

MiDaS: Representative Sampling from Real-world Hypergraphs

Minyoung Choe Jaemin Yoo KAIST SNU

Geon Lee KAIST

Woonsung Baek KAIST

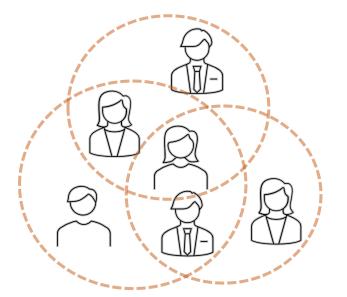
k U Kang SNU

Kijung Shin KAIST

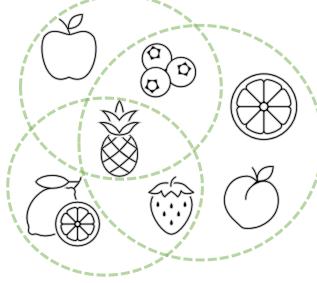
Hypergraphs represent group interactions

- Group interactions exist in many complex systems
- Hypergraphs consist of nodes and hyperedges, and each hyperedge is a subset

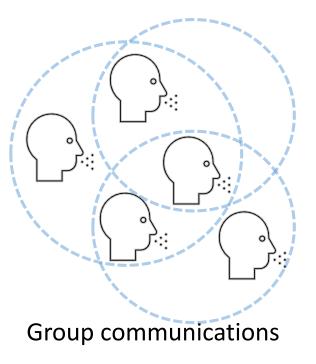
of any number of nodes



Collaborations of researchers

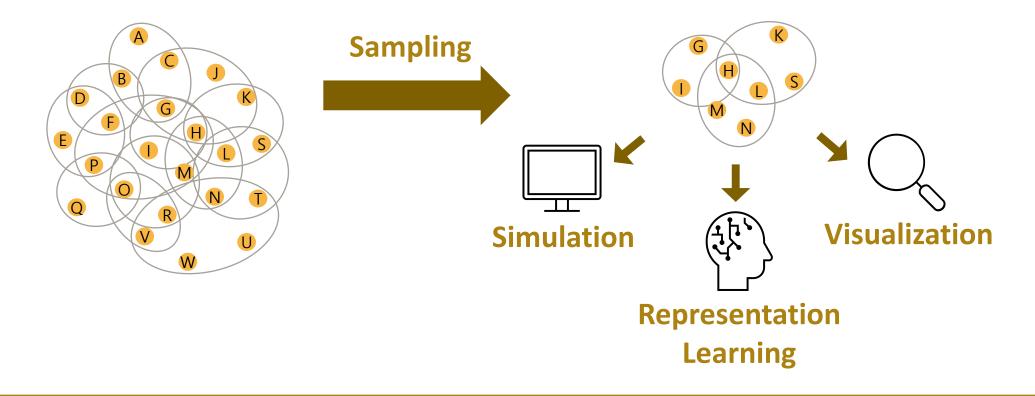


Co-purchases of items



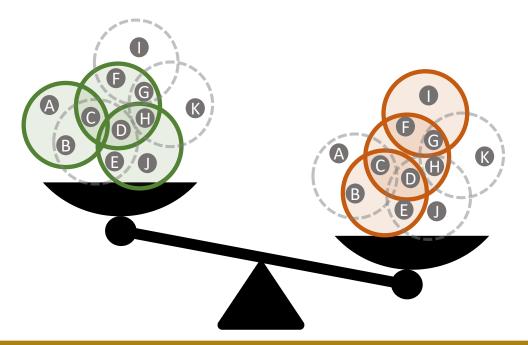
Sampling is indispensable

- Analyzing large-scale hypergraphs is time-consuming
- Sampling can mitigate difficulties in various tasks



Representative Hypergraph Sampling Problem

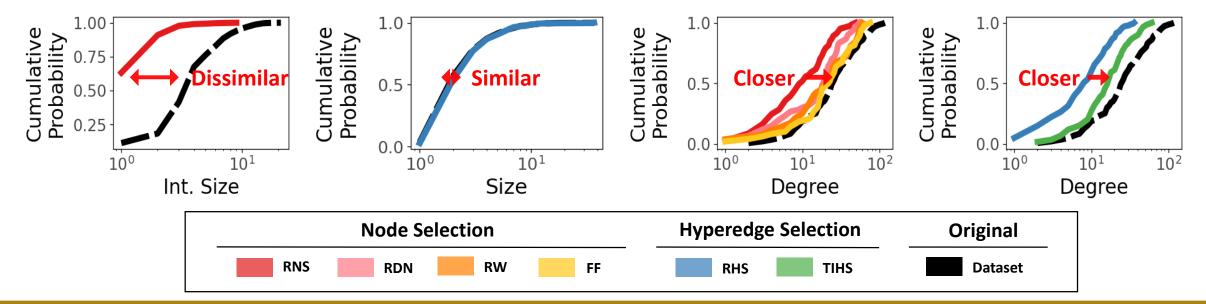
- **Q1** What is a **'representative'** sample?
 - How can we measure the quality of a sub-hypergraph?
- A1 We compare sampled and entire hypergraphs using **10 statistics**



Representative Hypergraph Sampling Problem

Q2 What are the **benefits and limitations** of simple and intuitive approaches for representative hypergraph sampling?

