
Page 1 / 16

Disentangling Degree-Related Biases and Interest
for Out-Of-Distribution Generalized Directed

Network Embedding

Prof. Sang-Wook Kim
Hanyang Univ

Prof. Kijung Shin
KAIST

Yeon-Chang Lee
Georgia Tech

Hyunsik Yoo
Hanyang Univ and UIUC

Page 2 / 16

Represents nodes in a given network as low-dimensional vectors that
preserve the structural properties of the network

◼ e.g., proximity between nodes

The learned embeddings can be used as informative features of nodes in
various downstream tasks

◼ Link prediction→ our focus!

◼Node clustering/classification

◼ Recommendation

Background: Network Embedding (NE)

Page 3 / 16

Given a directed edge from 𝒊 to 𝒋,

◼Distinguish source node 𝑖 and target node 𝑗 according to their roles

◼ Learn a source embedding and a target embedding, which preserve the
node’s properties as sources and targets

Background: Directed Network

Source Node 𝒊 Target Node 𝒋

𝒊’s source
embedding

𝒊’s target
embedding

𝒋’s source
embedding

𝒋’s target
embedding

learn!

User 𝒊 Influencer 𝒋

Page 4 / 16

Existing DNE methods lack out-of-distribution (OOD) generalization
abilities against degree-related distributional shifts

◼ They assume that, in link prediction, the degree distribution of the
training and test data are identical (i.e., identical distribution)

However, degree-related distributional shifts occur frequently

Motivation

Ruining the identical
distribution (ID) assumption!

◼ Fitness model: it is also common that
dominant hubs are overtaken by “new
kids on the block” with higher fitness

Page 5 / 16

Link prediction accuracy of the existing methods in ID / non-ID settings

◼ The accuracies of all methods significantly degrade in the non-ID settings
compared to the ID settings

Motivation (cont’d)

Page 6 / 16

Our idea: model and exploit biases related to node degrees for
robustness against degree-related distributional shifts in DNE

Propose ODIN (Out-of-Distribution Generalized Directed Network
Embedding), which is designed to answer the following questions:

1. How to model the formation of each directed edge?

 Define six node factors that can influence the formation of
a directed edge from source to target

2. How to leverage such modeled factors for learning OOD generalized
embeddings?

 Learn multiple factor embeddings, each of which preserves its desired
factor

Proposed Method

Page 7 / 16

Overview of ODIN

Directed Network 𝓖

𝒗𝟏
𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒗𝟓
𝒗𝟔

𝒗𝟕
𝒗𝟖

(STAGE 1) Factor Modeling

Source 𝒗𝒊 Target 𝒗𝒋

Authority
Factors

Interest
Factors

Hub
Factors

Six Node Factors

𝒗𝒊’s source embedding

a-source h-source i-source

𝒗𝒊’s target embeddings

a-target h-target i-target

Disentangled Source/Target
Embeddings of a node

Page 8 / 16

Overview of ODIN (cont’d)

(STAGE 1) Factor Modeling

Source 𝒗𝒊 Target 𝒗𝒋

Authority
Factors

Interest
Factors

Hub
Factors

Six Node Factors

𝒗𝒊’s source embedding

a-source h-source i-source

𝒗𝒊’s target embeddings

a-target h-target i-target

Disentangled Source/Target
Embeddings of a node

(STAGE 2) Negative Sampling

𝒗𝒊

𝒗𝒊′

𝒗𝒊

𝒗𝒊′

<

𝓐>

<

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒗𝒋 𝒗𝒋

𝒗𝒋

𝒗𝒋′

𝒗𝒋

𝒗𝒋′

<

<

𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊
𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊

𝓐<

𝓗> 𝓗<

Page 9 / 16

Overview of ODIN (cont’d)

(STAGE 2) Negative Sampling

𝒗𝒊

𝒗𝒊′

𝒗𝒊

𝒗𝒊′

<

𝓐>

<

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒗𝒋 𝒗𝒋

𝒗𝒋

𝒗𝒋′

𝒗𝒋

𝒗𝒋′

<

<

𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊
𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊

