MONSTOR: An \textbf{Inductive} Approach for Estimating and Maximizing Influence over \textbf{Unseen} Networks

Jihoon Ko Kyuhan Lee Kijung Shin Noseong Park
Social relationship can be represented as a graph!
Social relationship can be represented as a graph!
Information cascade in social relationship
Information cascade in social relationship
Influence Maximization

• Find a certain number of seed nodes to maximize the spread of information through a social network

• Two major issues
 1) How to model the information cascade
 2) How to solve the problem based on information cascade model
How to model the information cascade

• Independent Cascade (IC)
 • When node v becomes active, it has a single chance of activating each currently inactive neighbor w
 • The activation attempt succeeds with some probability p_{vw}

• Linear Threshold (LT)
 • Each node v has threshold p_v, and it is activated by its neighbors when at least p_v fraction of its neighbors are active
How to solve the problem based on IC model

• **Greedy** approach [KKT03]
 • Greedily choose nodes using Monte-Carlo simulations repeatedly
 • Guarantees the approximation ratio of \(1 - \frac{1}{e}\)

• \(d\) (usually set to 10,000) simulations takes \(O(d|\mathcal{E}|)\) time!
 => performance bottleneck 😞

• CELF [LKGFGV07], UBLF [ZZGZG13] still rely heavily on MC simulations!
 • CELF significantly reduced MC simulations using submodular property
 • UBLF derived upper bound of marginal gain for every node at initialization step
How to solve the problem based on IC model

- **Greedy** approach [KKT03]
 - Greedily choose nodes using Monte-Carlo simulations repeatedly
 - Guarantees the approximation ratio of \(1 - \frac{1}{e} \)

- \(d \) (usually set to 10,000) simulations takes \(O(d|\mathcal{E}|) \) time!

 \(\Rightarrow \) performance bottleneck 😞

- CELF [LKGFVG07], UBLF [ZZGZG13] still rely heavily on MC simulations!

Solution: Estimate results from repeated MC simulations in fast!
Outline

• Preliminaries
• Proposed method: MONSTOR
• Experimental Results
• Summary
Preliminaries

• Activation Probability from u to v
 • The success probability that the node u activates its neighbor v when u is infected

• Bernoulli Trial (BT):
 \[p_{uv} = \frac{|\text{actions}(u,*) \cap \text{actions}(v,*)|}{|\text{actions}(u,*)|} \]

• Jaccard Index (JI):
 \[p_{uv} = \frac{|\text{actions}(u,*) \cap \text{actions}(*,v)|}{|\text{actions}(u,*) \cup \text{actions}(*,v)|} \]

• Linear Probability (LP):
 \[p_{uv} = \frac{|\text{actions}(u,*) \cap \text{actions}(*,v)|}{|\text{actions}(*,v)|} \]

Notation

actions(x,*) : the set of actions done by node x
actions(*,x) : the set of actions whose object is node x
Preliminaries

• Activation probability matrix
 • The adjacency matrix when weighting each directional edge \((u, v)\) by \(p(u, v)\)

• Infection Probability for node \(v\) given a seed set \(S\)
 • The probability that \(v\) is infected under the IC model with \(S\)
 • Defined as \(\rho(v)\)

• Infection probability vector
 • \(\pi := [\rho(v)] \in [0,1]^{|V|}\) be the vector of \(\rho(v)\)
 • \(\pi_i\) be the infection probability vector during the first \(i\) steps
Our problems

• **Influence Estimation (IE)**
 • Given a seed set S,
 • Estimate its influence $\sum_{v \in V} \rho(v)$ (the expected number of infected nodes)

• **Influence Maximization (IM)**
 • Given the number of seed nodes k,
 • Find the set S of k seed nodes
 • to Maximize the influence $\sum_{v \in V} \rho(v)$
Outline

• Preliminaries
• Proposed method: MONSTOR
• Experimental Results
• Summary
Proposed method: MONSTOR

• Neural network-based method for estimating MC simulation results under IC model

• MONSTOR can estimate MC simulation results in social networks unseen during training

• Significantly speeds up existing IM methods by replacing simulations
Overall Workflow

