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Introduction

Clusters in Graphs

Finding clusters in real-world graphs have useful implications.
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Introduction

Graph Neural Networks (GNNs)

= GNNs achieve remarkable performance in various tasks.

=  Several GNN-based approaches have been developed also for graph clustering.
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Introduction

GNNs are Vulnerable to Noise Edges

=  GNN-based approaches in general are vulnerable to noise edges in graphs.

= Real-world graphs are often contaminated by noise edges (click error, spams, etc.)
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Message passing through

noise edges can result
in suboptimal outcomes




Introduction

Robust GNNs: Overview

= Several methods have been developed for robustness of GNNs.

" They are categorized into edge filtering and adjusted message-passing.

*
A d
*
.
*
*




Introduction

Robust GNNs: Edge Filtering

" Filtering edges based on graph topology or node attribute-based similarity.
= |earning a denoised adjacency matrix through end-to-end learning with

constraints (e.g., £1 norm for sparsity, nuclear norm for low-rankness).

[ ----- noise edges ]




Introduction

Robust GNNs: Adjust Message-Passing

= Adjust message-passing schemes to reduce messages passed through noise edges.
" |t relies on supervision from node-label or graph-label, which are not contaminated

by noise edges.

[ ----- noise edges ]
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Robust Graph Clustering

Q How to improve the robustness of GNN-based graph clustering?
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Introduction

Challenges in Robust Graph Clustering

1. Lack of Supervision
= Existing robust GNNs rely on supervision from node-labels or graph-labels,

which however, is not given in graph clustering.

2. Contaminated Objective Function
= The objective function of graph clustering is based on graph topology, and

thus it is contaminated by noise edges.
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MetaGC (Meta-weighting based Graph Clustering)

Topology-based Soft Clust gg
R —> Meta Model ortLiuster ‘ \
Node Similarities S —>[ M(A.X,S, P¥; ) ]4— Assignments PW
Decomposable
Node Attributes X — clustering loss function
Node-Pair -

Weights V7?

GVNN-based ) @ @ @ |

Clustering Model e
. : C(A X- Meta weighting
Adjacency Matrix A — (4, X;w) = )—— Clusters adaptively adjust

the weight of each pair




Introduction

Our Contributions

Theory

Define a theoretically
suitable family of
clustering loss
functions for GNN-
based clustering.

Observations

GNN-based graph
clustering is vulnerable

to noise edges.

X

Methodology

Develop a robust
graph clustering
method based on

Meta-Weighting.

Yoé

Experiments

Extensive experiments
on 5 real-world graphs
under 3 levels of noise.
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Preliminaries

GNN-based Graph Clustering Methods

=  Graph clustering GNNs use a GNN followed by a MLP and softmax.

= Their output is a soft cluster assignment matrix P.

= The objective function is a continuous relaxation of a clustering loss function.
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Preliminaries

Meta-Weighting

Meta-weighting is a meta-learning-based method that learns the weights of training

samples while minimizing an objective function.

Meta-weighting has been successful for classification and recommendation.
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Method

Decomposable Clustering Loss Function f(P)

= Can be decomposed into a summation of loss on each node pairs.

= The loss on each pair is a weighted dot product of their assignment vectors.

[Definition] Decomposable clustering loss functions
Given G = (V,E) with |V| = N, k € N, and a soft cluster assighment matrix P € P, a
clustering loss function P € P, a clustering loss function f:P — R decomposable, if

there exist constant ¢;; = ¢;;(G), Vi,j € [N] s.t.

f(P) =Zcijpi - P

@@.j)€
all node pairs



Method

Decomposable Clustering Loss Function f(P)

= Decomposable clustering loss function is suitable for continuous relaxation.

* [Theoretical guarantee]

optimal soft clustering assignments = optimal deterministic clustering assignments
(for details see Sec 3.3).

= We use a modularity-based objective function.

[Example] Modularity-based loss function

Modularity-based clustering loss function is a representative objective for clustering.

fiP)= sz( v ZIEI)P '

(L)€
all node pairs — ..




