

Disentangling Degree-Related Biases and Interest for Out-Of-Distribution Generalized Directed Network Embedding

/

Hyunsik Yoo Hanyang Univ and UIUC

Yeon-Chang Lee Georgia Tech

Prof. Kijung Shin KAIST

Prof. Sang-Wook Kim Hanyang Univ

Background: Network Embedding (NE)

- □ Represents nodes in a given network as low-dimensional vectors that preserve the structural properties of the network
 - *e.g.,* proximity between nodes

- □ The learned embeddings can be used as informative features of nodes in various downstream tasks
 - **Link prediction** \rightarrow our focus!
 - Node clustering/classification
 - Recommendation

Background: Directed Network

 \Box Given a directed edge from *i* to *j*,

Distinguish source node *i* and target node *j* according to their roles

Learn a source embedding and a target embedding, which preserve the node's properties as sources and targets

Existing DNE methods lack out-of-distribution (OOD) generalization abilities against degree-related distributional shifts

They assume that, in link prediction, the degree distribution of the training and test data are identical (i.e., identical distribution)

□ However, degree-related distributional shifts occur frequently

Fitness model: it is also common that dominant hubs are overtaken by "new kids on the block" with higher fitness

Ruining the identical distribution (ID) assumption!

Motivation (cont'd)

Link prediction accuracy of the existing methods in ID / non-ID settings

The accuracies of all methods <u>significantly degrade in the non-ID settings</u> <u>compared to the ID settings</u>

□ Our idea: <u>model and exploit biases related to node degrees</u> for robustness against degree-related distributional shifts in DNE

Propose ODIN (Out-of-Distribution Generalized Directed Network Embedding), which is designed to answer the following questions:

- **1**. How to model the formation of each directed edge?
 - Define six node factors that can influence the formation of a directed edge from source to target
- 2. How to leverage such modeled factors for learning OOD generalized embeddings?
 - Learn multiple factor embeddings, each of which preserves its desired factor

(STAGE 1) Factor Modeling

(STAGE 1) Factor Modeling

(STAGE 2) Negative Sampling

Overview of ODIN (cont'd)

(STAGE 2) Negative Sampling

(STAGE 3) Disentangled Embedding Learning

□ Sub-embeddings capture degree-related biases and interest separately

□ Thus, final embeddings are robust to the shifts in degree distributions

Experimental Settings

Datasets	Datasets	GNU	Wiki	JUNG	Ciao
	Nodes	6,301	7,115	6,120	4,658
	Edges	20,777	103,689	50,535	40,133
	Reciprocity	0.00%	5.64%	0.90%	34.90%
	Types	P2P	Election	Software	Trust

□ Nine competitors

- 2 undirected NE methods
 - DeepWalk [KDD'14]
 - □ Node2Vec [KDD'16]
- **7** directed NE methods
 - □ APP [AAAI'17]
 - □ ATP [AAAI'19]
 - NERD [ECML-PKDD'19]

🗖 GVAE [CIKM'19]

DiGCN [NeurIPS'20]

□ MagNet [NeurlPS'21]

🗖 DGGAN [AAAI'21]

Non-ID Settings

- Design two types of non-ID settings by splitting the edges in an input network into training and test sets with different degree distributions
 - 1. Non-ID (in), where in-degree distributions are different

 \Box Each edge (v_i, v_j) is sampled into the test set with $p_{ij}^{in} \propto d_{in} (v_j)^k$

2. Non-ID (out), where out-degree distributions are different

 \Box Each edge (v_i, v_j) is sampled into the test set with $p_{ij}^{out} \propto d_{out} (v_i)^k$

Comparison with nine competitors (when k=-1)

