𝒅𝒈𝒆: preserve asymmetric proximity between nodes in input network

2. 𝑳𝒅𝒊𝒔𝑨: disentangle the authority factor from the other two factors

3. 𝑳𝒅𝒊𝒔𝑯: disentangle the hub factor from the other two factors

(STAGE 3) Disentangled Embedding Learning

Naturally infer the interest
factor through 𝑳𝒅𝒊𝒔𝑨, 𝑳𝒅𝒊𝒔𝑯

Page 31 / 16

① 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 =

෍

(𝒗𝒊,𝒗𝒋,𝒗𝒋′)∈𝑨

𝐁𝐏𝐑 𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

, 𝒔
𝒊𝒋′
𝒆𝒅𝒈𝒆

+ ෍

(𝒗𝒊,𝒗𝒋,𝒗𝒊′)∈𝑯

𝐁𝐏𝐑 𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

, 𝒔
𝒊′𝒋

𝒆𝒅𝒈𝒆

Loss Function: Multi-Objective Learning

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 + 𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

① Preserving
asymmetric proximities

② Disentangling the authority
factor from the others

③ Disentangling the authority
factor from the others

➔ For (𝒗𝒊, 𝒗𝒋, 𝒗𝒋′) in 𝐴,

𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

> 𝒔
𝒊𝒋′
𝒆𝒅𝒈𝒆

➔ For (𝒗𝒊, 𝒗𝒋, 𝒗𝒊′) in 𝐻,

𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

> 𝒔
𝒊′𝒋

𝒆𝒅𝒈𝒆

However, 𝑳𝒆𝒅𝒈𝒆 alone does not contribute to preserving the desired

factor in each factor sub-embedding

*𝐁𝐏𝐑 𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

, 𝒔
𝒊𝒋′
𝒆𝒅𝒈𝒆

= −𝒍𝒐𝒈 𝝈 𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

− 𝒔
𝒊𝒋′
𝒆𝒅𝒈𝒆

Page 32 / 16

② 𝑳𝒅𝒊𝒔𝑨 𝑨 = 𝑳𝒂𝒖𝒕𝒉 𝑨> + 𝑳𝒂𝒖𝒕𝒉 𝑨< + 𝑳𝒉𝒖𝒃+𝒊𝒏𝒕(𝑨<)

The authority status (i.e., in-degree) of 𝑣𝑗 is higher than that of 𝑣𝑗′

Thus, if authority-factor scores capture the biases towards authorities,

as desired, 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 > 𝒔𝒊𝒋′

𝒂𝒖𝒕𝒉 should hold!

Loss Function: Multi-Objective Learning (cont’d)

➔ For 𝒗𝒊, 𝒗𝒋, 𝒗𝒋′ in 𝑨>, 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 > 𝒔𝒊𝒋′

𝒂𝒖𝒕𝒉

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 + 𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

① Preserving
asymmetric proximities

② Disentangling the authority
factor from the others

③ Disentangling the authority
factor from the others

Page 33 / 16

② 𝑳𝒅𝒊𝒔𝑨 𝑨 = 𝑳𝒂𝒖𝒕𝒉 𝑨> + 𝑳𝒂𝒖𝒕𝒉 𝑨< + 𝑳𝒉𝒖𝒃+𝒊𝒏𝒕(𝑨<)

The authority status (i.e., in-degree) of 𝑣𝑗 is lower than that of 𝑣𝑗′

Thus, if authority-factor scores capture the biases towards authorities,

as desired, 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 < 𝒔𝒊𝒋′

𝒂𝒖𝒕𝒉 should hold!

Loss Function: Multi-Objective Learning (cont’d)

➔ For 𝒗𝒊, 𝒗𝒋, 𝒗𝒋′ in 𝑨<, 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 < 𝒔𝒊𝒋′

𝒂𝒖𝒕𝒉

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 + 𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

① Preserving
asymmetric proximities

② Disentangling the authority
factor from the others

③ Disentangling the authority
factor from the others

Page 34 / 16

② 𝑳𝒅𝒊𝒔𝑨 𝑨 = 𝑳𝒂𝒖𝒕𝒉 𝑨> + 𝑳𝒂𝒖𝒕𝒉 𝑨< + 𝑳𝒉𝒖𝒃+𝒊𝒏𝒕(𝑨<)

Even though 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 < 𝒔𝒊𝒋′

𝒂𝒖𝒕𝒉 holds, 𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

should become higher than 𝒔
𝒊𝒋′
𝒆𝒅𝒈𝒆

Thus, we can imply the following inequality 𝒔𝒊𝒋
𝒉𝒖𝒃 + 𝒔𝒊𝒋

𝒊𝒏𝒕 > 𝒔𝒊𝒋′
𝒉𝒖𝒃 + 𝒔𝒊𝒋′

𝒊𝒏𝒕!