Method

GNN-based Clustering Model C

= GNN-based clustering model C yields a soft cluster assignment matrix P.

= |Input of C: Adjacency matrix, Node Attributes

=  Qutput of C: Soft cluster assignment matrix P

Node Attributes — 1 @00
(EEEEEN @IIDID 2 o._; 0.01]0.01
@ 3 |o.88]0.070.05 N N
— S MLP 4 foodfostjonz _zz . p.. P
ERNENE @ { GNN }I{With softmax 5 [009|os9) 002 fP) = Cij Py - B
@ @ ITTTT] 6 [001]0.0af0.05 i=1 j=1
7 Joxzjocsjose decomposable clustering
@ & [o.01 [o.01 [0.08 .
[T @ @ S s i loss function f(P)
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Method

Meta-model M

= Meta-model M yields a node-pair weight matrix V, used to weight the loss function.

= |nput of M: Adjacency matrix, Node Attributes,

Topology-based Node Similarities, Soft Cluster Assignments
N e.g., Common neighbors, Adamic-Adar index etc. I—>The output of the clustering model C.

= Qutput of M: Soft cluster assignment matrix P

Adjacency Matrix
Node Attributes g A
—>{ Meta-model M > Vi X4y
Topology-based J
Node Similarities \. ~/ Weight for each loss term

Soft Cluster
Assignments



Method

Meta-model M

= Meta-model M yields a node-pair weight matrix V, used to weight the loss function.

= |nput of M: Adjacency matrix, Node Attributes,

Topology-based Node Similarities, Soft Cluster Assignments
N e.g., Common neighbors, Adamic-Adar index etc. I—>The output of the clustering model C.

= Qutput of M: Soft cluster assignment matrix P

Adjacency Matrix
Node Attributes g A
—>{ Meta-model M > Vij X 4
Topology-based
Node Similarities \. ~/ Weight for each loss term
Soft Cluster ¥
Assignments tij = cijPiP;

Decomposable clustering loss function




Method

Overall Training Procedure

We follow the standard training procedure for meta-weighting

—> Update loss with weight V

@ 6 < Update Mf)
[ Meta-Model J

M(A,X,S, P¥;8)
o

GNN-based ®
Clustering Model

C_/ C(4,X;w)
@ w' « Update C
Meta-model update

—> Update loss

Meta-Model
M((A4,X,S, PY;0)
o

GNN-based
Clustering Model

C_/ C(4,X;w)
@ w « Update C

Clustering model update

!
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Method

Overall Training Procedure (Clean Validation)

=  Conventional Meta-Weighting

= Meta-weighting methods assume a clean validation set to train a meta-model .

" In noisy graph, the clean parts are typically unknown.

=  Qur Hypothesis: Clean validation set is not “necessary”

= Using distinct batches for training a meta-model and a clustering model.

= Qur empirical results show that it is still possible to train a meta-model meaningfully.

o GNN-based
Meta-MoWe Clustering Model
M(A X,S,PY;0) C(4,X;w)

[ 1 [ 1
Node Node Node Node Node Node
pair 1 pair 2 pair 3 pair 4 pair 5 pair 6
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Experiments

Experimental Questions

[Q1] Robustness & Accuracy

Is MetaGC more robust and accurate than the competitors on noisy graphs?

[Q2] Effectiveness of Meta-Weighting

Does the meta-model in MetaGC properly adjust the weights of loss terms?

[Q3] Ablation Study

Does each component of MetaGC contribute to performance improvement?



Experiments

Experimental Setups (Cont.)

Dataset

= \We use 5 real-world dataset.

= 4 citation graphs and 1 co-purchase graph.

Noisy-graph Generation

Name ’ # Nodes | # Edges ’ # Attributes | # Classes

Cora 2,708 5,278 1,433 7
Cora-ML 2,995 8,158 2,879 7
Citeseer 3,327 4,552 3,703 6
Amazon-Photo 7,535 119,081 745 8
Pubmed 19,717 44,324 500 3

= We add noise edges randomly, selecting
those with endpoints in different classes.
= Noise levels |, I, and Ill: 30%, 60%, and 90%

noise-to-existing edge ratios, respectively.
®. 9
2N

O ‘""C O [+ noise edges |




Experiments

Experimental Setups (Cont.)