𝓐<

𝓗> 𝓗<

(STAGE 3) Disentangled
Embedding Learning

𝓛𝒅𝒊𝒔𝑯

𝓛𝒅𝒊𝒔𝑨

𝓛𝒆𝒅𝒈𝒆

Page 10 / 16

Sub-embeddings capture degree-related biases and interest separately

Thus, final embeddings are robust to the shifts in degree distributions

Final Embeddings

a-source h-source i-source

𝒗𝒊’s target embeddings

a-target h-target i-target

Disentangled Source/Target Embeddings

𝒗𝒊’s source embedding

Naturally infer the interest
factor through 𝑳𝒅𝒊𝒔𝑨, 𝑳𝒅𝒊𝒔𝑯

Page 11 / 16

Datasets

Nine competitors

◼ 2 undirected NE methods

 DeepWalk [KDD’14]

 Node2Vec [KDD’16]

◼ 7 directed NE methods

 APP [AAAI’17]

 ATP [AAAI’19]

 NERD [ECML-PKDD’19]

Experimental Settings

 GVAE [CIKM’19]

 DiGCN [NeurIPS’20]

MagNet [NeurIPS’21]

 DGGAN [AAAI’21]

Page 12 / 16

Design two types of non-ID settings by splitting the edges in an input
network into training and test sets with different degree distributions

1. Non-ID (in), where in-degree distributions are different

 Each edge (𝒗𝒊, 𝒗𝒋) is sampled into the test set with 𝒑𝒊𝒋
𝒊𝒏 ∝ 𝒅𝒊𝒏 𝒗𝒋

𝒌

2. Non-ID (out), where out-degree distributions are different

 Each edge (𝒗𝒊, 𝒗𝒋) is sampled into the test set with 𝒑𝒊𝒋
𝒐𝒖𝒕 ∝ 𝒅𝒐𝒖𝒕 𝒗𝒊

𝒌

Non-ID Settings

k=-1 k=0k=-0.8 k=-0.6 k=-0.4 k=-0.2

ID setting
(i.e., sampled randomly)

Shifts are strong
(i.e., sampled inversely proportional

to the node degrees)

Page 13 / 16

Comparison with nine competitors (when k=-1)

Results for RQ1

◼ Best competitors change depending on tasks, datasets, and non-ID settings

◼ ODIN is effective compared to all the competitors in addressing the OOD
generalization problem against degree-related distributional shifts on directed NE

Page 14 / 16

Effect of 𝒌 on the link prediction performance

Results for RQ2

◼ In the ID setting (i.e., 𝑘 = 0), the AUCs of ODIN are comparable to or higher than
that of the strongest competitors

◼ ODIN shows the smallest accuracy degradation and, accordingly, the accuracy gain
of ODIN against competitors steadily increases

◼ The results indicate that ODIN obtains OOD generalized embeddings robust to
degree-related distributional shifts

Page 15 / 16

 (Observation) We pointed out that the existing directed NE methods face
difficulties in effectively addressing the OOD generalization problem

 (Effective Algorithm) We proposed ODIN, which models multiple factors
in the formation of directed edges and learns disentangled embeddings

 (Extensive Experiments) Through extensive experiments, we showed
clearly the effectiveness of our strategies for factor modeling and
disentangled embedding learning

Conclusions

Source Code: https://github.com/hsyoo32/odin

https://github.com/hsyoo32/odin

Page 16 / 16

Thank You !

Contact: yeonchang@gatech.edu

Page 17 / 16

Appendix

Page 18 / 16

 In recent studies, additional information has been incorporated to
improve the accuracy of NE

◼ Edge directions [Tong et al. NeurIPS’20; Yoo et al. WSDM’22]

e.g., follower and followee

◼ Edge signs [Lee et al. SIGIR’20; Liu et al. KDD’21]

e.g., trust and distrust

◼ Node attributes [Gao et al. IJCAI’18; Pan et al. WSDM’21]

e.g., bag-of-words

Background: Network Embedding (NE) (cont’d)

trust

distrust

trust

(b) Signed Network (c) Attributed Network(a) Directed Network

Page 19 / 16

A directed network

◼A directed edge from node 𝑖 to 𝑗 expresses an asymmetric relationship
(or proximities) between two nodes

◼A toy example on Instagram

To capture such asymmetric relationships accurately, various directed
network embedding (DNE) methods have been proposed

◼APP [AAAI’17]

◼ATP [AAAI’19]

◼NERD [ECML-PKDD’19]

◼GVAE [CIKM’19]

Background: Directed Network

User 𝑖 Influencer 𝑗

follow

not follow

◼DiGCN [NeurIPS’20]