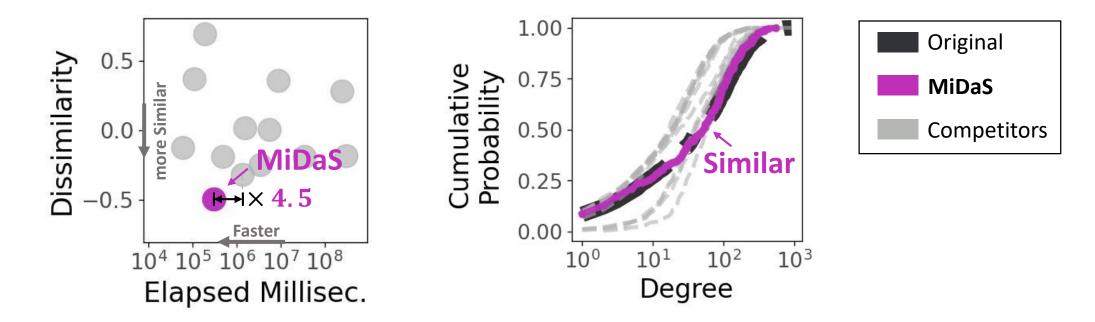
A2 We analyze six intuitive approaches in **11** real-world hypergraphs



Representative Hypergraph Sampling Problem

Q3 How can we find a **representative sub-hypergraph rapidly** without extensively exploring the search space?

A3 We propose MiDaS (Minimum Degree Biased Sampling of Hyperedges)



Roadmap

- 1. Introduction
- 2. Problem Formulation <<
- 3. Simple and Intuitive Approaches
- 4. MiDaS : Proposed Approach
- 5. Evaluation
- 6. Conclusions

Problem Definition

- **Given:** a large hypergraph $G = (\mathcal{V}, \mathcal{E})$
 - a sampling portion $p \in (0, 1)$
- **Find:** a subhypergraph $\widehat{G} = (\widehat{\mathcal{V}}, \widehat{\mathcal{E}})$ where $\widehat{\mathcal{V}} \subseteq \mathcal{V}$ and $\widehat{\mathcal{E}} \subseteq \mathcal{E}$
- **To preserve:** "structural properties" of **G**
- Subject to: $|\hat{\mathcal{E}}| = \lfloor |\mathcal{E}| \cdot p \rfloor$

Structural properties of Hypergraphs

• We consider following ten statistics,

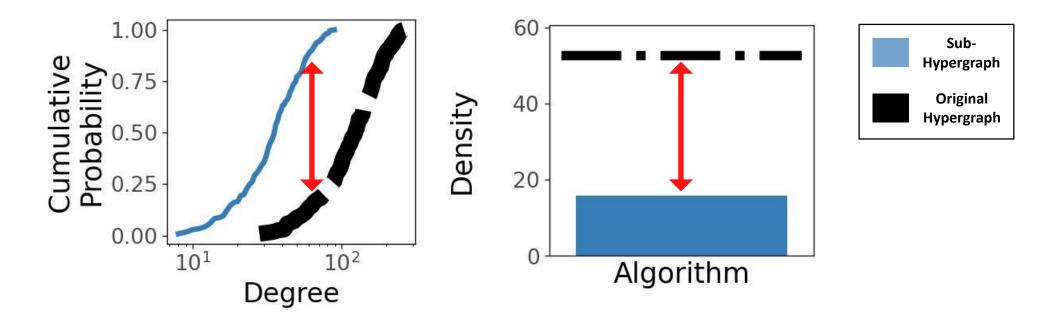
Node-Level	Ť	P1 .	Degree
	Ļ	P2 .	Pair Degree
Hyperedge- Level	Ť	P3 .	Size
	↓ ▼	P4 .	Intersection Size
Graph-Level	Ť	P5 .	Singular Values
		P6 .	Connected Component Size
		P7 .	Global Clustering Coefficient
		P8 .	Density
		P9 .	Overlapness
	Ļ	P10	Effective Diameter

Measuring the quality of a sub-hypergraph

• For probability density functions (P1 - P6), we measure the distance called

Kolmogorov-Smirnov D-statistics

• For scalar values (P7 - P10), we measure the relative difference



Evaluation Procedures

 To directly compare the qualities of sub-hypergraphs in overall P1 – P10, we average ten distances by rankings and Z-Scores

Scales are Different					Size Rank	Density Rank	Average
				$\widehat{G_1}$	3	2	2.5
	Distance in Size Dist.	Difference in Density	1. Ranking	$\widehat{G_2}$	1	3	2
subhypergraph $\widehat{G_1}$	0.2	7		$\widehat{G_3}$	2	1	1.5
subhypergraph $\widehat{G_2}$	0.01	13			Size Z-Score	Density Z-Score	Average
subhypergraph	0.02	1	2. Z-Score	$\widehat{G_1}$	1.6	0	0.8
$\widehat{G_3}$	0.02	0.02 1	2. 2-3core	$\widehat{G_2}$	-0.7	1.2	0.25
				G ₂	-0.6	-1.2	-0.9

Domain	Dataname	Hyperedge	Node	
Email	email-Enron, email-Eu	email	sender and receivers	
Contact	contact-primary, contact-high	group interaction	individuals	
Drugs	NDC-classes, NDC-substances	NDC code for a drug	classes or substances	
Tags	tags-ubuntu, tags-math	post	tags	
Threads	threads-ubuntu	question	answerers	
Co-authorship	coauth-geology, coauth-history	publication	co-authors	