Competitors Evaluation Metrics
=  We compare MetaGC with 13 competitors. = We use three evaluation metrics,
* Four node embedding based methods * F1 Score
* Three GNN-based graph clustering methods * Normalize Mutual Information (NMI)

* Six graph denoising methods * Modularity



Experiments

(Q1) Robustness & Accuracy

=  MetaGC gives the best overall clustering performance under each noise lebel.

Noise Level

|

I

I

. . . _ AR
Metric F1 Score NMI ‘ Modularity F1 Score NMI ‘ Modularity F1 Score NMI ‘ Modularity

DEEPWALK || 0.405+0.048 | 0.465:0.008 | 0.689£0.006 || 0.297+0.022 | 0.389+0.010 | 0.659+0.007 || 0.256+0.014 | 0.352+0.012 | 06410007 | 6.0"**
NODE2VEC || 0.410£0.043 | 0.464+0.006 | 0.690+0.005 || 0.296+0.023 | 0.389+0.008 | 0.660+£0.004 || 0.261£0.017 | 0.359+0.011 | 0.642+0.007 || 5.4***
DGI 0.230£0.010 | 0.287+0.003 | 0.151+0.007 || 0.198+0.009 | 0.239+0.004 | 0.141x0.010 | 0.183£0.006 | 0.203:0013 | 0.122%0.013 || 9.7°**
GMI 0.099+0.004 | 0.021£0.001 | -0.003£0.001 || 0.103+0.005 | 0.025+0.001 | -0.002+0.001 || 0.109+0.006 | 0.030+0.001 | -0.002+0.001 || 11.7***
MINCUTPoOL || 0.464+0.000 | 0.000+0.000 | 0.000£0.000 || 0.464+£0.000 | 0.000+0.000 | 0.000+0.000 || 0.464+0.000 | 0.000+0.000 | 0.000£0.000 || 9.4%*
DMoN 0.556£0.049 | 0533£0.041 | 0.609+0.036 || 0.528+0.028 | 0.494£0.025 | 0.599+0.023 | 0.470£0.033 | 0.425+0.036 | 0.531:0.050 || 33"
GCC 0.538+0.022 | 0.501£0.039 | 0.619+0.034 || 0.469+0.007 | 0.377+0.019 | 0.540£0.027 || 0.459+0.006 | 0.353+0018 | 0.526+0.024 || 5.9***
GCN-JACCARD || 0.557+0.049 | 05330040 | 0.610+0.036 || 0525£0.034 | 0.493+0.028 | 0.597+0.032 || 0.473£0.034 | 0431£0038 | 05380052 || 3.1***
GCN-SVD || 0.390£0.004 | 0365£0.009 | 0.497+0.002 || 0.408+0.005 | 0.379+0.004 | 0.506£0.006 | 0.403+0.005 | 03740017 | 0.507+0.011 || 7.4"*
GDC 0.514£0.073 | 05020054 | 0.572+0.043 || 0.474+0.057 | 0.447+0.052 | 0.547£0.059 | 0.463£0.033 | 0.418+0.031 | 0532+0.050 || 4.9***
PROGNN 0.0T. OOT. 0.0T. OOT. 0.0T. 0.0T. 0.0T. 0.0T. O.0T. NA.
PTDNET 0.0M. O.0M. O.0M. 0.0M. O.0M. 0.0M. O.0M. 0.0M. 0.0M. NA.
FGC 0.377+0.000 | 0.071£0.001 | 0.145+0.003 || 0.366+0.000 | 0.055+0.000 | 0.103+0.001 | 0.362+0.000 | 0.048+0.000 | 0.084:0.001 || 9.6™

METaGC || 0.562+0.015 | 05660017 | 0.675+0.008 || 0.528+0.020 | 0520£0.013 | 0.664+0.007 || 0.508+0.014 | 0.498+0.009 | 0658+0.006 || 1.2