Loss Function: Multi-Objective Learning (cont’d)

➔ For 𝒗𝒊, 𝒗𝒋, 𝒗𝒋′ in 𝑨<,

𝒔𝒊𝒋
𝒉𝒖𝒃 + 𝒔𝒊𝒋

𝒊𝒏𝒕 > 𝒔𝒊𝒋′
𝒉𝒖𝒃 + 𝒔𝒊𝒋′

𝒊𝒏𝒕

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 + 𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

① Preserving
asymmetric proximities

② Disentangling the authority
factor from the others

③ Disentangling the authority
factor from the others

Page 35 / 16

③ 𝑳𝒅𝒊𝒔𝑯 𝑯 = 𝑳𝒉𝒖𝒃 𝑯> + 𝑳𝒉𝒖𝒃 𝑯< + 𝑳𝒂𝒖𝒕𝒉+𝒊𝒏𝒕(𝑯<)

Loss Function: Multi-Objective Learning (cont’d)

For 𝒗𝒊, 𝒗𝒋, 𝒗𝒊′ in 𝑯>,

𝒔𝒊𝒋
𝒉𝒖𝒃 > 𝒔𝒊′𝒋

𝒉𝒖𝒃

For 𝒗𝒊, 𝒗𝒋, 𝒗𝒊′ in 𝑯<, 𝒔𝒊𝒋
𝒉𝒖𝒃 < 𝒔𝒊′𝒋

𝒉𝒖𝒃

For 𝒗𝒊, 𝒗𝒋, 𝒗𝒊′ in 𝑯<,

𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 + 𝒔𝒊𝒋

𝒊𝒏𝒕 > 𝒔𝒊′𝒋
𝒂𝒖𝒕𝒉 + 𝒔𝒊′𝒋

𝒊𝒏𝒕

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 + 𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

① Preserving
asymmetric proximities

② Disentangling the authority
factor from the others

③ Disentangling the authority
factor from the others

Page 36 / 16

Learn (bias-aware) hub/authority and (bias-free) interest embeddings

◼ If degree-related biases entirely disappear in test data, it could be beneficial to use
interest embeddings only

◼ However, in reality, degree-related biases remain but the level of them shifts over
time

◼ Also, it is not trivial to predict accurately the level of biases in the future

◼ Therefore, we leverage all factor-embeddings jointly to achieve high accuracy in any
scenario

Why we use all factor-embeddings in OOD link prediction?

Page 37 / 16

How accurately we can predict the directed edges
removed from the input directed network?

Evaluation Task: Link Prediction (LP)

?

Evaluation protocol

◼ Consider the existent edges as positive examples

◼ Perform two LP tasks, which depend on how we sample the negative
examples

 Uniform LP (U-LP): consider the non-existent edges sampled uniformly at
random as negative examples

 Biased LP (B-LP): consider the edges with the opposite directions to
(unidirectional) positive examples as negative examples

◼Measure classification accuracy using area under curve (AUC)

Page 38 / 16

Evaluation Task

𝒋𝒊

Training
(80%)

Test
(20%)

Existent edges
(positive examples)

④ Train a classifier by using concatenated
embeddings as inputs

Logistic
regression
classifier

Training examples

⋮ ⋮

𝑖 𝑗

⋮

Test examples

+

Classify positive or negative

① Split the edges

③ Sample nonexistent edges

② Obtain node
embeddings

⑤ Classify whether each testing example
is positive or negative

Train

1

label

0

Non-existent edges
(negative examples)

Page 39 / 16

Example of B-LP

Evaluation Task: Link Prediction (LP)

Existent edges
(i.e., positive examples)

Non-existent edges
(i.e., negative examples)

unidirectional
positive examplesTest Set (20%)Training Set (80%)