◼MagNet [NeurIPS’21]

◼DGGAN [AAAI’21]

Page 20 / 16

Related Work

Methods

Matrix Factorization
(MF)-based Methods

HOPE Asymmetric Transitivity Preserving Graph Embedding
[KDD-2016]

ATP Directed Graph Embedding with Asymmetric Transitivity Preservation
[AAAI-2019]

Deep Learning (DL)-
based Methods

GVAE Gravity-Inspired Graph Autoencoders for Directed Link Prediction
[CIKM-2019]

DiGCN Digraph Inception Convolutional Networks
[NeurIPS-2020]

Random Walk (RW)-
based Methods

APP Scalable Graph Embedding for Asymmetric Proximity
[AAAI-2017]

NERD Node Representation Learning for Directed Grpahs
[ECML-PKDD-2019]

Page 21 / 16

MF-based and DL-based Methods

1. Represent the asymmetric proximities between source and target nodes
in the form of a matrix

◼ ATP [AAAI’19] uses a measurement that captures both the hierarchy and
reachability between nodes in the network

◼ GravityAE/VAE [CIKM’19] and DiGCN [NeurIPS’20] use the asymmetric adjacency
matrix of the input network

2. Obtain source and target embeddings of nodes

◼ By using MF techniques (e.g., SVD)

◼ By using DL techniques (e.g., autoencoders and GCNs)

Page 22 / 16

RW-based Methods

1. For each seed node,

◼ Sample a number of positive nodes visited during RWs
 APP [AAAI’17] employs a RW strategy that starts from a seed node and then follows out-going

edges randomly

 NERD [ECML-PKDD’19] proposes an alternating RW strategy that starts from a seed node and
follows out-going/in-coming edges alternately

◼ Sample negative nodes uniformly at random as well

2. Obtain source and target embeddings of nodes

◼ Maximize the proximities between source embedding of each seed node and target
embedding of positive nodes

◼ Minimize the proximities between source embedding of each seed node and target
embedding of negative nodes

Page 23 / 16

Model the formation of each directed edge (𝒗𝒊, 𝒗𝒋) based on six node

factors grouped as follows:

(STAGE 1) Factor Modeling

1. Authority factors

◼ (a) The target 𝑣𝑗’s authority status (a-target) and (b) the source 𝑣𝑖’s bias toward

authorities (a-source)

◼ They together model a bias related to target 𝑣𝑗’s authority status (i.e., in-degree)

Source 𝒗𝒊 Target 𝒗𝒋

Authority
Factors

Page 24 / 16

Model the formation of each directed edge (𝒗𝒊, 𝒗𝒋) based on six node

factors grouped as follows:

(STAGE 1) Factor Modeling (cont’d)

2. Hub factors

◼ (a) The source 𝑣𝑖’s hub status (h-source) and (b) the target 𝑣𝑗’s bias toward hubs

(h-target)

◼ They together model a bias related to source 𝑣𝑖’s hub status (i.e., out-degree)

Hub
Factors

Source 𝒗𝒊 Target 𝒗𝒋

Page 25 / 16

Model the formation of each directed edge (𝒗𝒊, 𝒗𝒋) based on six node

factors grouped as follows:

(STAGE 1) Factor Modeling (cont’d)

3. Interest factors

◼ (a) The source 𝑣𝑖’s intrinsic property as a source (i-source) and (b) the target 𝑣𝑗’s

intrinsic property as a target (i-target)

◼ They together model the pure interest in forming an edge from 𝑣𝑖 to 𝑣𝑗 after

removing degree-related biases

Interest
Factors

Source 𝒗𝒊 Target 𝒗𝒋

Page 26 / 16

Represent a node 𝒗𝒊 as six factor
sub-embeddings

◼ Source role: 𝐚𝒊
𝒔𝒓𝒄, 𝐡𝒊

𝒔𝒓𝒄, 𝐢𝒊
𝒔𝒓𝒄

◼ Target role: 𝐚𝒊
𝒕𝒂𝒓, 𝐡𝒊

𝒕𝒂𝒓, 𝐢𝒊
𝒕𝒂𝒓

(STAGE 1) Factor Modeling (cont’d)

