

Rethinking Reconstruction-based Graph-level Anomaly Detection: Limitations and a Simple Remedy

Soo Yong Lee

Shinhwan Kang

Kijung Shin

Jaemin Yoo

O Overview

- Limitations of Graph-AEs and Our Method
- O Conclusions

About Graph-Level Anomaly Detection (GLAD)

• **GLAD** aims to find graphs with anomalous node features and/or topology compared to most in the population.

• **GLAD** aims to find graphs with anomalous node features and/or topology compared to most in the population.

• **GLAD** aims to find graphs with anomalous node features and/or topology compared to most in the population.

• **GLAD** aims to find graphs with anomalous node features and/or topology compared to most in the population.

• **GLAD** aims to find graphs with anomalous node features and/or topology compared to most in the population.

Sunwoo Kim

Rethinking Reconstruction-based Graph-Level Anomaly Detection

GLAD have various applications.

Brain diagnosis

Toxic chemical detection

Drug discovery

GLAD Methods

- Many GLAD methods use graph auto-encoders (Graph-AEs).
 - They typically learn to **reconstruct** the given graph's topology.

- Many GLAD methods use graph auto-encoders (Graph-AEs).
 - They typically learn to reconstruct the given graph's topology.

- Many GLAD methods use graph auto-encoders (Graph-AEs).
 - They typically learn to reconstruct the given graph's topology.

Inputs of Graph-AE

Reconstructed adjacency matrix

- Many GLAD methods use graph auto-encoders (Graph-AEs).
 - They typically learn to reconstruct the given graph's topology.

- Graph-AEs use mean reconstruction error as the anomaly score.
 - Typically, element-wise mean squared error is used.

- Graph-AEs use mean reconstruction error as the anomaly score.
 - Typically, element-wise mean squared error is used.

- Graph-AEs use mean reconstruction error as the anomaly score.
 - Typically, element-wise mean squared error is used.

- Graph-AEs use mean reconstruction error as the anomaly score.
 - Typically, element-wise mean squared error is used.

- Graph-AEs use mean reconstruction error as the anomaly score.
 - High mean reconstruction errors indicate anomalous graphs.

- Graph-AEs use mean reconstruction error as the anomaly score.
 - High mean reconstruction errors indicate anomalous graphs.

O Limitations of Graph-AEs and Our Method

Conclusions

Limitation 1

• Surprisingly, Graph-AEs can better reconstruct certain graphs that are dissimilar from the training graphs.

Training graphs

• Surprisingly, Graph-AEs can better reconstruct certain graphs that are dissimilar from the training graphs.

Unseen graph

• Surprisingly, Graph-AEs can better reconstruct certain graphs that are dissimilar from the training graphs.

Training graphs

Unseen graph

Sunwoo Kim

Rethinking Reconstruction-based Graph-Level Anomaly Detection

Our Remedy of Limitation 1

• We use reconstruction errors as features of a graph.

Limitation 2

• Dissimilar graphs may have the similar mean reconstruction errors.

Two dissimilar graphs

• Dissimilar graphs may have the similar mean reconstruction errors.

Mean reconstruction errors

• In such cases, Graph-AEs cannot detect anomalies.

Normal graph Anomalous graph

Our Remedy of Limitation 2

• We use multifaceted summaries of errors to represent a graph.

Proposed Method: MUSE

 Proposed method: Represent a graph with its multifaceted summaries of errors, called MUSE (<u>MU</u>Itifaceted <u>Summaries</u> of reconstruction <u>Errors</u>).

Sunwoo Kim

Proposed Method: MUSE (cont.)

Proposed method: Represent a graph with its multifaceted summaries of

errors, called **MUSE** (<u>MU</u>Itifaceted <u>S</u>ummaries of reconstruction <u>E</u>rrors).

Obtain error distribution with graph autoencoders.

Proposed Method: MUSE (cont.)

• Proposed method: Represent a graph with its multifaceted summaries of

errors, called MUSE (<u>MU</u>Itifaceted <u>Summaries</u> of reconstruction <u>Errors</u>).

Proposed Method: MUSE (cont.)

• Proposed method: Represent a graph with its multifaceted summaries of

errors, called MUSE (MUItifaceted Summaries of reconstruction Errors).

Experimental results

• Result 1. MUSE is accurate.

Table 1: **GLAD performance**: Mean and standard deviation of test AUROC values (\times 100) in the GLAD task are reported. The best and second-best performances are highlighted in green and yellow. A.R. denotes average ranking. MUSE obtains the best average ranking among 18 methods.

