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• GLAD aims to find graphs with anomalous node features and/or 

topology compared to most in the population.

Graph population
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About Graph-Level Anomaly Detection (cont.)
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• GLAD aims to find graphs with anomalous node features and/or 

topology compared to most in the population.

Graph population

Each graph has a 

triangle.
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• GLAD aims to find graphs with anomalous node features and/or 

topology compared to most in the population.

Graph population
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About Graph-Level Anomaly Detection (cont.)
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• GLAD aims to find graphs with anomalous node features and/or 

topology compared to most in the population.

Graph population

Triangle O

Triangle X?



Rethinking Reconstruction-based Graph-Level Anomaly DetectionSunwoo Kim

About Graph-Level Anomaly Detection (cont.)
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• GLAD aims to find graphs with anomalous node features and/or 

topology compared to most in the population.

Graph population

Normal

Anomaly
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About Graph-Level Anomaly Detection (cont.)
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• GLAD aims to find graphs with anomalous node features and/or 

topology compared to most in the population.

Graph population

Normal

Anomaly
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About Graph-Level Anomaly Detection (cont.)
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• GLAD have various applications.

Brain diagnosis Toxic chemical detection Drug discovery
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GLAD Methods
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• Many GLAD methods use graph auto-encoders (Graph-AEs).

• They typically learn to reconstruct the given graph’s topology.
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GLAD Methods (cont.)
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• Many GLAD methods use graph auto-encoders (Graph-AEs).

• They typically learn to reconstruct the given graph’s topology.
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GLAD Methods (cont.)
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• Many GLAD methods use graph auto-encoders (Graph-AEs).

• They typically learn to reconstruct the given graph’s topology.
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GLAD Methods (cont.)
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• Many GLAD methods use graph auto-encoders (Graph-AEs).

• They typically learn to reconstruct the given graph’s topology.
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GLAD Methods (cont.)
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• Graph-AEs use mean reconstruction error as the anomaly score.

• Typically, element-wise mean squared error is used.
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GLAD Methods (cont.)

15

• Graph-AEs use mean reconstruction error as the anomaly score.

• Typically, element-wise mean squared error is used.
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GLAD Methods (cont.)
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• Graph-AEs use mean reconstruction error as the anomaly score.

• Typically, element-wise mean squared error is used.
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GLAD Methods (cont.)
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• Graph-AEs use mean reconstruction error as the anomaly score.

• Typically, element-wise mean squared error is used.
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GLAD Methods (cont.)
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• Graph-AEs use mean reconstruction error as the anomaly score.

• High mean reconstruction errors indicate anomalous graphs.
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GLAD Methods (cont.)
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• Graph-AEs use mean reconstruction error as the anomaly score.

• High mean reconstruction errors indicate anomalous graphs.

Mean error: 
0.05

Original Reconstructed

Mean error: 
0.9

Original Reconstructed

Graph-AE

Graph-AE

Normal

Anomaly



Rethinking Reconstruction-based Graph-Level Anomaly DetectionSunwoo Kim

Roadmap

Overview

Limitations of Graph-AEs and Our Method

Conclusions

20



Rethinking Reconstruction-based Graph-Level Anomaly DetectionSunwoo Kim

Limitation 1
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• Surprisingly, Graph-AEs can better reconstruct certain graphs that are 

dissimilar from the training graphs.

Training graphs
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Limitation 1 (cont.)
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• Surprisingly, Graph-AEs can better reconstruct certain graphs that are 

dissimilar from the training graphs.

Training graphs Unseen graph



Rethinking Reconstruction-based Graph-Level Anomaly DetectionSunwoo Kim

Limitation 1 (cont.)
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• Surprisingly, Graph-AEs can better reconstruct certain graphs that are 

dissimilar from the training graphs.

Training graphs Unseen graph
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Limitation 1 (cont.)
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• Surprisingly, Graph-AEs can better reconstruct certain graphs that are 

dissimilar from the training graphs.

Training graphs Unseen graph
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Limitation 1 (cont.)

25

• In such cases, Graph-AEs cannot detect anomalies.

Training graphs

Normal graph

Anomalous graph
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Limitation 1 (cont.)
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• In such cases, Graph-AEs cannot detect anomalies.

Training graphs
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Limitation 1 (cont.)
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• In such cases, Graph-AEs cannot detect anomalies.

Training graphs

Normal graph

Anomaly

Since this red graph has a 

lower mean reconstruction  

error, it is a normal graph.
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Our Remedy of Limitation 1
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• We use reconstruction errors as features of a graph. 
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Limitation 2
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• Dissimilar graphs may have the similar mean reconstruction errors.

Two dissimilar graphs
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Limitation 2 (cont.)
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• Dissimilar graphs may have the similar mean reconstruction errors.

Two dissimilar graphs
Reconstruction error 

distributions

Mean reconstruction errors*
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Limitation 2 (cont.)
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• In such cases, Graph-AEs cannot detect anomalies.

Anomalous graphNormal graph
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Limitation 2 (cont.)
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• In such cases, Graph-AEs cannot detect anomalies.

Anomalous graph

Since they have a similar 

mean reconstruction error, 

they are both normal graphs.
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Our Remedy of Limitation 2
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• We use multifaceted summaries of errors to represent a graph.
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Proposed Method: MUSE
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• Proposed method: Represent a graph with its multifaceted summaries of 

errors, called MUSE (MUltifaceted Summaries of reconstruction Errors).

Normal graph

Anomaly
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Proposed Method: MUSE (cont.)
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• Proposed method: Represent a graph with its multifaceted summaries of 

errors, called MUSE (MUltifaceted Summaries of reconstruction Errors).

Normal graph

Anomaly
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Obtain error distribution 
with graph autoencoders.
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Proposed Method: MUSE (cont.)
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• Proposed method: Represent a graph with its multifaceted summaries of 

errors, called MUSE (MUltifaceted Summaries of reconstruction Errors).
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Proposed Method: MUSE (cont.)
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• Proposed method: Represent a graph with its multifaceted summaries of 

errors, called MUSE (MUltifaceted Summaries of reconstruction Errors).
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Experimental results
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• Result 1. MUSE is accurate.
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• Result 2. MUSE is robust.
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Experimental results (cont.)
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• Result 3. MUSE well separates anomalies from normal graphs.

Normal graphs Anomalous graphs

PCA Visualization
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Conclusions
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Topic: Graph-level anomaly detection (GLAD)

Analysis: Limitations of graph-autoencoder-based GLAD methods.

Method: MUSE, a novel GLAD method.

Experiments: MUSE outperforms existing GLAD methods.
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