- 1. Introduction
- 2. Problem Formulation
- 3. Simple and Intuitive Approaches <<
- 4. MiDaS : Proposed Approach
- 5. Evaluation
- 6. Conclusions

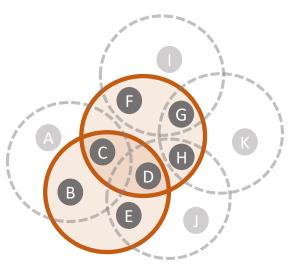
Simple and Intuitive Approaches

Node Selection

Choose a subset of nodes and then return the induced sub-hypergraph

□ Hyperedge Selection

Choose a subset of hyperedges and return this



Induced sub-hypergraph of {*B*, *C*, *D*, *E*, *F*, *G*, *H*}

Simple and Intuitive Approaches

Node Selection

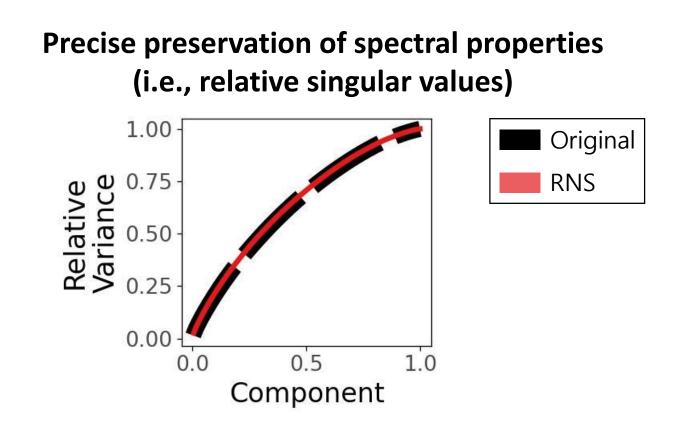
choose a subset of nodes and then return the induced sub-hypergraph

RNS	Random Node Sampling	drawing a node uniformly at random
RDN	Random Degree Node	drawing a node with probabilities proportional to node degrees
RW	Random Walk	random walk with restart on clique- expansion
FF	Forest Fire	forest fire in hypergraphs as in HyperFF [1]

[1] Yunbum Kook, Jihoon Ko, and Kijung Shin. 2020. Evolution of Real-world Hypergraphs: Patterns and Models without Oracles. In ICDM.

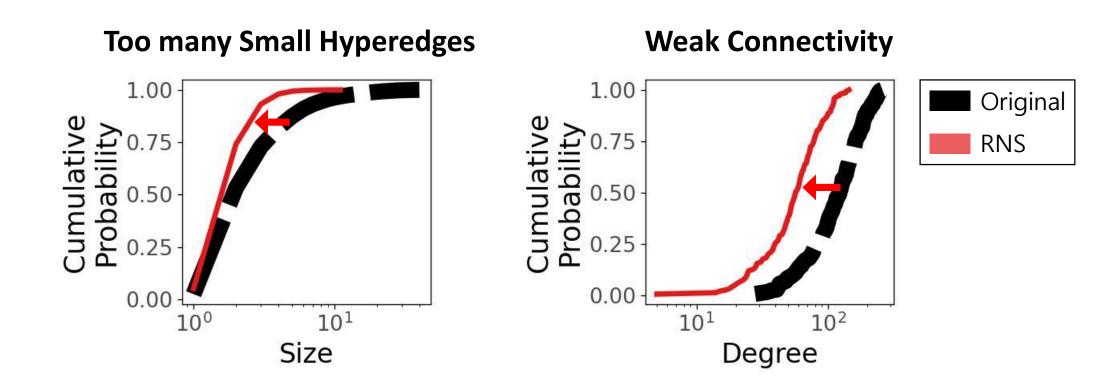
Characteristics: RNS

• Pros



Characteristics: RNS

• Cons



Simple and Intuitive Approaches

Node Selection

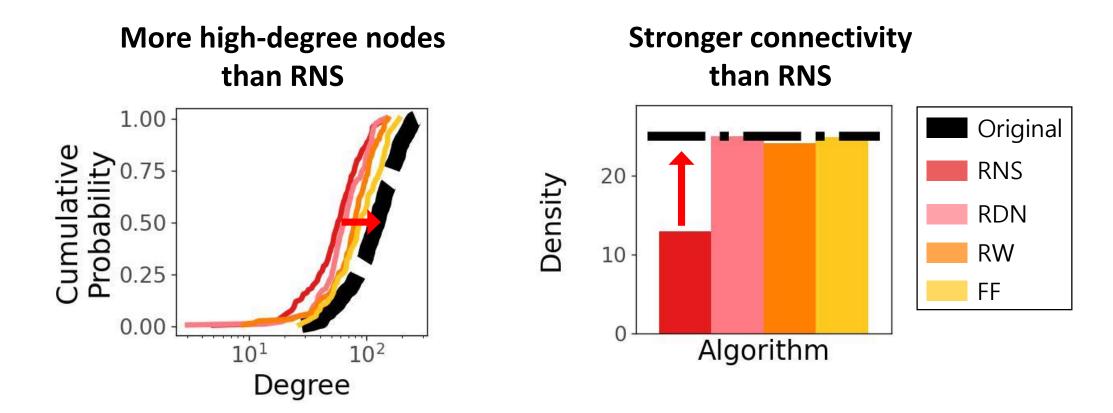
choose a subset of nodes and then return the induced sub-hypergraph

RNS	Random Node Sampling	drawing a node uniformly at random
RDN	Random Degree Node	drawing a node with probabilities proportional to node degrees
RW	Random Walk	random walk with restart on clique- expansion
FF	Forest Fire	forest fire in hypergraphs as in HyperFF [1]

[1] Yunbum Kook, Jihoon Ko, and Kijung Shin. 2020. Evolution of Real-world Hypergraphs: Patterns and Models without Oracles. In ICDM.