Concatenate the three factor
sub-embeddings as a source/target

◼ 𝐬𝒊 = 𝒂𝒊
𝒔𝒓𝒄 ⊕𝒉𝒊

𝒔𝒓𝒄 ⊕ 𝒊𝒊
𝒔𝒓𝒄,

◼ 𝐭𝒊 = 𝒂𝒊
𝒕𝒂𝒓 ⊕𝒉𝒊

𝒕𝒂𝒓 ⊕ 𝒊𝒊
𝒕𝒂𝒓

Source𝒗𝒊 Target 𝒗𝒋

Authority Factors

Interest Factors

Hub Factors

Six Node Factors

a-source h-source i-source

𝒗𝒊’s target embeddings

a-target h-target i-target

Disentangled Source/Target Embeddings

𝒗𝒊’s source embedding

Page 27 / 16

Compute three factor scores based on the six factor sub-embeddings

◼ Represent how much (a) the authority factor, (b) the hub factor, and (c)
the interest factor affect the formation of the directed edge (𝒗𝒊, 𝒗𝒋)

(a) 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 = 𝐚𝒊

𝒔𝒓𝒄 ∘ 𝐚𝒋
𝒕𝒂𝒓 (b) 𝒔𝒊𝒋

𝒉𝒖𝒃 = 𝐡𝒊
𝒔𝒓𝒄 ∘ 𝐡𝒋

𝒕𝒂𝒓 (c) 𝒔𝒊𝒋
𝒊𝒏𝒕 = 𝐢𝒊

𝒔𝒓𝒄 ∘ 𝐢𝒋
𝒕𝒂𝒓

Compute the overall edge score by adding the three factor scores

◼ Represent the likelihood of the formation of a directed edge (𝒗𝒊, 𝒗𝒋)

𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

= 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 + 𝒔𝒊𝒋

𝒉𝒖𝒃 + 𝒔𝒊𝒋
𝒊𝒏𝒕(= 𝐬𝒊 ∘ 𝐭𝒊)

(STAGE 1) Factor Modeling (cont’d)

Page 28 / 16

For each existent edge (𝒗𝒊, 𝒗𝒋) , sample different types of training

instances (i.e., triplets) for embedding learning

Add (𝒗𝒊, 𝒗𝒋, 𝒗𝒋′) to the sets 𝑨> (for type 1) or 𝑨< (for type 2)

◼Aid in capturing the influence of bias related to the target’s in-degree

◼𝑨 = 𝑨> ∪ 𝑨<

(STAGE 2) Negative Sampling

𝒗𝒋

𝒗𝒋′

<

𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊
𝒗𝒋

𝒗𝒋′

<

𝒅𝒊𝒏 𝒗𝒋

𝒅𝒊𝒏 𝒗𝒋′

𝒗𝒊◼ Type 1 ◼ Type 2

Source
Positive
target

Negative
target

Page 29 / 16

For each existent edge (𝒗𝒊, 𝒗𝒋) , sample different types of training

instances (i.e., triplets) for embedding learning

Add (𝒗𝒊, 𝒗𝒋, 𝒗𝒊′) to the sets 𝑯> (for type 3) or 𝑯< (for type 4)

◼Aid in capturing the influence of bias related to the source’s out-degree

◼𝑯 = 𝑯> ∪ 𝑯<

(STAGE 2) Negative Sampling (cont’d)

◼ Type 3 ◼ Type 4𝒗𝒊

𝒗𝒊′

𝒗𝒊

𝒗𝒊′
<

<

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒅𝒐𝒖𝒕 𝒗𝒊

𝒅𝒐𝒖𝒕 𝒗𝒊′

𝒗𝒋
𝒗𝒋

Positive
source Target

Negative
source

Page 30 / 16

Learn the disentangled source and target embeddings of each node based
on the sampled instances via the three objectives

1. 𝑳𝒆𝒅𝒈𝒆: preserve asymmetric proximity between nodes in input network

2. 𝑳𝒅𝒊𝒔𝑨: disentangle the authority factor from the other two factors

3. 𝑳𝒅𝒊𝒔𝑯: disentangle the hub factor from the other two factors

(STAGE 3) Disentangled Embedding Learning

Naturally infer the interest
factor through 𝑳𝒅𝒊𝒔𝑨, 𝑳𝒅𝒊𝒔𝑯

Page 31 / 16

① 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 =

(𝒗𝒊,𝒗𝒋,𝒗𝒋′)∈𝑨

𝐁𝐏𝐑 𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

, 𝒔
𝒊𝒋′
𝒆𝒅𝒈𝒆

+

(𝒗𝒊,𝒗𝒋,𝒗𝒊′)∈𝑯

𝐁𝐏𝐑 𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

, 𝒔
𝒊′𝒋

𝒆𝒅𝒈𝒆

Loss Function: Multi-Objective Learning

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 + 𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