(a) Non-ID (in)											
Datasets	Tasks	Undirected NE		Directed NE						ODIN	
		DeepWalk	Node2Vec	APP	GVAE	NERD	ATP	DiGCN	MagNet	DGGAN	
GNU	U-LP	0.593 ± 0.005	$0.587 {\pm} 0.004$	0.675 ± 0.003	0.675 ± 0.003	$0.683 {\pm} 0.008$	$0.731 {\pm} 0.003$	0.729 ± 0.001	0.742 ± 0.001	0.722 ± 0.003	0.760±0.004
GIVU	B-LP	0.648 ± 0.006	$0.621 {\pm} 0.010$	0.700 ± 0.006	$0.748 {\pm} 0.013$	$0.838 {\pm} 0.004$	$\underline{0.910{\pm}0.002}$	$0.878 {\pm} 0.003$	0.900 ± 0.004	$0.901 {\pm} 0.003$	$0.924{\pm}0.001$
W:1-;	U-LP	0.806 ± 0.001	0.804 ± 0.002	0.795 ± 0.001	0.820 ± 0.005	0.828 ± 0.001	0.827 ± 0.002	0.729 ± 0.002	0.865 ± 0.001	0.890 ± 0.001	0.905±0.001
WIKI	B-LP	0.852 ± 0.002	$0.855 {\pm} 0.007$	0.637 ± 0.008	$0.901 {\pm} 0.012$	$0.915 {\pm} 0.002$	$0.954 {\pm} 0.001$	$0.862 {\pm} 0.002$	$0.928 {\pm} 0.001$	0.963 ± 0.001	0.973±0.001
IUNG	U-LP	0.725 ± 0.005	0.777 ± 0.006	0.741 ± 0.002	0.820 ± 0.003	0.784 ± 0.006	$0.864 {\pm} 0.001$	0.817 ± 0.004	0.816 ± 0.002	0.879 ± 0.003	0.884±0.002
JUNG	B-LP	0.810 ± 0.005	$0.861 {\pm} 0.005$	0.772 ± 0.005	0.902 ± 0.006	$0.883 {\pm} 0.005$	$0.961 {\pm} 0.001$	0.926 ± 0.001	$0.891 {\pm} 0.003$	0.964 ± 0.002	0.969±0.001
Ciaa	U-LP	0.776±0.004	0.778 ± 0.002	0.846 ± 0.001	$0.841 {\pm} 0.002$	0.857 ± 0.002	0.846 ± 0.002	0.641 ± 0.004	0.847 ± 0.001	0.886 ± 0.001	0.892±0.001
Ciao	B-LP	0.688 ± 0.005	0.725 ± 0.006	$0.768 {\pm} 0.002$	$0.797 {\pm} 0.004$	0.869 ± 0.006	$0.887 {\pm} 0.003$	$0.751 {\pm} 0.006$	0.873 ± 0.004	$\underline{0.912{\pm}0.003}$	$0.914{\pm}0.003$
					(b) N	Non-ID (out)					

Undirected NE

Directed NE

Best competitors change depending on tasks, datasets, and non-ID settings

ODIN is effective compared to all the competitors in addressing the OOD generalization problem against degree-related distributional shifts on directed NE

B-LP 0.635±0.011 0.695±0.004 0.597±0.004 0.684±0.008 0.750±0.004 0.867±0.003 0.836±0.003 0.827±0.003 0.871±0.002 0.883±0.003

Effect of *k* **on the link prediction performance**

→ ATP → MagNet → DGGAN → ODIN

In the ID setting (i.e., k = 0), the AUCs of ODIN are comparable to or higher than that of the strongest competitors

- ODIN shows the smallest accuracy degradation and, accordingly, the accuracy gain of ODIN against competitors steadily increases
- The results indicate that ODIN obtains OOD generalized embeddings robust to degree-related distributional shifts

Conclusions

- **Observation**) We pointed out that the existing directed NE methods face difficulties in effectively addressing the OOD generalization problem
- **(Effective Algorithm)** We proposed ODIN, which models multiple factors in the formation of directed edges and learns disentangled embeddings
- □ (Extensive Experiments) Through extensive experiments, we showed clearly the effectiveness of our strategies for factor modeling and disentangled embedding learning

Source Code: https://github.com/hsyoo32/odin

Thank You !