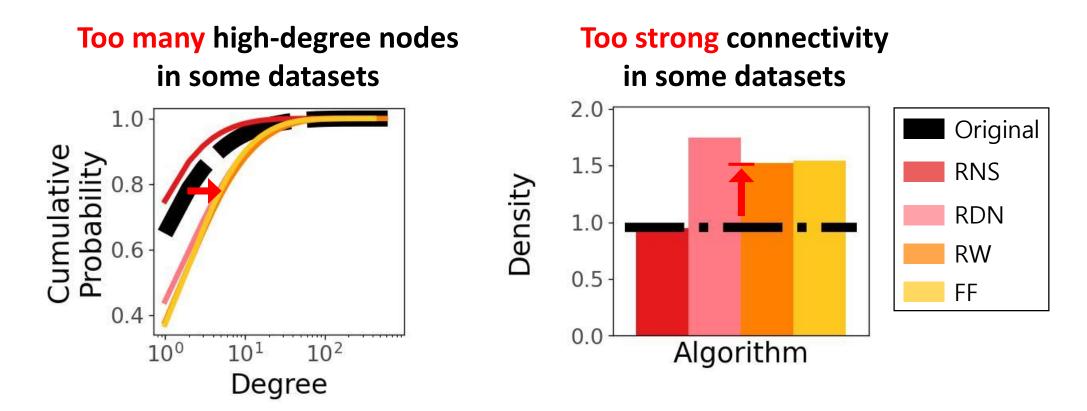
Characteristics: RDN, RW and FF

• Pros



Characteristics: RDN, RW and FF

• Cons



Simple and Intuitive Approaches

□ Hyperedge Selection

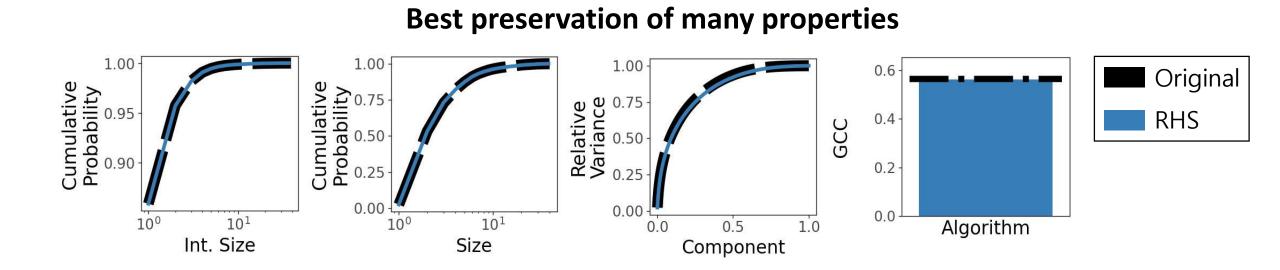
choose a subset of hyperedges and return this

RHS	Random Hyperedge Sampling	draw a target number of hyperedges uniformly at random
TIHS	Totally-Induced Hyperedge Sampling	extend totally-induced edge sampling [2] to hypergraphs

[2] Nesreen Ahmed, Jennifer Neville, and Ramana Rao Kompella. 2011. Network sampling via edge-based node selection with graph induction.