① Preserving
asymmetric proximities

② Disentangling the authority
factor from the others

③ Disentangling the authority
factor from the others

➔ For (𝒗𝒊, 𝒗𝒋, 𝒗𝒋′) in 𝐴,

𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

> 𝒔
𝒊𝒋′
𝒆𝒅𝒈𝒆

➔ For (𝒗𝒊, 𝒗𝒋, 𝒗𝒊′) in 𝐻,

𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

> 𝒔
𝒊′𝒋

𝒆𝒅𝒈𝒆

However, 𝑳𝒆𝒅𝒈𝒆 alone does not contribute to preserving the desired

factor in each factor sub-embedding

*𝐁𝐏𝐑 𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

, 𝒔
𝒊𝒋′
𝒆𝒅𝒈𝒆

= −𝒍𝒐𝒈 𝝈 𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

− 𝒔
𝒊𝒋′
𝒆𝒅𝒈𝒆

Page 32 / 16

② 𝑳𝒅𝒊𝒔𝑨 𝑨 = 𝑳𝒂𝒖𝒕𝒉 𝑨> + 𝑳𝒂𝒖𝒕𝒉 𝑨< + 𝑳𝒉𝒖𝒃+𝒊𝒏𝒕(𝑨<)

The authority status (i.e., in-degree) of 𝑣𝑗 is higher than that of 𝑣𝑗′

Thus, if authority-factor scores capture the biases towards authorities,

as desired, 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 > 𝒔𝒊𝒋′

𝒂𝒖𝒕𝒉 should hold!

Loss Function: Multi-Objective Learning (cont’d)

➔ For 𝒗𝒊, 𝒗𝒋, 𝒗𝒋′ in 𝑨>, 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 > 𝒔𝒊𝒋′

𝒂𝒖𝒕𝒉

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 + 𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

① Preserving
asymmetric proximities

② Disentangling the authority
factor from the others

③ Disentangling the authority
factor from the others

Page 33 / 16

② 𝑳𝒅𝒊𝒔𝑨 𝑨 = 𝑳𝒂𝒖𝒕𝒉 𝑨> + 𝑳𝒂𝒖𝒕𝒉 𝑨< + 𝑳𝒉𝒖𝒃+𝒊𝒏𝒕(𝑨<)

The authority status (i.e., in-degree) of 𝑣𝑗 is lower than that of 𝑣𝑗′

Thus, if authority-factor scores capture the biases towards authorities,

as desired, 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 < 𝒔𝒊𝒋′

𝒂𝒖𝒕𝒉 should hold!

Loss Function: Multi-Objective Learning (cont’d)

➔ For 𝒗𝒊, 𝒗𝒋, 𝒗𝒋′ in 𝑨<, 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 < 𝒔𝒊𝒋′

𝒂𝒖𝒕𝒉

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 + 𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

① Preserving
asymmetric proximities

② Disentangling the authority
factor from the others

③ Disentangling the authority
factor from the others

Page 34 / 16

② 𝑳𝒅𝒊𝒔𝑨 𝑨 = 𝑳𝒂𝒖𝒕𝒉 𝑨> + 𝑳𝒂𝒖𝒕𝒉 𝑨< + 𝑳𝒉𝒖𝒃+𝒊𝒏𝒕(𝑨<)

Even though 𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 < 𝒔𝒊𝒋′

𝒂𝒖𝒕𝒉 holds, 𝒔𝒊𝒋
𝒆𝒅𝒈𝒆

should become higher than 𝒔
𝒊𝒋′
𝒆𝒅𝒈𝒆

Thus, we can imply the following inequality 𝒔𝒊𝒋
𝒉𝒖𝒃 + 𝒔𝒊𝒋

𝒊𝒏𝒕 > 𝒔𝒊𝒋′
𝒉𝒖𝒃 + 𝒔𝒊𝒋′

𝒊𝒏𝒕!