(a) Amazon-Photo
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Q1) Robustness & Accuracy

Noise Level || I | 1T | i [ Ar Noise Level || 1 I i [ ar
Metric H F1 Score NMI ‘ Moduarity H F1 Score NMI ‘ Moduarity H F1 Score NMI ‘ Moduarity H Metric H F1 Score | NMI ‘ Moduarity ‘ Moduarity || F1 Score | NMI ‘ Moduarity H
DEEPWALK 0.300£0.024 | 0.243£0.010 | 0.680£0.009 || 0.216+0.010 | 0.155£0.006 | 0.593£0.011 || 0.169£0.014 | 0.111£0.009 | 0.528+0.008 | 8.3*** DEEPWALK 0.128+0.004 | 0.089£0.003 | 068 0.586+0.005 | 0.086+0.004 | 0.037£0.002 | 0.545+0.003 | 7.3***
NODEZVEC 0.292+0.028 | 0.247+0.015 | 0.684+0.009 || 0.210+0.016 | 0.15420.010 | 0.594+£0.009 || 0.170£0.009 | 0.111£0.011 | 0.528+0.009 | 8.3*** Nope2VEe 0.127£0.004 | 00896 0.587+0.005 | 0.085+£0.004 | 0.037+0.003 | 0.545+0.005 | 7.6**
DGI 0.351+£0.040 | 0.415£0.011 | 0.619+0.015 || 0.294+0.027 | 0.330£0.012 | 0.547+0.017 || 0.248+0.018 | 0.240+0.017 | 0.412+0.033 | 6.1*** DGI 0.199+£0.048 0.153£0.007 | 0.130£0.006 | 0.043£0.003 | 0.160£0.007 || 9.2***
GMI 0.27740.023 | 0.319+0.008 | 0576£0.010 || 0.226+0.016 | 0.229+0.005 | 0.496+0.007 || 0.152+0.016 | 0.145£0.012 | 0391+£0.020 | 9.7*** 0.135+0.002 | 0.116£0.006 | 0.049£0.001 | 0.115£0.006 | 9.3***
MiNCuTPooL || 0.265£0.035 | 0.222£0.023 | 0.614£0.012 || 0.217£0.027 | 0.147£0.019 | 0.556+0.012 || 0.219£0.097 | 0.086+0.039 | 0.436+0.172 0.487+0.011 0.325£0.020 | 0.079+£0.011 | 0472+0.016 |/ 5.9
DMoN 0.400£0.023 | 0.343+0,015 | 0.661£0.012 || 0.355+0.023 | 0.280£0.013 | 0.620+£0.013 || 0.326£0.016 | 0.231:0.016 0.518+0,003 | 03460019 | 0.090£0.023 | 0.497+0.010 | 3.7°**
Gece 0.375+£0.017 | 0.230+0.013 | 0.486+0.011 || 0.364+0.023 | 0.114£0.014 | 0.312+0.053 || 0.364+£0.041 | 0.076+0.016 0.4214£0.004 | 0.505+£0.053 | 0.019+£0.010 | 0.276+0.149 || 7.4***
GCN-JACCARD || 0.415+0.022 | 0.364£0.017 | 0.661£0.014 || 0369+0.030 | 0.310£0.014 | 0.627+0.013 || 0.348+0.030 0.518+0.003 | 0.346+0.020 | 0.090£0.023 | 0.498+0.010 || 3.2"**
GCN-SVD 0.313£0.025 | 0.207+0.019 | 0.487+0.022 || 0.291+0.031 | 0.172+£0.023 | 0.468+0.016 || 0.288340 0.372+0.006 | 033220035 | 0.060£0.014 | 0.365+0.005 | 7.1°**
GDC 0.298+0.030 | 0.218+0,021 | 0.577+0.020 || 0.266+0.027 | 0.183£0.017 | 0.555+0.0 0.477+0.004 | 03270023 | 0.071£0.022 | 0475+0.011 || 6.2
PrOGNN 0.405+0.023 | 0.34840.015 | 0.631+0.015 0.37040.022 | 0.296+0.0 0.0T. 0.0T. 0.0T. 0.0T. NA.
PTDNET 0.198+0.014 | 0.033+0.010 | 0.300£0.011 || 0.186+0.010 | 0 0.0M. 0.0M. 0.0M. 0.0M. NA.
FGC 0.388+0.005 | 0.145£0.005 | 0.337+0.006 0.261+0.000 || 0.576=0.000 | 0.044+0.000 | 0.218+0.000 | 7.1°**
MeraGC || 0.413:0.030 | 0.379:0.027 | 0.6960.010 || 523+0.001 || 0380+0.003 | 0.141+0.004 | 0.513x0001 [ 2.6
Noise Level || i I i 1 I AR
Metric || F1 Score NMI | Moduarity | || F1Score | NMI | Moduarity ||