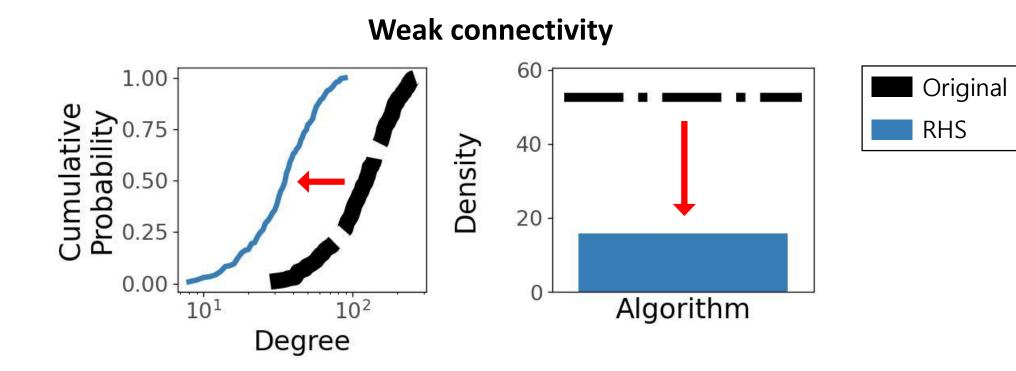
Characteristics: RHS

• Cons



Characteristics: RHS

• Cons



Simple and Intuitive Approaches

□ Hyperedge Selection

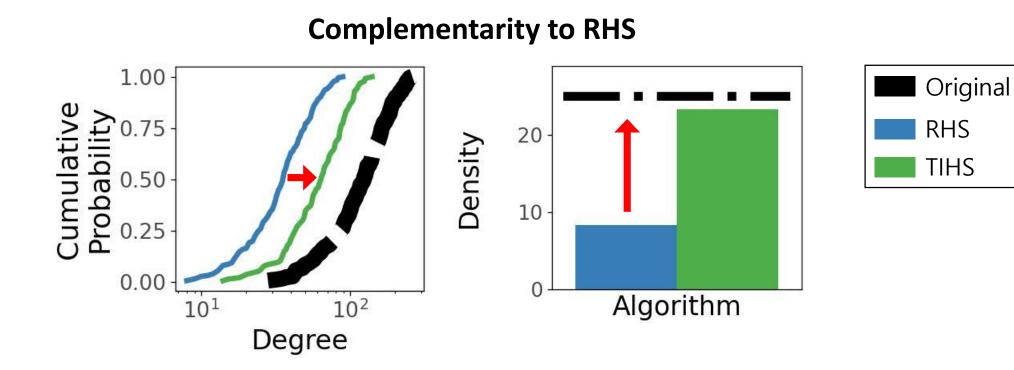
choose a subset of hyperedges and return this

RHS	Random Hyperedge Sampling	draw a target number of hyperedges uniformly at random
TIHS	Totally-Induced Hyperedge Sampling	extend totally-induced edge sampling [2] to hypergraphs

[2] Nesreen Ahmed, Jennifer Neville, and Ramana Rao Kompella. 2011. Network sampling via edge-based node selection with graph induction.

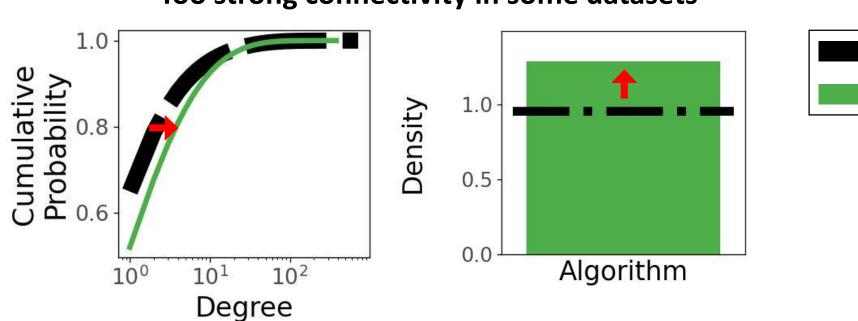
Characteristics: TIHS

• Pros



Characteristics: TIHS

• Cons



Too strong connectivity in some datasets

MiDaS: Representative Sampling from Real-world Hypergraphs (by Minyoung Choe)

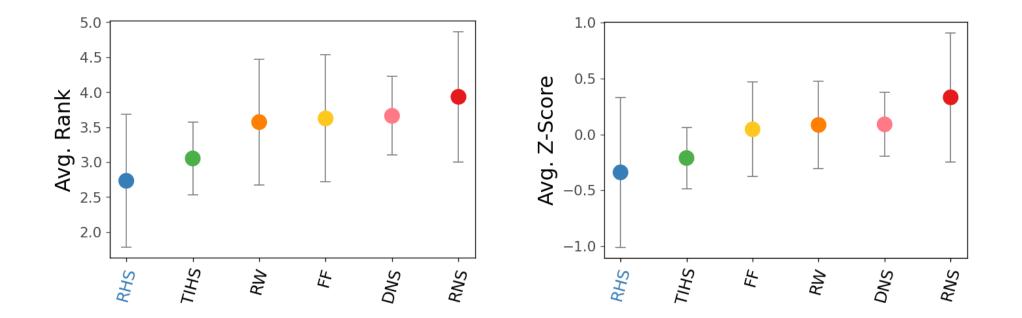
Original

TIHS

- 1. Introduction
- 2. Problem Formulation
- 3. Simple and Intuitive Approaches
- 4. MiDaS: Proposed Approach <<
- 5. Evaluation
- 6. Conclusions

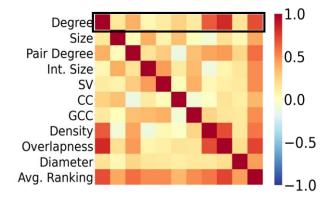
Intuitions behind MiDaS

- Analyzing the simple approaches motivates us to come up with MiDaS
 - 1) RHS performs *best* overall, but its samples suffer from *weak connectivity*, including lack of high-degree nodes



Intuitions behind MiDaS

- Analyzing the simple approaches motivates us to come up with MiDaS
 - 2) Degree preservation is strongly correlated with the abilities to preserve other properties and thus the overall performance



Pearson correlation coefficients between rankings w.r.t. P1 - P10



Correlation between (a) the average degree and (b) overlapness and density

Intuitions behind MiDaS

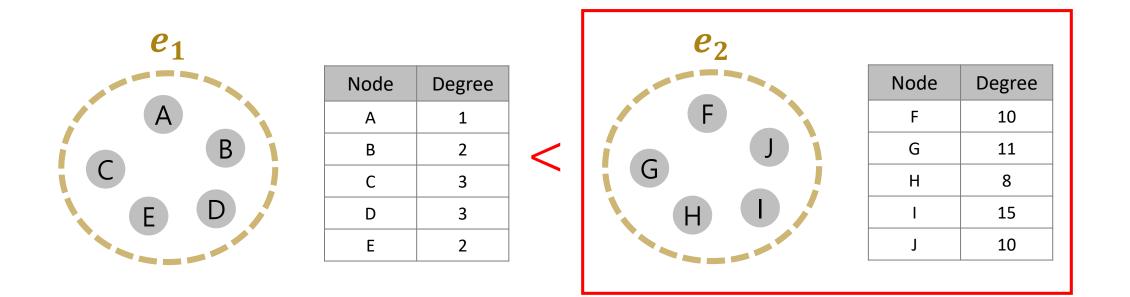
• Analyzing the simple approaches motivates us to come up with MiDaS.