Loss Function: Multi-Objective Learning (cont’d)

➔ For 𝒗𝒊, 𝒗𝒋, 𝒗𝒋′ in 𝑨<,

𝒔𝒊𝒋
𝒉𝒖𝒃 + 𝒔𝒊𝒋

𝒊𝒏𝒕 > 𝒔𝒊𝒋′
𝒉𝒖𝒃 + 𝒔𝒊𝒋′

𝒊𝒏𝒕

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 + 𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

① Preserving
asymmetric proximities

② Disentangling the authority
factor from the others

③ Disentangling the authority
factor from the others

Page 35 / 16

③ 𝑳𝒅𝒊𝒔𝑯 𝑯 = 𝑳𝒉𝒖𝒃 𝑯> + 𝑳𝒉𝒖𝒃 𝑯< + 𝑳𝒂𝒖𝒕𝒉+𝒊𝒏𝒕(𝑯<)

Loss Function: Multi-Objective Learning (cont’d)

For 𝒗𝒊, 𝒗𝒋, 𝒗𝒊′ in 𝑯>,

𝒔𝒊𝒋
𝒉𝒖𝒃 > 𝒔𝒊′𝒋

𝒉𝒖𝒃

For 𝒗𝒊, 𝒗𝒋, 𝒗𝒊′ in 𝑯<, 𝒔𝒊𝒋
𝒉𝒖𝒃 < 𝒔𝒊′𝒋

𝒉𝒖𝒃

For 𝒗𝒊, 𝒗𝒋, 𝒗𝒊′ in 𝑯<,

𝒔𝒊𝒋
𝒂𝒖𝒕𝒉 + 𝒔𝒊𝒋

𝒊𝒏𝒕 > 𝒔𝒊′𝒋
𝒂𝒖𝒕𝒉 + 𝒔𝒊′𝒋

𝒊𝒏𝒕

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑯 + 𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

① Preserving
asymmetric proximities

② Disentangling the authority
factor from the others

③ Disentangling the authority
factor from the others

Page 36 / 16

Learn (bias-aware) hub/authority and (bias-free) interest embeddings

◼ If degree-related biases entirely disappear in test data, it could be beneficial to use
interest embeddings only

◼ However, in reality, degree-related biases remain but the level of them shifts over
time

◼ Also, it is not trivial to predict accurately the level of biases in the future

◼ Therefore, we leverage all factor-embeddings jointly to achieve high accuracy in any
scenario

Why we use all factor-embeddings in OOD link prediction?

Page 37 / 16

How accurately we can predict the directed edges
removed from the input directed network?

Evaluation Task: Link Prediction (LP)

?

Evaluation protocol

◼ Consider the existent edges as positive examples

◼ Perform two LP tasks, which depend on how we sample the negative
examples

 Uniform LP (U-LP): consider the non-existent edges sampled uniformly at
random as negative examples

 Biased LP (B-LP): consider the edges with the opposite directions to
(unidirectional) positive examples as negative examples

◼Measure classification accuracy using area under curve (AUC)

Page 38 / 16

Evaluation Task

𝒋𝒊

Training
(80%)

Test
(20%)

Existent edges
(positive examples)

④ Train a classifier by using concatenated
embeddings as inputs

Logistic
regression
classifier

Training examples

⋮ ⋮

𝑖 𝑗

⋮

Test examples

+

Classify positive or negative

① Split the edges

③ Sample nonexistent edges

② Obtain node
embeddings

⑤ Classify whether each testing example
is positive or negative

Train

1

label

0

Non-existent edges
(negative examples)

Page 39 / 16

Example of B-LP

Evaluation Task: Link Prediction (LP)

Existent edges
(i.e., positive examples)

Non-existent edges
(i.e., negative examples)

unidirectional
positive examplesTest Set (20%)Training Set (80%)

𝒗𝟒𝒗𝟏

𝒗𝟑𝒗𝟏

𝒗𝟐𝒗𝟒

𝒗𝟒𝒗𝟑

𝒗𝟏𝒗𝟐

𝒗𝟏𝒗𝟑

𝒗𝟒𝒗𝟐

𝒗𝟑𝒗𝟒

𝒗𝟏𝒗𝟒

𝒗𝟐𝒗𝟏

𝒗𝟒𝒗𝟕

𝒗𝟔𝒗𝟕

𝒗𝟔𝒗𝟐

𝒗𝟏𝒗𝟗

𝒗𝟏𝒗𝟖

𝒗𝟑𝒗𝟕

𝒗𝟗𝒗𝟏

𝒗𝟐𝒗𝟓

negative examples with
the opposite directions

𝒗𝟓𝒗𝟑

𝒗𝟑𝒗𝟓

Page 40 / 16

Competitors
◼ Dimensionality of embeddings = 120

◼ Number of walks ∈ 10, 20, 40, 80 (DeepWalk, Node2Vec)