Contact: yeonchang@gatech.edu

Appendix

Background: Network Embedding (NE) (cont'd)

□ In recent studies, additional information has been incorporated to improve the accuracy of NE

Edge directions [Tong et al. NeurIPS'20; Yoo et al. WSDM'22]

□e.g., follower and followee

Edge signs [Lee et al. SIGIR'20; Liu et al. KDD'21]

□e.g., trust and distrust

Node attributes [Gao et al. IJCAI'18; Pan et al. WSDM'21]

e.g., bag-of-words

Background: Directed Network

A directed network

- A directed edge from node i to j expresses an asymmetric relationship (or proximities) between two nodes
- A toy example on Instagram

□ To capture such asymmetric relationships accurately, various directed network embedding (DNE) methods have been proposed

- APP [AAAI'17]
- ATP [AAAI'19]
- NERD [ECML-PKDD'19]
- GVAE [CIKM'19]

- DiGCN [NeurIPS'20]
- MagNet [NeurIPS'21]
- DGGAN [AAAI'21]

	Methods
Matrix Factorization (MF)-based Methods	HOPE Asymmetric Transitivity Preserving Graph Embedding [KDD-2016]
	ATP Directed Graph Embedding with Asymmetric Transitivity Preservation [AAAI-2019]
Deep Learning (DL)-	GVAE Gravity-Inspired Graph Autoencoders for Directed Link Prediction [CIKM-2019]
based Methods	DiGCN Digraph Inception Convolutional Networks [NeurIPS-2020]
Random Walk (RW)-	APP Scalable Graph Embedding for Asymmetric Proximity [AAAI-2017]
based Methods	NERD Node Representation Learning for Directed Grpahs [ECML-PKDD-2019]

MF-based and DL-based Methods

- 1. Represent the asymmetric proximities between source and target nodes in the form of a matrix
 - ATP [AAAI'19] uses a measurement that captures both the hierarchy and reachability between nodes in the network
 - GravityAE/VAE [CIKM'19] and DiGCN [NeurIPS'20] use the asymmetric adjacency matrix of the input network

2. Obtain source and target embeddings of nodes

- By using MF techniques (e.g., SVD)
- By using DL techniques (e.g., autoencoders and GCNs)

RW-based Methods

1. For each seed node,

- Sample a number of positive nodes visited during RWs
 - □ APP [AAAI'17] employs a RW strategy that starts from a seed node and then follows out-going edges randomly
 - NERD [ECML-PKDD'19] proposes an alternating RW strategy that starts from a seed node and follows out-going/in-coming edges alternately
- Sample negative nodes uniformly at random as well

2. Obtain source and target embeddings of nodes

- Maximize the proximities between source embedding of each seed node and target embedding of positive nodes
- Minimize the proximities between source embedding of each seed node and target embedding of negative nodes

(STAGE 1) Factor Modeling

D Model the formation of each directed edge (v_i, v_j) based on six node factors grouped as follows:

- **1. Authority factors**
 - (a) The target v_j 's authority status (a-target) and (b) the source v_i 's bias toward authorities (a-source)
 - They together model a bias related to target v_i 's authority status (i.e., in-degree)

D Model the formation of each directed edge (v_i, v_j) based on six node factors grouped as follows:

- 2. Hub factors
 - (a) The source v_i's hub status (h-source) and (b) the target v_j's bias toward hubs (h-target)
 - They together model a bias related to source v_i 's hub status (i.e., out-degree)

D Model the formation of each directed edge (v_i, v_j) based on six node factors grouped as follows:

- **3. Interest factors**
 - (a) The source v_i 's intrinsic property as a source (i-source) and (b) the target v_j 's intrinsic property as a target (i-target)
 - They together model the pure interest in forming an edge from v_i to v_j after removing degree-related biases