Aim to overcome the lack of high-degree nodes in *RHS*

Focus on better preserving node degrees

MiDaS-Basic: Preliminary version

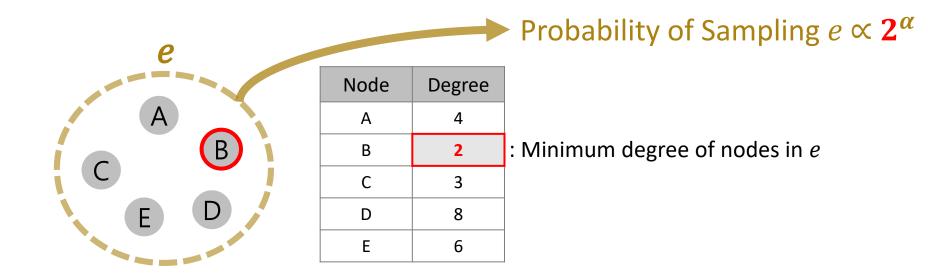
• To increase the fraction of high-degree nodes, **prioritize** hyperedges composed only of high-degree nodes.



MiDaS-Basic: Preliminary version

Sampling a target number of hyperedges with probability proportional to

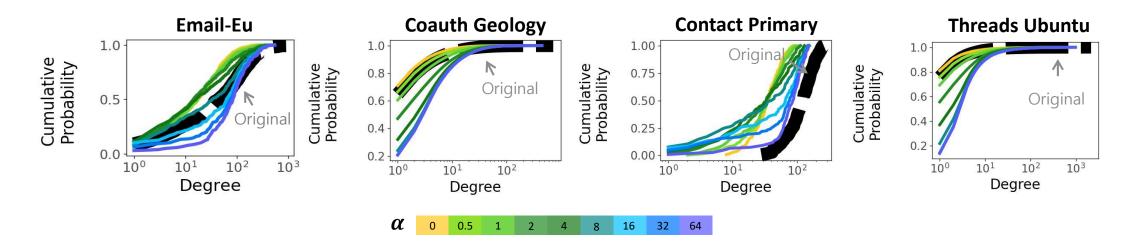
the minimum degree of nodes in each hyperedge to the power of *α*



Empirical Properties of MiDaS-Basic

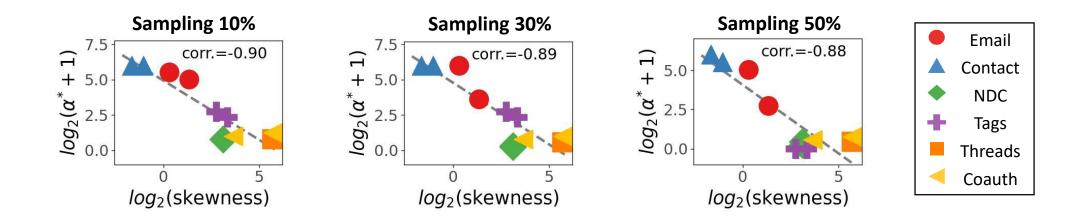
Obs. 1 As *α* **increases**, the degree distributions in samples tend to be **more biased towards high-degree nodes**

the bias in degree distributions can be directly controlled by α



Empirical Properties of MiDaS-Basic

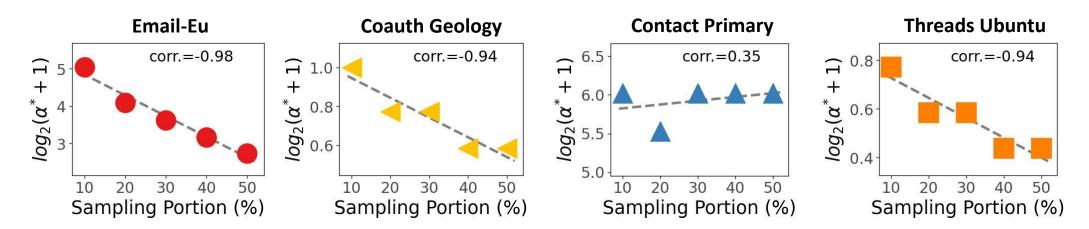
Obs. 2 As degree distributions in original hypergraphs are **more skewed**, larger α values are required to preserve the distributions



Empirical Properties of MiDaS-Basic

- **Obs. 2** As degree distributions in original hypergraphs are **more skewed**, larger α values are required to preserve the distributions
- **Obs. 3** As we sample **fewer hyperedges**, **larger** α values are required to preserve degree distributions