- Training data
 - Social Network #1
 - Social Network #2
 - Social Network #3

- GCN-based model with \(l \) layers
 - Train

- Stack to estimate multi-hop simulations

- MONSTOR
 - \(\pi_0 \)
 - \(\pi_1 \)
 - \(\pi_2 \)
 - \(\pi_3 \)

- Training Phase
- Testing Phase
Overall Workflow

1) Collect one or more social networks \(\{G_1, G_2, \ldots \} \)

| | \(|V|\) | \(|\mathcal{E}|\) | \(\Sigma p_{(u,v)}/|\mathcal{E}|\) in BT | \(\Sigma p_{(u,v)}/|\mathcal{E}|\) in JL | \(\Sigma p_{(u,v)}/|\mathcal{E}|\) in LP |
|------|-------|-------|---------------------------------|------------------------|------------------------|
| | Train | Test | Train | Test | Train | Test |
| Extended | 11,409 | 58,972 | 0.0797 | 0.0919 | 0.0335 | 0.0410 | 0.1614 | 0.1837 |
| WannaCry | 35,627 | 169,419 | 0.0726 | 0.0947 | 0.0298 | 0.0449 | 0.1979 | 0.1630 |
| Celebrity | 15,184 | 56,638 | 0.0321 | 0.0279 | 0.0016 | 0.0016 | 0.2614 | 0.256 |
Overall Workflow

2) From each G_j, collect the tuples $\{(\pi_i, \pi_{i-1}, \cdots, \pi_{i-e}, P_j): i \geq e\}$, after choosing a seed set S randomly

- $e > 1$ is a hyperparameter
- $P_j \in \{BT, JI, LP\}$
- Repeat multiple times with different seed sets

Notation

π_i be the infection probability vector during the first i steps
Overall Workflow

3) Train GCN-based model M with l layers, estimating π_i given $\pi_{i-1}, \ldots, \pi_{i-e}$
• Estimates a single step of the IC model
Overall Workflow

4) Stack s times the pre-trained model
 • The stacked model estimates π_s from π_0
 • Estimates end-to-end simulations

5-1) For IE problem, compute $\langle 1, \pi_s \rangle$
5-2) For IM problem, replace the MC simulation subroutine of existing IM algorithms with MONSTOR
Detailed Design

• Final output of our model is determined to

\[M(\pi_{i-1}, ..., \pi_{i-e}, P; \theta) := \min\{\pi_{i-1} + h^l, u_i\} \]

, where \(u_i := \pi_{i-1} + (\pi_{i-1} - \pi_{i-2})P \) (theoretical upper bound)
Detailed Design

- Training/Validation: online postings (and their cascade logs) during the first 50% of time (1,600 training / 400 validation tuples)
- Test: those during the remaining 50% of time (2,000 testing tuples)
Outline

• Preliminaries
• Proposed method: MONSTOR
• Experimental Results
• Summary
Experiments

• Q1. Accuracy in Influence Maximization

• Q2. Accuracy in Influence Estimation

• Q3. Scalability

• Q4. Submodularity
Competitors

- **Simulation-based algorithms**: Greedy with MC simulations
 - UBLF for BT, JI
 - CELF for LP

- **Non-simulation-based algorithms**
 - SSA / D-SSA [NTD16]
 - PMIA [CWW10] / IRIE [JHC12]

- **Our proposed approach**
 - For BT, JI: **U-MON** (UBLF with MONSTOR)
 - For LP: **C-MON** (CELF with MONSTOR)
Experimental Settings

- For training: two out of three networks
- For testing: Choose each of the three networks

Inductive setting: testing with the graph unseen during training
- Ex) U/C-MON (E+W)
Q1. Influence Maximization (IM)

• **Question:** How **accurate** are simulation-based IM algorithms equipped with MONSTOR, compared to competitors?

• **Answer:** Test with BT/JI - **U-MON** was most accurate in most cases
Q1. Influence Maximization (IM)

• Question: How accurate are simulation-based IM algorithms equipped with MONSTOR, compared to competitors?