	Method	DD	Protein	NCI1	AIDS	Reddit	IMDB	MUTAG	DHFR	BZR	ER	AR
GLAD methods	DOMINANT-G [6] OCGTL [39] GLocalKD [34] GLADC [33] GLAM [57] HIMNET [38] SIGNET [32]	64.3 (4.4) 74.5 (5.1) 47.8 (8.5) 52.1 (5.2) 61.6 (5.2) 52.1 (3.7) 64.2 (9.3)	55.9 (9.7) 71.0 (8.7) 50.7 (8.5) 50.7 (5.6) 60.3 (5.6) 56.9 (5.8) 56.4 (6.4)	65.5 (6.1) 61.2 (5.5) 51.6 (5.6) 51.4 (3.6) 58.1 (1.9) 53.6 (4.6) 63.1 (4.0)	80.6 (4.0) 95.3 (3.7) 51.2 (1.2) 51.4 (1.0) 93.6 (2.6) 64.3 (3.2) 97.2 (1.6)	58.6 (5.3) 69.0 (4.0) 49.8 (4.2) 52.2 (2.6) 75.6 (4.0) 65.7 (2.4) 78.0 (4.4)	60.8 (6.7) 65.8 (5.8) 58.5 (6.7) 57.7 (5.2) 65.1 (3.5) 61.8 (4.3) 48.2 (4.8)	65.0 (4.2) 64.9 (4.9) 55.1 (4.4) 53.3 (4.5) 63.0 (2.0) 57.5 (2.9) 67.5 (1.6)	56.6 (9.2) 66.5 (9.9) 54.1 (8.1) 55.8 (4.1) 57.2 (2.7) 63.6 (6.7) 40.2 (5.8)	76.2 (7.8) 71.3 (17.1) 55.8 (16.7) 59.0 (14.5) 72.6 (8.9) 72.0 (9.9) 66.6 (9.5)	58.7 (5.5) 63.0 (3.6) 54.4 (4.4) 52.8 (4.2) 55.2 (2.9) 55.7 (2.8) 56.2 (4.3)	10.7 6.9 17.0 16.8 9.8 12.3 10.4
SSL- based	GraphCL-1 [53] GAE-1 [22] GraphMAE-1 [15] GraphCL-2 [53] GAE-2 [22] GraphMAE-2 [15]	64.5 (3.9) 64.7 (5.2) 56.7 (7.3) 66.1 (3.0) 67.2 (3.4) 68.0 (4.3)	60.7 (4.2) 61.3 (7.0) 60.5 (4.9) 59.1 (5.2) 62.3 (5.0) 61.2 (4.0)	55.8 (3.1) 62.5 (2.2) 53.4 (3.2) 60.3 (4.4) 62.4 (3.9) 68.3 (3.6)	71.2 (6.6) 86.2 (1.4) 91.8 (5.3) 91.8 (3.5) 85.8 (1.6) 90.8 (3.6)	57.7 (5.5) 74.8 (3.2) 72.7 (3.2) 77.3 (4.1) 75.3 (5.7) 75.8 (4.8)	54.2 (6.2) 63.8 (7.4) 67.0 (5.0) 66.3 (5.6) 66.6 (7.6) 66.7 (5.8)	53.6 (2.3) 63.2 (3.3) 62.3 (2.6) 67.4 (3.3) 67.3 (3.3) 68.1 (2.4)	57.8 (6.7) 56.5 (9.6) 62.2 (9.6) 59.1 (4.6) 60.8 (5.6) 61.4 (6.0)	60.5 (9.3) 68.5 (13.7) 70.1 (7.6) 71.9 10.4 72.0 (8.8) 72.8 (6.4)	55.5 (4.1) 60.0 (3.9) 52.2 (3.6) 67.3 (3.4) 65.7 (2.0) 66.2 (6.4)	14.2 10.3 10.6 7.2 7.0 5.1
Variants	MUSE w/o L _X MUSE w/o L _A MUSE w/o AVG MUSE w/o STD	79.4 (3.7) 61.8 (7.6) 78.6 (4.0) 74.3 (5.4)	75.6 (3.7) 64.7 (7.1) 68.1 (5.5) 74.4 (5.2)	69.2 (3.7) 63.1 (3.3) 68.0 (2.0) 65.2 (3.6)	99.6 (0.5) 89.3 (2.8) 95.0 (2.6) 98.7 (0.5)	72.2 (4.0) 72.0 (4.8) 73.2 (6.6) 70.5 (4.3)	65.8 (5.7) 56.9 (7.1) 66.2 (6.5) 70.7 (3.7)	65.8 (3.1) 57.0 (3.5) 60.9 (3.9) 62.0 (2.4)	60.4 (6.6) 58.1 (3.1) 60.1 (2.4) 62.9 (6.4)	65.6 (19.4) 68.7 (14.2) 66.3 (13.0) 71.3 (11.5)	66.3 (3.6) 60.7 (4.0) 62.0 (3.5) 66.7 (2.4)	5.8 11.0 7.7 5.6
┛	MUSE	80.5 (2.3)	78.4 (2.2)	71.1 (2.0)	99.7 (0.5)	78.4 (5.7)	69.2 (3.5)	67.5 (3.4)	63.8 (8.6)	69.5 (12.6)	67.9 (3.6)	2.2

Rethinking Reconstruction-based Graph-Level Anomaly Detection

Experimental results (cont.)

• Result 2. MUSE is robust.

Figure 6: Comparison of the three strongest GLAD methods' robustness against training set contamination. MUSE undergoes the least performance drop among the three methods.

Experimental results (cont.)

• Result 3. MUSE well separates anomalies from normal graphs.

PCA Visualization

Normal graphs
Anomalous graphs

Overview

Limitations of Graph-AEs and Our Method

O Conclusions

Sunwoo Kim

Conclusions

Topic: Graph-level anomaly detection (GLAD)

Analysis: Limitations of graph-autoencoder-based GLAD methods.

Method: MUSE, a novel GLAD method.

Experiments: MUSE outperforms existing GLAD methods.

Rethinking Reconstruction-based Graph-Level Anomaly Detection

Rethinking Reconstruction-based Graph-level Anomaly Detection: Limitations and a Simple Remedy

Soo Yong Lee

Shinhwan Kang

Kijung Shin

Jaemin Yoo