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About Graph-Level Anomaly Detection (GLAD)

« GLAD aims to find graphs with anomalous node features and/or

topology compared to most in the population.

Graph population
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About Graph-Level Anomaly Detection (cont.)

« GLAD aims to find graphs with anomalous node features and/or

topology compared to most in the population.

Each graph has a

triangle.

Graph population
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About Graph-Level Anomaly Detection (cont.)

« GLAD aims to find graphs with anomalous node features and/or

topology compared to most in the population.

Graph population
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About Graph-Level Anomaly Detection (cont.)

« GLAD aims to find graphs with anomalous node features and/or

topology compared to most in the population.
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About Graph-Level Anomaly Detection (cont.)

« GLAD aims to find graphs with anomalous node features and/or

topology compared to most in the population.
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About Graph-Level Anomaly Detection (cont.)
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About Graph-Level Anomaly Detection (cont.)

« GLAD have various applications.
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Brain diagnosis Toxic chemical detection Drug discovery
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GLAD Methods

« Many GLAD methods use graph auto-encoders (Graph-AEs).

* They typically learn to reconstruct the given graph’s topology.
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GLAD Methods (cont.)

« Many GLAD methods use graph auto-encoders (Graph-AEs).

* They typically learn to reconstruct the given graph’s topology.
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GLAD Methods (cont.)

« Many GLAD methods use graph auto-encoders (Graph-AEs).

* They typically learn to reconstruct the given graph’s topology.
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GLAD Methods (cont.)

« Many GLAD methods use graph auto-encoders (Graph-AEs).
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* They typically learn to reconstruct the given graph’s topology.
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GLAD Methods (cont.)

« Graph-AEs use mean reconstruction error as the anomaly score.

 Typically, element-wise mean squared error is used.
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GLAD Methods (cont.)

« Graph-AEs use mean reconstruction error as the anomaly score.

 Typically, element-wise mean squared error is used.
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GLAD Methods (cont.)

« Graph-AEs use mean reconstruction error as the anomaly score.

 Typically, element-wise mean squared error is used.
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GLAD Method

s (cont.)

« Graph-AEs use mean reconstruction error as the anomaly score.

 Typically, element-wise mean squared error is used.
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GLAD Methods (cont.)

« Graph-AEs use mean reconstruction error as the anomaly score.

* High mean reconstruction errors indicate anomalous graphs.

Mean error:
0.05

Original Reconstructed
Cd; Mean error:
9.9
Original Reconstructed
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GLAD Methods (cont.)

« Graph-AEs use mean reconstruction error as the anomaly score.

* High mean reconstruction errors indicate anomalous graphs.

Mean error:
0.05

Original Reconstructed
Cd; Mean error:
9.9
Original Reconstructed
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Limitation 1

 Surprisingly, Graph-AEs can better reconstruct certain graphs that are

dissimilar from the training graphs.

Training graphs
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Limitation 1 (cont.)

 Surprisingly, Graph-AEs can better reconstruct certain graphs that are

dissimilar from the training graphs.
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Limitation 1 (cont.)

 Surprisingly, Graph-AEs can better reconstruct certain graphs that are

dissimilar from the training graphs.

o 0
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Limitation 1 (cont.)

* S ~AEs can better reconstruct certain graphs that are
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Limitation 1 (cont.)

* In such cases, Graph-AEs cannot detect anomalies.

doofe T

Training graphs

Normal graph
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Limitation 1 (cont.)

* In such cases, Graph-AEs cannot detect anomalies.

Original Reconstructed
% 0{; 0{; Mean error:
9.05
Training graphs Original Reconstructed
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Limitation 1 (cont.)

* In such cases, Graph-AEs cannot detect anomalies.

Since this red graph has a
(k (k lower mean reconstruction

error, it is a normal graph.

Normal graph

- S g

Training graphs

Anomaly Graph-AE-based
detector
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Our Remedy of Limitation 1

* We use reconstruction errors as features of a graph.
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Limitation 2

 Dissimilar graphs may have the similar mean reconstruction errors.

Two dissimilar graphs
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Limitation 2 (cont.)

 Dissimilar graphs may have the similar mean reconstruction errors.

-oLo 0.5 1.0 1.5
Reconstruction error (BCE)
Reconstruction error
Two dissimilar graphs distributions

* Mean reconstruction errors
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Limitation 2 (cont.)

* In such cases, Graph-AEs cannot detect anomalies.

Normal graph Anomalous graph
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Limitation 2 (cont.)

* In such cases, Graph-AEs cannot detect anomalies.

Since they have a similar
mean reconstruction error,
they are both normal graphs.

Normal graph Anomalous graph

Graph-AE-based
detector
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Our Remedy of Limitation 2

 We use multifaceted summaries of errors to represent a graph.
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graph graph
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Proposed Method: MIUSE

* Proposed method: Represent a graph with its multifaceted summaries of

errors, called MUSE (MUltifaceted Summaries of reconstruction Errors).

P

Normal graph

!

Anomaly
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Proposed Method: MUSE (cont.)

* Proposed method: Represent a graph with its multifaceted summaries of

errors, called MUSE (MUltifaceted Summaries of reconstruction Errors).
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Proposed Method: MUSE (cont.)

* Proposed method: Represent a graph with its multifaceted summaries of

errors, called MUSE (MUltifaceted Summaries of reconstruction Errors).
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Proposed Method: MUSE (cont.)

* Proposed method: Represent a graph with its multifaceted summaries of

errors, called MUSE (MUltifaceted Summaries of recon
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struction Errors).
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Experimental results

 Result 1. MUSE is accurate.

Sunwoo Kim

Table 1: GLAD performance: Mean and standard deviation of test AUROC values (x 100) in the

GLAD task are reported. The best and

performances are highlighted in green and
A.R. denotes average ranking. MUSE obtains the best average ranking among 18 methods.
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Experimental results (cont.)

* Result 2. MUSE is robust.

AIDS IMDB NCI1 ER \‘

100.0 T o— P @ .\‘*. 70 H — 9 ¢ """'--.-____ ® ® . MUSE
8 97.5 68 65 (ours)
o ‘\A—A—A
3 95.0 66 65 60 A OCGTL
= 925 — . (baseline)
3 ) 64 60 55
= 900 62 GLAM

0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30% (baseline)

Anomaly injection ratio Anomaly injection ratio Anomaly injection ratio = Anomaly injection ratio

Figure 6: Comparison of the three strongest GLAD methods’ robustness against training set
contamination. MUSE undergoes the least performance drop among the three methods.
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Experimental results (cont.)

* Result 3. MUSE well separates anomalies from normal graphs.
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Conclusions

Topic: Graph-level anomaly detection (GLAD)

@ Analysis: Limitations of graph-autoencoder-based GLAD methods.
& Method: MUSE, a novel GLAD method.

@ Experiments: MUSE outperforms existing GLAD methods.
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