◼ Walk length ∈ 60, 80, 100 (DeepWalk, Node2Vec)

◼ 𝛾 ∈ 5, 10, 15, 20 (NERD)

◼ 𝜆 ∈ 0.005, 0.05, 1, 5, 10 (GVAE)

◼ 𝛼 ∈ 0.05, 0.1, 0.15, 0.2 (DiGCN)

◼ 𝑞 ∈ 0.05, 0.1, 0.15, 0.2, 0.25 (MagNet)

ODIN
◼ Dimensionality of embeddings = 120 (i.e., dimensionality of each of six

factor sub-embeddings = 20)

◼ 𝛼 = 0.5

◼ 𝛽 = 0.01

◼ 𝑛 = 2 (i.e., total number of negative samples per edge is 8)

Implementation Details

Page 41 / 16

RQ1: Does ODIN outperform its competitors under distributional shifts in
degree distributions?

RQ2: How robust is ODIN under various levels of distributional shifts in
degree distributions?

RO3: Is factor disentanglement effective in ODIN?

RQ4: How sensitive is ODIN to its hyperparameters?

Questions to Be Answered

Note: 𝑘 is fixed to -1 for RQ1, RQ3, and RQ4 (in 𝒑𝒊𝒋
𝒊𝒏 ∝ 𝒅𝒊𝒏 𝒗𝒋

𝒌
or 𝒑𝒊𝒋

𝒐𝒖𝒕 ∝ 𝒅𝒐𝒖𝒕 𝒗𝒊
𝒌)

Page 42 / 16

RQ3-1: Is each of two disentanglement losses effective in ODIN?

◼ ODIN𝐴 vs ODIN𝑑𝑖𝑠𝐴

Results for RQ3-1

ODIN𝐴: only uses the
edge loss based on A

◼ ODIN𝐻 vs ODIN𝑑𝑖𝑠𝐻

◼ Each of the disentanglement losses is effective in obtaining embeddings
robust to distributional shifts in degree distributions

ODIN𝑑𝑖𝑠𝐴: additionally
uses the disA loss based
on A

ODIN𝑯: only uses the
edge loss based on 𝐻

ODIN𝑑𝑖𝑠𝑯: additionally
uses the disH loss based
on 𝐻

Page 43 / 16

RQ3-1: Is each of two disentanglement losses effective in ODIN?

Results for RQ3-1 (cont’d)

Page 44 / 16

RQ1-2: Is jointly using the both losses effective in ODIN?

◼ Superiority between ODIN𝑑𝑖𝑠𝐴 and ODIN𝑑𝑖𝑠𝐻 varies depending on datasets

◼ ODIN outperforms ODIN𝑑𝑖𝑠𝐴 and ODIN𝑑𝑖𝑠𝐻 in most cases

That is, ODIN can selectively adopt the factor(s) beneficial in each dataset,
thereby improving the robustness of embeddings in all datasets

Results for RQ3-2

(a)
Non-ID (in)

Page 45 / 16

RQ1-2: Is jointly using the both losses effective in ODIN?

◼ Superiority between ODIN𝑑𝑖𝑠𝐴 and ODIN𝑑𝑖𝑠𝐻 varies depending on datasets

◼ ODIN outperforms ODIN𝑑𝑖𝑠𝐴 and ODIN𝑑𝑖𝑠𝐻 in most cases

That is, ODIN can selectively adopt the factor(s) beneficial in each dataset,
thereby improving the robustness of embeddings in all datasets

Results for RQ3-2 (cont’d)

(b)
Non-ID (out)

Page 46 / 16

How the parameter 𝜶 affects the accuracy of ODIN

◼ AUCs of ODIN steadily increase until 𝛼 reaches 0.4 and then the AUCs converge

◼ ODIN is not highly sensitive to the weight for factor disentanglement

Results for RQ4

𝑳 = 𝑳𝒆𝒅𝒈𝒆 𝑨 ∪ 𝑩

+𝜶(𝑳𝒅𝒊𝒔𝑨 𝑨 + 𝑳𝒅𝒊𝒔𝑯 𝑯)