• Answer: Test with LP - **C-MON** was most accurate in most cases

| | Extended | | | | | | | | |
|----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| | $k=10$ | 50 | 100 | 10 | 50 | 100 | 10 | 50 | 100 |
| Target Influence | 1852.4 | 2876.5 | 3264.9 | 5271.6 | 7880.0 | 9098.3 | 5508.4 | 5616.7 | 5657.7 |
| C-MON (E+W) | 1843.0 | **2863.0** | **3253.8** | 5246.4 | **7862.1** | **9073.5** | 5508.9 | 5615.0 | 5664.9 |
| C-MON (E+C) | 1840.6 | 2848.5 | 3236.5 | **5253.0** | 7844.5 | 9041.7 | 5508.8 | 5616.4 | 5666.4 |
| C-MON (W+C) | 1839.5 | 2853.1 | **3242.0** | 5248.6 | 7850.7 | 9045.7 | 5508.8 | 5615.0 | 5665.0 |
| D-SSA | 1844.3 | 2858.7 | 3236.1 | 5256.7 | 7783.4 | 8977.3 | 5509.0 | 5606.2 | 5633.8 |
| SSA | 1843.8 | 2858.6 | 3236.1 | **5257.2** | 7783.6 | 8977.0 | 5508.8 | 5606.3 | 5633.9 |
| IRIE | 1816.2 | 2829.8 | 3201.2 | 5109.1 | 7714.1 | 8840.1 | **5509.1** | **5617.4** | **5667.4** |
| PMIA | 1830.0 | 2828.9 | 3243.2 | 5196.7 | 7807.6 | 8981.8 | 5508.5 | 5604.2 | 5630.2 |
Q2. Influence Estimation (IE)

- The ground-truth influences of test seed sets and the estimated influences were highly correlated.

<table>
<thead>
<tr>
<th>Model</th>
<th>Target graph</th>
<th>BT</th>
<th>JI</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-MON (E+W) or C-MON (E+W)</td>
<td>Celebrity (Unseen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-MON (E+C) or C-MON (E+C)</td>
<td>WannaCry (Unseen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-MON (W+C) or C-MON (W+C)</td>
<td>Extended (Unseen)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Q3. Scalability

- **Question:** How rapidly does the estimation time grow as the size of the input graph increase?
- **Answer:** The runtime per stacked GCN was near-linear in the number of edges in the input graph.

| $|\mathcal{E}|$ | 2^{20} | 2^{21} | 2^{22} | 2^{23} | 2^{24} | 2^{25} | 2^{26} |
|----------------|----------|----------|----------|----------|----------|----------|----------|
| Estimation time (sec) | 11.5 | 17.7 | 31.0 | 56.3 | 108.9 | 411.0 | 819.7 |
Q4. Submodularity

• Question: Is MONSTOR submodular as the ground-truth influence function is?
• Using each pair S and T of the seed sets, we tested whether
 \[f(S) + f(T) \geq f(S \cup T) + f(S \cap T) \]
 is met or not
• Answer: Influence estimation by MONSTOR can be considered as submodular in practice

<table>
<thead>
<tr>
<th></th>
<th>Extended</th>
<th>WannaCry</th>
<th>Celebrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-MON (E+W)</td>
<td>0.9993</td>
<td>0.9997</td>
<td>0.9938</td>
</tr>
<tr>
<td>C-MON (E+C)</td>
<td>0.9994</td>
<td>0.9997</td>
<td>0.9970</td>
</tr>
<tr>
<td>C-MON (W+C)</td>
<td>0.9992</td>
<td>0.9996</td>
<td>0.9945</td>
</tr>
</tbody>
</table>

The ratio of the cases where the submodularity holds (Tested with LP)
Outline

• Preliminaries
• Proposed method: MONSTOR
• Experimental Results
• Summary
Summary

we present **MONSTOR**, an inductive learning algorithm for estimating the influence of seed nodes under the IC model.

- **Accurate** in IM/IE Tasks

 Most accurate in 17/27 Cases

- **Scalable & Submodular**

The code and datasets used in the paper are available at https://github.com/jihoonko/asonam20-monstor/
MONSTOR: An Inductive Approach for Estimating and Maximizing Influence over Unseen Networks

Jihoon Ko Kyuhan Lee Kijung Shin Noseong Park