Source role: \mathbf{a}_{i}^{src} , \mathbf{h}_{i}^{src} , \mathbf{i}_{i}^{src} $\mathbf{s}_{i} = a_{i}^{src} \oplus h_{i}^{src} \oplus i_{i}^{src}$ $\mathbf{s}_{i} = a_{i}^{src} \oplus h_{i}^{src} \oplus i_{i}^{src}$ $\mathbf{t}_{i} = a_{i}^{tar} \oplus h_{i}^{tar} \oplus i_{i}^{tar}$

Source v_i Target v_i

Six Node Factors

Authority Factors

Hub Factors

Interest Factors

Disentangled Source/Target Embeddings

Compute three factor scores based on the six factor sub-embeddings

Represent how much (a) the authority factor, (b) the hub factor, and (c) the interest factor affect the formation of the directed edge (v_i, v_j)

a)
$$s_{ij}^{auth} = \mathbf{a}_i^{src} \circ \mathbf{a}_j^{tar}$$
 (b) $s_{ij}^{hub} = \mathbf{h}_i^{src} \circ \mathbf{h}_j^{tar}$ (c) $s_{ij}^{int} = \mathbf{i}_i^{src} \circ \mathbf{i}_j^{tar}$

Compute the overall edge score by adding the three factor scores

Represent the likelihood of the formation of a directed edge (v_i, v_j)

$$s_{ij}^{edge} = s_{ij}^{auth} + s_{ij}^{hub} + s_{ij}^{int} (= \mathbf{s}_i \circ \mathbf{t}_i)$$

(STAGE 2) Negative Sampling

 \Box For each existent edge (v_i, v_j) , sample different types of training instances (i.e., triplets) for embedding learning

(STAGE 2) Negative Sampling (cont'd)

 \Box For each existent edge (v_i, v_j) , sample different types of training instances (i.e., triplets) for embedding learning

(STAGE 3) Disentangled Embedding Learning

- Learn the disentangled source and target embeddings of each node based on the sampled instances via the three objectives
 - 1. L_{edge} : preserve asymmetric proximity between nodes in input network
 - *2.* L_{disA} : disentangle the authority factor from the other two factors
 - 3. L_{disH} : disentangle the hub factor from the other two factors

Loss Function: Multi-Objective Learning

However, L_{edge} alone does not contribute to preserving the desired factor in each factor sub-embedding

$$L = \begin{bmatrix} L_{edge}(A \cup H) + \alpha (L_{disA}(A) + L_{disH}(H)) \\ \hline 1 \text{ Preserving 2 Disentangling the authority } \\ asymmetric proximities factor from the others factor from the others } \\ \hline 2 L_{disA}(A) = L_{auth}(A_{>}) + L_{auth}(A_{<}) + L_{hub+int}(A_{<}) \\ \hline \rightarrow \text{For } (v_i, v_j, v_{j'}) \text{ in } A_{>}, s_{ij}^{auth} > s_{ij'}^{auth} \\ \end{bmatrix}$$

□The authority status (i.e., in-degree) of v_j is higher than that of $v_{j'}$ □Thus, if authority-factor scores capture the biases towards authorities, as desired, $s_{ij}^{auth} > s_{ij'}^{auth}$ should hold!

□The authority status (i.e., in-degree) of v_j is lower than that of $v_{j'}$ □Thus, if authority-factor scores capture the biases towards authorities, as desired, $s_{ij}^{auth} < s_{ij'}^{auth}$ should hold!

$$L = \begin{bmatrix} L_{edge}(A \cup H) \\ + \alpha \begin{bmatrix} L_{disA}(A) \\ + L_{disH}(H) \end{bmatrix}$$

(1) Preserving
(2) Disentangling the authority
asymmetric proximities
(3) Disentangling the authority
(3) Disentangling the authority
factor from the others
(2) $L_{disA}(A) = L_{auth}(A_{>}) + L_{auth}(A_{<}) + L_{hub+int}(A_{<})$
 \Rightarrow For $(v_i, v_j, v_{j'})$ in $A_{<}$,
 $s_{ij}^{hub} + s_{ij'}^{int} > s_{ij'}^{hub} + s_{ij'}^{int}$

