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Clusters in Graphs

Introduction Method Experiments ConclusionPreliminaries

Finding clusters in real-world graphs have useful implications.

Social Groups
in friendship networks

Functional modules
in Protein-interaction networks

Papers on the same topic
in citation networks



Graph Neural Networks (GNNs)
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▪ GNNs achieve remarkable performance in various tasks.

▪ Several GNN-based approaches have been developed also for graph clustering.



GNNs are Vulnerable to Noise Edges
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\\

Click error Spams
Message passing through 

noise edges can result 
in suboptimal outcomes

▪ GNN-based approaches in general are vulnerable to noise edges in graphs.

▪ Real-world graphs are often contaminated by noise edges (click error, spams, etc.)



Robust GNNs: Overview
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noise edges noise edges

▪ Several methods have been developed for robustness of GNNs.

▪ They are categorized into edge filtering and adjusted message-passing.



Robust GNNs: Edge Filtering
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noise edges

▪ Filtering edges based on graph topology or node attribute-based similarity.

▪ Learning a denoised adjacency matrix through end-to-end learning with

constraints (e.g., ℓ1 norm for sparsity, nuclear norm for low-rankness).



Robust GNNs: Adjust Message-Passing
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noise edges

▪ Adjust message-passing schemes to reduce messages passed through noise edges.

▪ It relies on supervision from node-label or graph-label, which are not contaminated

by noise edges.



Robust Graph Clustering

Introduction Method Experiments ConclusionPreliminaries

noise edges

GNNs

How to improve the robustness of GNN-based graph clustering?Q



Challenges in Robust Graph Clustering
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1. Lack of Supervision

▪ Existing robust GNNs rely on supervision from node-labels or graph-labels,

which however, is not given in graph clustering.

2. Contaminated Objective Function

▪ The objective function of graph clustering is based on graph topology, and

thus it is contaminated by noise edges.



MetaGC (Meta-weighting based Graph Clustering)

Introduction Method Experiments ConclusionPreliminaries

\

\
Decomposable

clustering loss function

\
Meta weighting

adaptively adjust 
the weight of each pair



Our Contributions
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Experiments

Extensive experiments 
on 5 real-world graphs 
under 3 levels of noise.

Methodology

Develop a robust 
graph clustering 

method based on 
Meta-Weighting.

Observations

GNN-based graph 
clustering is vulnerable 

to noise edges.

Theory

Define a theoretically 
suitable family of 

clustering loss 
functions for GNN-
based clustering.
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GNN-based Graph Clustering Methods
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▪ Graph clustering GNNs use a GNN followed by a MLP and softmax.

▪ Their output is a soft cluster assignment matrix 𝑃.

▪ The objective function is a continuous relaxation of a clustering loss function.



Meta-Weighting
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Meta-weighting
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▪ Meta-weighting is a meta-learning-based method that learns the weights of training

samples while minimizing an objective function.

▪ Meta-weighting has been successful for classification and recommendation.



Robust Graph Clustering via Meta Weighting for Noisy Graphs

Introduction Preliminaries Method Experiment Conclusions



Introduction Method Experiments ConclusionPreliminaries

\

\
Decomposable

clustering loss function

\
Meta weighting

adaptively adjust 
the weight of each pair

Proposed Method: MetaGC



Decomposable Clustering Loss Function 𝑓 𝑃

Introduction Method Experiments ConclusionPreliminaries

▪ Can be decomposed into a summation of loss on each node pairs.

▪ The loss on each pair is a weighted dot product of their assignment vectors.

[Definition] Decomposable clustering loss functions
Given 𝐺 = 𝑉, 𝐸 with 𝑉 = 𝑁, k ∈ ℕ, and a soft cluster assignment matrix 𝑃 ∈ 𝒫, a
clustering loss function 𝑃 ∈ 𝒫, a clustering loss function 𝑓:𝒫 → ℝ decomposable, if
there exist constant 𝑐𝑖𝑗 = 𝑐𝑖𝑗 𝐺 , ∀𝑖, 𝑗 ∈ 𝑁 s.t.



Decomposable Clustering Loss Function 𝑓 𝑃
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▪ Decomposable clustering loss function is suitable for continuous relaxation.
▪ [Theoretical guarantee]

optimal soft clustering assignments = optimal deterministic clustering assignments
(for details see Sec 3.3).

▪ We use a modularity-based objective function.

[Example] Modularity-based loss function

Modularity-based clustering loss function is a representative objective for clustering.

= 𝑐𝑖𝑗



GNN-based Clustering Model 𝐶
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𝑓 𝑃 =෍

𝑖=1

𝑁

෍

𝑗=1

𝑁

𝑐𝑖𝑗 𝑃𝑖 ∙ 𝑃𝑗

▪ GNN-based clustering model 𝐶 yields a soft cluster assignment matrix 𝑃.

▪ Input of 𝐶: Adjacency matrix, Node Attributes

▪ Output of 𝐶: Soft cluster assignment matrix 𝑃

Node Attributes

Adjacency Matrix



Meta-model 𝑀
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Meta-model 𝑀

▪ Meta-model 𝑀 yields a node-pair weight matrix 𝑽, used to weight the loss function.