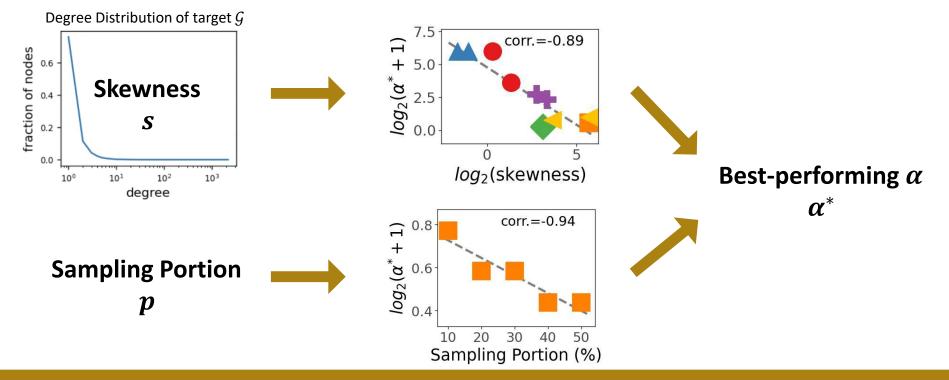
\rightarrow exploited to automatically tune α



MiDaS: Full-fledged version

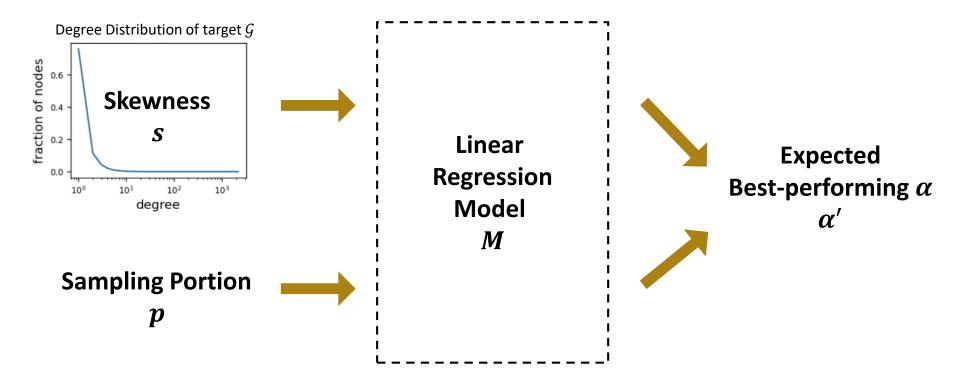
- MiDaS is our final sampling algorithm that automatically tunes α
- Based on the strong correlations in **Observations 2** and **3**, the best-performing α

can be expected from skewness and sampling portions



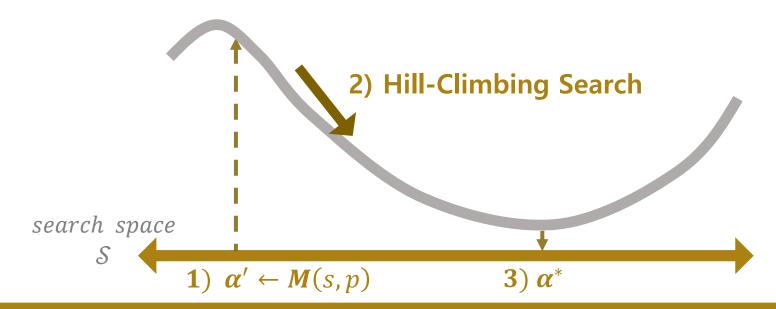
MiDaS: Full-fledged version

• We fit **a linear regressor** M that maps (a) the skewness of the degree distribution in the input hypergraph and (b) the sampling portion to (c) a best-performing α value



MiDaS: Full-fledged version

- The *α* value obtained by the linear regression model *M* is further tuned using hill climbing
- A search aims to **minimize the distance** between the input hypergraph and subhypergraph sampled from MiDaS-Basic with α **in the degree distribution**



- 1. Introduction
- 2. Problem Formulation
- 3. Simple and Intuitive Approaches
- 4. MiDaS : Proposed Approach
- 5. Evaluation <<
- 6. Conclusions

Evaluation

• We aim to demonstrate that MiDaS is ...

Quality: preserves the ten structural properties of real-world hypergraphs

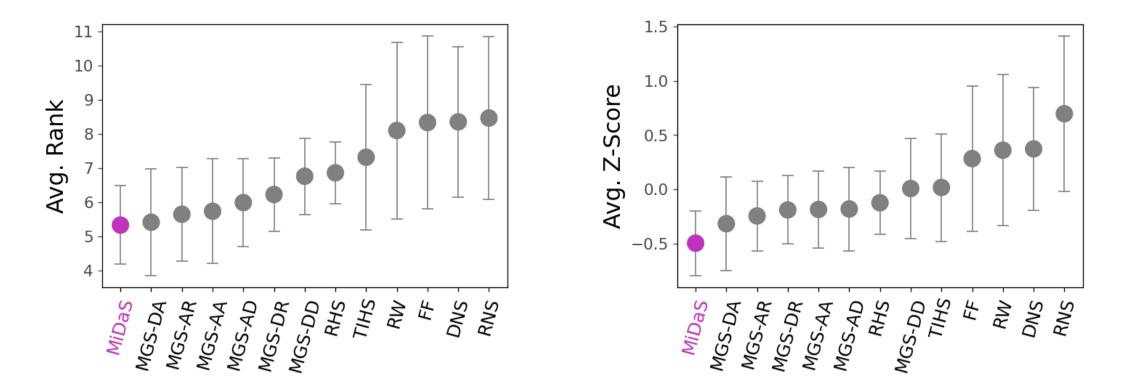
Robustness: performs well regardless of the sampling portions