 $\Box \text{Even though } s_{ij}^{auth} < s_{ij'}^{auth} \text{ holds, } s_{ij}^{edge} \text{ should become higher than } s_{ij'}^{edge}$ $\Box \text{Thus, we can imply the following inequality } s_{ij}^{hub} + s_{ij}^{int} > s_{ij'}^{hub} + s_{ij'}^{int}!$

.....

$$L = \begin{bmatrix} L_{edge}(A \cup H) \\ + \alpha \{L_{disA}(A) \\ + L_{disH}(H) \} \end{bmatrix}$$
(1) Preserving
(2) Disentangling the authority
asymmetric proximities
(3) $L_{disH}(H) = L_{hub}(H_{>}) + L_{hub}(H_{<}) + L_{auth+int}(H_{<})$
(3) $L_{disH}(H) = L_{hub}(H_{>}) + L_{hub}(H_{<}) + L_{auth+int}(H_{<})$
For $(v_i, v_j, v_{i'})$ in $H_{<}$, $s_{ij}^{hub} < s_{i'j}^{hub}$
For $(v_i, v_j, v_{i'})$ in $H_{>}$, For $(v_i, v_j, v_{i'})$ in $H_{<}$, $s_{ij}^{auth} + s_{ij}^{int} > s_{i'j}^{auth} + s_{i'j}^{int}$

Why we use all factor-embeddings in OOD link prediction?

Learn (bias-aware) hub/authority and (bias-free) interest embeddings

- If degree-related biases entirely disappear in test data, it could be beneficial to use interest embeddings only
- However, in reality, degree-related biases remain but the level of them shifts over time
- Also, it is not trivial to predict accurately the level of biases in the future
- Therefore, we leverage all factor-embeddings jointly to achieve high accuracy in any scenario

Evaluation Task: Link Prediction (LP)

□ How accurately we can predict the directed edges removed from the input directed network?

Evaluation protocol

- Consider the existent edges as positive examples
- Perform two LP tasks, which depend on how we sample the negative examples
 - Uniform LP (U-LP): consider the non-existent edges sampled uniformly at random as negative examples
 - □ **Biased LP** (B-LP): consider the edges with the opposite directions to (unidirectional) positive examples as negative examples
- Measure classification accuracy using area under curve (AUC)

Example of B-LP

Implementation Details

- Dimensionality of embeddings = 120
- Number of walks $\in \{10, 20, 40, 80\}$ (DeepWalk, Node2Vec)
- Walk length \in {60, 80, 100} (DeepWalk, Node2Vec)
- $\gamma \in \{5, 10, 15, 20\}$ (NERD)
- $\lambda \in \{0.005, 0.05, 1, 5, 10\}$ (GVAE)
- $\alpha \in \{0.05, 0.1, 0.15, 0.2\}$ (DiGCN)
- $q \in \{0.05, 0.1, 0.15, 0.2, 0.25\}$ (MagNet)

- Dimensionality of embeddings = 120 (i.e., dimensionality of each of six factor sub-embeddings = 20)
- $\blacksquare \alpha = 0.5$
- $\blacksquare \beta = 0.01$
- \blacksquare n = 2 (i.e., total number of negative samples per edge is 8)

□ RQ1: Does ODIN outperform its competitors under distributional shifts in degree distributions?

□ RQ2: How robust is ODIN under various levels of distributional shifts in degree distributions?

RO3: Is factor disentanglement effective in ODIN?

RQ4: How sensitive is ODIN to its hyperparameters?

Note: k is fixed to -1 for RQ1, RQ3, and RQ4 (in $p_{ij}^{in} \propto d_{in}(v_j)^k$ or $p_{ij}^{out} \propto d_{out}(v_i)^k$)

RQ3-1: Is each of two disentanglement losses effective in ODIN?