𝒗𝟒𝒗𝟏

𝒗𝟑𝒗𝟏

𝒗𝟐𝒗𝟒

𝒗𝟒𝒗𝟑

𝒗𝟏𝒗𝟐

𝒗𝟏𝒗𝟑

𝒗𝟒𝒗𝟐

𝒗𝟑𝒗𝟒

𝒗𝟏𝒗𝟒

𝒗𝟐𝒗𝟏

𝒗𝟒𝒗𝟕

𝒗𝟔𝒗𝟕

𝒗𝟔𝒗𝟐

𝒗𝟏𝒗𝟗

𝒗𝟏𝒗𝟖

𝒗𝟑𝒗𝟕

𝒗𝟗𝒗𝟏

𝒗𝟐𝒗𝟓

negative examples with
the opposite directions

𝒗𝟓𝒗𝟑

𝒗𝟑𝒗𝟓

Page 40 / 16

Competitors
◼ Dimensionality of embeddings = 120

◼ Number of walks ∈ 10, 20, 40, 80 (DeepWalk, Node2Vec)

◼ Walk length ∈ 60, 80, 100 (DeepWalk, Node2Vec)

◼ 𝛾 ∈ 5, 10, 15, 20 (NERD)

◼ 𝜆 ∈ 0.005, 0.05, 1, 5, 10 (GVAE)

◼ 𝛼 ∈ 0.05, 0.1, 0.15, 0.2 (DiGCN)

◼ 𝑞 ∈ 0.05, 0.1, 0.15, 0.2, 0.25 (MagNet)

ODIN
◼ Dimensionality of embeddings = 120 (i.e., dimensionality of each of six

factor sub-embeddings = 20)

◼ 𝛼 = 0.5

◼ 𝛽 = 0.01

◼ 𝑛 = 2 (i.e., total number of negative samples per edge is 8)

Implementation Details

Page 41 / 16

RQ1: Does ODIN outperform its competitors under distributional shifts in
degree distributions?

RQ2: How robust is ODIN under various levels of distributional shifts in
degree distributions?

RO3: Is factor disentanglement effective in ODIN?

RQ4: How sensitive is ODIN to its hyperparameters?

Questions to Be Answered

Note: 𝑘 is fixed to -1 for RQ1, RQ3, and RQ4 (in 𝒑𝒊𝒋
𝒊𝒏 ∝ 𝒅𝒊𝒏 𝒗𝒋

𝒌
or 𝒑𝒊𝒋

𝒐𝒖𝒕 ∝ 𝒅𝒐𝒖𝒕 𝒗𝒊
𝒌)

Page 42 / 16

RQ3-1: Is each of two disentanglement losses effective in ODIN?

◼ ODIN𝐴 vs ODIN𝑑𝑖𝑠𝐴

Results for RQ3-1

ODIN𝐴: only uses the
edge loss based on A

◼ ODIN𝐻 vs ODIN𝑑𝑖𝑠𝐻

◼ Each of the disentanglement losses is effective in obtaining embeddings
robust to distributional shifts in degree distributions

ODIN𝑑𝑖𝑠𝐴: additionally
uses the disA loss based
on A

ODIN𝑯: only uses the
edge loss based on 𝐻

ODIN𝑑𝑖𝑠𝑯: additionally
uses the disH loss based
on 𝐻

Page 43 / 16

RQ3-1: Is each of two disentanglement losses effective in ODIN?

Results for RQ3-1 (cont’d)

Page 44 / 16

RQ1-2: Is jointly using the both losses effective in ODIN?

◼ Superiority between ODIN𝑑𝑖𝑠𝐴 and ODIN𝑑𝑖𝑠𝐻 varies depending on datasets

◼ ODIN outperforms ODIN𝑑𝑖𝑠𝐴 and ODIN𝑑𝑖𝑠𝐻 in most cases

That is, ODIN can selectively adopt the factor(s) beneficial in each dataset,
thereby improving the robustness of embeddings in all datasets

Results for RQ3-2

(a)
Non-ID (in)

Page 45 / 16

RQ1-2: Is jointly using the both losses effective in ODIN?

◼ Superiority between ODIN𝑑𝑖𝑠𝐴 and ODIN𝑑𝑖𝑠𝐻 varies depending on datasets

◼ ODIN outperforms ODIN𝑑𝑖𝑠𝐴 and ODIN𝑑𝑖𝑠𝐻 in most cases

That is, ODIN can selectively adopt the factor(s) beneficial in each dataset,
thereby improving the robustness of embeddings in all datasets

Results for RQ3-2 (cont’d)

(b)
Non-ID (out)

Page 46 / 16

How the parameter 𝜶 affects the accuracy of ODIN

◼ AUCs of ODIN steadily increase until 𝛼 reaches 0.4 and then the AUCs converge

◼ ODIN is not highly sensitive to the weight for factor disentanglement

Results for RQ4

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑩

+𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