Speed: runs fast compared to the competitors

- *Settings*: 11 Datasets under five different sampling portions (0.1 0.5)
- *Baseline*: six simple methods and six versions of metropolis graph sampling

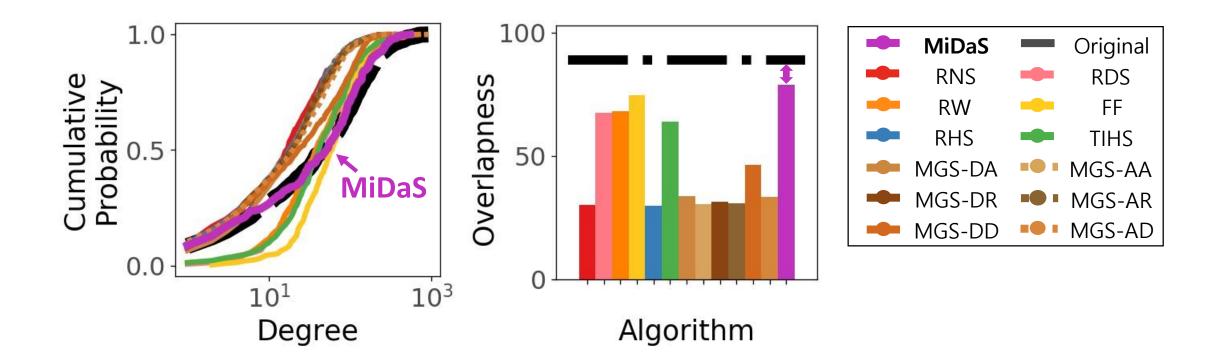
Evaluation: Quality

 MiDaS provides overall the most representative samples in terms of both average rankings and average Z-Scores



Evaluation: Quality

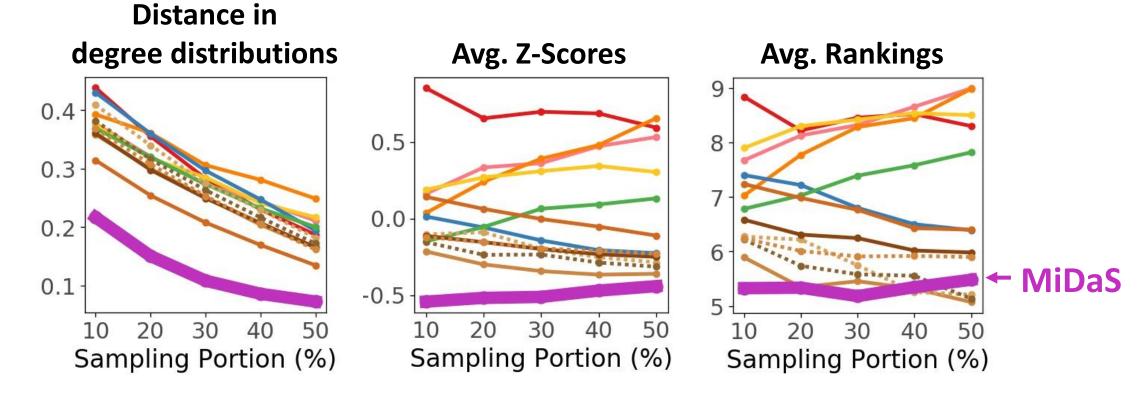
Especially, MiDaS best preserves node degrees, density, overlapness, and diameter



Evaluation: Robustness

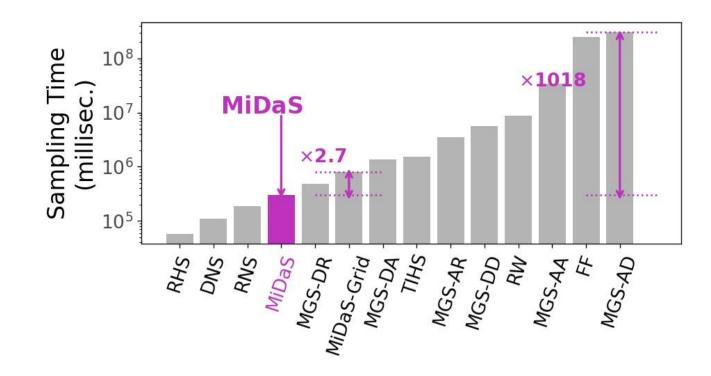
• MiDaS is consistently best regardless of sampling portions in degree distributions,

average Z-Scores, and average rankings



Evaluation: Speed

- MiDaS is the fastest except for the simplest methods
- It is $2.7 \times faster$ than MiDaS-Basic with grid search



- 1. Introduction
- 2. Problem Formulation
- 3. Simple and Intuitive Approaches
- 4. MiDaS : Proposed Approach
- 5. Evaluation
- 6. Conclusions <<

Conclusion

• We propose MiDaS, a representative sub-hypergraphs sampling method

Our contributions are:

U We **formulated** the problem of representative sampling from hypergraphs

□ We **observed** the characteristics of six intuitive sampling approaches

U We designed *MiDaS* which is fast while sampling overall the best sub-hypergraphs

Code & Datasets: <u>https://github.com/young917/MiDaS</u>

MiDaS: Representative Sampling from Real-world Hypergraphs

Minyoung Choe Jaemin Yoo KAIST SNU

Geon Lee KAIST

Woonsung Baek KAIST

k U Kang SNU

Kijung Shin KAIST