• ODIN_A vs ODIN_{dis_A}

Datasets	Tasks	ODIN _A	ODIN _{d isA}	ODIN _A : only uses the	Datasets	Tasks	ODIN _H	ODIN _{disH}	ODIN _H : only uses the
GNU	U-LP B-LP	0.632±0.005 0.704±0.010	0.763±0.004 0.927±0.001	edge loss based on A ODIN _{disA} : additionally	GNU	U-LP B-LP	0.604 ± 0.010 0.669 ± 0.015	0.678±0.001 0.820±0.010	ODIN _{disH} : additionally
Wiki	U-LP B-LP	0.842±0.002 0.918±0.001	0.896±0.001 0.965±0.001	uses the <i>disA loss based</i> on A	Wiki	U-LP B-LP	0.793±0.007 0.863±0.011	$\frac{0.898 \pm 0.001}{0.968 \pm 0.001}$	uses the disH loss based on H
JUNG	U-LP B-LP	0.825±0.004 0.929±0.003	0.878±0.003 0.966±0.002		JUNG	U-LP B-LP	0.714 ± 0.006 0.830 ± 0.004	0.884±0.002 0.970±0.001	
Ciao	U-LP B-LP	0.820±0.003 0.788±0.009	$\frac{0.890 \pm 0.001}{0.912 \pm 0.002}$		Ciao	U-LP B-LP	0.853±0.001 0.867±0.005	0.886±0.001 0.909±0.002	
									1

 \blacksquare ODIN_H vs ODIN_{disH}

Each of the disentanglement losses is effective in obtaining embeddings robust to distributional shifts in degree distributions

Results for RQ3-1 (cont'd)

RQ3-1: Is each of two disentanglement losses effective in ODIN?

(a) Non-ID (in)

(b) Non-ID (out)

	Datasets	Tasks	ODIN _A	ODIN _{disA}	ODIN _H	ODIN _{disH}	Dataset	s Tasks
	CNU	U-LP	0.632±0.005	0.763±0.004	0.604 ± 0.010	0.678 ± 0.001	CNU	U-LP
	GNU	B-LP	0.704±0.010	$0.927{\pm}0.001$	0.669 ± 0.015	0.820 ± 0.010	GNU	B-LP
	Wilei	U-LP	0.842±0.002	0.896 ± 0.001	0.793±0.007	0.898 ± 0.001	Wilzi	U-LP
	WIKI	B-LP	0.918±0.001	0.965 ± 0.001	0.863 ± 0.011	0.968 ± 0.001	WIKI	B-LP
	HINC	U-LP	0.825±0.004	0.878 ± 0.003	0.714 ± 0.006	$0.884 {\pm} 0.002$	IUNG	U-LP
JUN	JUNU	B-LP	0.929±0.003	0.966 ± 0.002	0.830 ± 0.004	$0.970{\pm}0.001$	JUNG	B-LP
	01.0	U-LP	0.820±0.003	0.890 ± 0.001	0.853 ± 0.001	0.886 ± 0.001	Ciao	U-LP
Ci	Ciao	B-LP	0.788±0.009	0.912 ± 0.002	0.867 ± 0.005	0.909 ± 0.002	Clao	B-LP

Datasets	Tasks	ODIN _A	ODIN _{d isA}	ODIN _H	ODIN _{disH}
CNU	U-LP	0.648 ± 0.004	0.786±0.006	0.668±0.005	0.692±0.007
GNU	B-LP	0.718 ± 0.005	$0.934{\pm}0.003$	0.770 ± 0.010	$0.835 {\pm} 0.008$
Wiki	U-LP	0.853±0.002	0.893±0.001	0.833±0.003	0.895±0.001
	B-LP	0.918 ± 0.001	0.956 ± 0.001	0.894 ± 0.004	0.959 ± 0.001
WINIC	U-LP	0.957±0.003	0.961±0.002	0.890±0.007	0.963±0.002
JUNG	B-LP	0.993 ± 0.001	$0.995{\pm}0.001$	0.969±0.003	0.995±0.001
Ciao	U-LP	0.814±0.003	0.877±0.003	0.841±0.002	0.873±0.002
	B-LP	0.764 ± 0.007	0.875±0.002	0.816 ± 0.006	0.867±0.003

RQ1-2: Is jointly using the both losses effective in ODIN?