▪ Input of 𝑀: Adjacency matrix, Node Attributes, 

Topology-based Node Similarities, Soft Cluster Assignments

▪ Output of 𝑀: Soft cluster assignment matrix 𝑃

Adjacency Matrix

Node Attributes

Topology-based
Node Similarities

Soft Cluster 
Assignments

e.g., Common neighbors, Adamic-Adar index etc. The output of the clustering model 𝐶.

Weight for each loss term  

𝑉𝑖𝑗 × ℓ𝑖𝑗



Meta-model 𝑀
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Meta-model 𝑀

▪ Meta-model 𝑀 yields a node-pair weight matrix 𝑽, used to weight the loss function.

▪ Input of 𝑀: Adjacency matrix, Node Attributes, 

Topology-based Node Similarities, Soft Cluster Assignments

▪ Output of 𝑀: Soft cluster assignment matrix 𝑃

Adjacency Matrix

Node Attributes

Topology-based
Node Similarities

Soft Cluster 
Assignments

e.g., Common neighbors, Adamic-Adar index etc. The output of the clustering model 𝐶.

Weight for each loss term  

𝑉𝑖𝑗 × ℓ𝑖𝑗

ℓ𝑖𝑗 = 𝑐𝑖𝑗𝑃𝑖𝑃𝑗
Decomposable clustering loss function



Overall Training Procedure
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▪ We follow the standard training procedure for meta-weighting

\

Meta-model update
②𝒘′ ← Update 𝐶

③

④ 𝜃 ← Update 𝑀

Meta-Model

𝑀 𝐴,𝑋, 𝑆, 𝑃𝑤; 𝜃

GNN-based

Clustering Model

𝐶 𝐴, 𝑋;𝑤

①
\

Clustering model update
②𝒘 ← Update 𝐶

Meta-Model

𝑀 𝐴,𝑋, 𝑆, 𝑃𝑤; 𝜃

GNN-based

Clustering Model

𝐶 𝐴, 𝑋;𝑤

①

Update loss with weight 𝑉

Update loss



Overall Training Procedure (Clean Validation)
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▪ Conventional Meta-Weighting

▪ Meta-weighting methods assume a clean validation set to train a meta-model .

▪ In noisy graph, the clean parts are typically unknown.

▪ Our Hypothesis: Clean validation set is not “necessary”

▪ Using distinct batches for training a meta-model and a clustering model.

▪ Our empirical results show that it is still possible to train a meta-model meaningfully.

Meta-Model

𝑀 𝐴,𝑋, 𝑆, 𝑃𝑤; 𝜃

GNN-based

Clustering Model

𝐶 𝐴, 𝑋;𝑤

Node 
pair 1

Node 
pair 2

Node 
pair 3

Node 
pair 4

Node 
pair 5

Node 
pair 6
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Experimental Questions

[Q1] Robustness & Accuracy

Is MetaGC more robust and accurate than the competitors on noisy graphs?

[Q2] Effectiveness of Meta-Weighting

Does the meta-model in MetaGC properly adjust the weights of loss terms?

[Q3] Ablation Study

Does each component of MetaGC contribute to performance improvement?
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Experimental Setups (Cont.)
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Dataset

▪ We use 5 real–world dataset.

▪ 4 citation graphs and 1 co-purchase graph.

Noisy-graph Generation

▪ We add noise edges randomly, selecting

those with endpoints in different classes.

▪ Noise levels I, II, and III: 30%, 60%, and 90%

noise-to-existing edge ratios, respectively.

noise edges



Experimental Setups (Cont.)

Introduction Method Experiments ConclusionPreliminaries

Competitors

▪ We compare MetaGC with 13 competitors.

• Four node embedding based methods

• Three GNN-based graph clustering methods

• Six graph denoising methods

Evaluation Metrics

▪ We use three evaluation metrics,

• F1 Score

• Normalize Mutual Information (NMI)

• Modularity



(Q1) Robustness & Accuracy
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▪ MetaGC gives the best overall clustering performance under each noise lebel.



(Q1) Robustness & Accuracy
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(Q2) Effectiveness of Meta-Weighting
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▪ The meta-model accurately distinguish noise edges from the real ones.

Meta-Weighting

Baseline



(Q3) Ablation Study
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▪ Every component of MetaGC contributes to the performance gain.

▪ MetaGC-X: MetaGC without the meta-model, i.e., the weights for all node pair are the same.

▪ MetaGC-A: MetaGC with the meta-model using only node attributes.
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Conclusion
▪ We propose MetaGC for robust GNN-based graph clustering against noise edges.

▪ MetaGC is robust against noise edges, achieving the best clustering performance 

overall among all the 14 considered methods.

▪ The meta-model in MetaGC assigns high weights to real edges and low weights to 

noise edges, leading to MetaGC's performance gain.
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Source Code & Dataset: https://github.com/HyeonsooJo/MetaGC

https://github.com/HyeonsooJo/MetaGC