	Datasets	Tasks	ODIN _A	ODIN _{disA}	ODIN _H	ODIN _{d is H}	ODIN
	CNU	U-LP	0.632±0.005	0.763±0.004	0.604 ± 0.010	0.678 ± 0.001	0.760 ± 0.004
	GNU	B-LP	0.704 ± 0.010	$0.927 {\pm} 0.001$	0.669 ± 0.015	0.820 ± 0.010	0.924 ± 0.001
(a)	Wiki	U-LP	0.842±0.002	0.896±0.001	0.793±0.007	0.898 ± 0.001	0.905±0.001
Non-ID (in)		B-LP	0.918±0.001	0.965 ± 0.001	0.863 ± 0.011	0.968 ± 0.001	0.973±0.001
	JUNG	U-LP	0.825±0.004	0.878 ± 0.003	0.714 ± 0.006	0.884±0.002	0.884±0.002
		B-LP	0.929±0.003	0.966 ± 0.002	0.830 ± 0.004	0.970±0.001	0.969 ± 0.001
	Ciao	U-LP	0.820±0.003	0.890 ± 0.001	0.853 ± 0.001	0.886 ± 0.001	0.892±0.001
		B-LP	0.788±0.009	$\underline{0.912{\pm}0.002}$	0.867 ± 0.005	0.909 ± 0.002	$0.914 {\pm} 0.003$

Superiority between ODIN_{disA} and ODIN_{disH} varies depending on datasets

ODIN outperforms ODIN_{disA} and ODIN_{disH} in most cases
 That is, ODIN can selectively adopt the factor(s) beneficial in each dataset, thereby improving the robustness of embeddings in all datasets

Results for RQ3-2 (cont'd)

RQ1-2: Is jointly using the both losses effective in ODIN?

	Datasets	Tasks	ODIN _A	ODIN _{d isA}	ODIN _H	ODIN _{disH}	ODIN
	CNU	U-LP	0.648±0.004	0.786±0.006	0.668±0.005	0.692±0.007	0.782±0.005
	GNU	B-LP	0.718±0.005	0.934±0.003	0.770 ± 0.010	0.835 ± 0.008	$\frac{0.927 \pm 0.003}{0.927 \pm 0.003}$
(b)	Wiki	U-LP	0.853±0.002	0.893±0.001	0.833±0.003	0.895 ± 0.001	0.900±0.001
Non-ID (out)		B-LP	0.918±0.001	0.956 ± 0.001	0.894 ± 0.004	$\frac{0.959 \pm 0.001}{0.001}$	0.962±0.001
	JUNG	U-LP	0.957±0.003	0.961 ± 0.002	0.890±0.007	0.963±0.002	0.962±0.002
		B-LP	0.993±0.001	0.995±0.001	0.969 ± 0.003	0.995±0.001	0.995±0.001
		U-LP	0.814±0.003	0.877±0.003	0.841 ± 0.002	0.873±0.002	0.883±0.003
	Ciao	B-LP	0.764±0.007	0.875 ± 0.002	0.816 ± 0.006	0.867±0.003	0.883±0.003

Superiority between ODIN_{disA} and ODIN_{disH} varies depending on datasets

ODIN outperforms ODIN_{disA} and ODIN_{disH} in most cases
 That is, ODIN can selectively adopt the factor(s) beneficial in each dataset, thereby improving the robustness of embeddings in all datasets

\Box How the parameter α affects the accuracy of ODIN

AUCs of ODIN steadily increase until α reaches 0.4 and then the AUCs converge

ODIN is not highly sensitive to the weight for factor disentanglement