0.112+0.014 | 0.044£0.004 | 0.596+0.007 || 9.7***
0.116£0.011 0.041£0.005 0.596x0.011 9.2%**

DEepWALK 0.375+0.009 0.276£0.013 0.636£0.016
NopEe2VEC 0.377+0.007 0.28240.006 0.64440.005

DGI 0.379£0.063 | 0.295£0.037 | 0.340£0.045 0.183£0.020 | 0.176£0.004 | 0.562+0.032 6.0%**
GMI 0.366+0.018 | 0.268+0.011 | 0.395+0.013 0.185£0.009 | 0.199£0.006 | 0.486+0.015 7.1
MinCutPooL || 0.271+0.026 | 0.200+£0.019 | 0.592+0.018 . . 077 0.067£0.050 | 0.385£0.287 0.435£0.136 | 0.021£0.037 | 0.154+0.256 8.6M%*
DMoN 0.340+0.026 | 0.28940.025 | 0.661+0.016 . . (308+0.012 | 0.139+£0.009 | 0.624+0.008 0.283+0.009 | 0.1124£0.006 | 0.591+0.009 6.6"™*
GCC 0.461+0.022 | 0.299+0.024 | 0.441+0.041 0.415+0.014 0.415+0.024 | 0.147£0.039 | 0.448+0.114 0.419+0.054 | 0.078+0.039 | 0.312+0.161 6.3%**
GCN-Jaccarp || 0.358£0.033 | 0.283+£0.033 | 0.600+0.015 0.323£0.025 09£0.018 | 0.676+0.009 0.33740.011 | 0.171£0.008 | 0.643+0.004 0.306+0.012 | 0.139£0.007 | 0.612+0.007 4.0%**
GCN-SVD 0.275+0.022 | 0.16540.024 | 0.403+0.029 0.247+0.017 0.12040.013 | 0.448+0.021 0.248+0.027 | 0.084+0.008 | 0.422+0.022 0.237+0.027 | 0.062+0.010 | 0.398+0.022 9.8***

GDC 0.267+0.019 0.159+0.016 0.475+0.019 0.230+0.020 0.257+0.026 0.117£0.015 0.548+0.021 0.231£0.015 0.096+0.012 0.530£0.013 0.232+0.018 0.089+0.012 0.529+0.014 9.4"%*
PrROGNN 0.345+0.026 0.297+0.025 0.662+0.016 0.319+0.020 0.359£0.025 0.191£0.017 0.636£0.012 0.326+0.016 0.153+0.009 0.587£0.013 0.302£0.012 0.125£0.006 0.544+0.012 5.9%%*

PTDNET 0.23540.045 0.058+0.007 0.288+0.007 0.216+0.055 0.278+0.029 0.048+0.004 0.344+0.007 0.277+0.044 0.036+0.014 0.317+0.019 0.29340.037 0.056+0.025 0.301+0.018 11.3%%
FGC 0.395£0.013 | 0.035£0.011 | 0.11120.029 || 0.415£0.002 0. 0.410£0.004 | 0.131+0.005 | 0.409+0.007 || 0.398+0.005 | 0.112+0.007 | 0.381£0.008 || 0400+0.005 | 0.105+0.005 | 0370+£0.008 || 7.4***
MeraGC || 0.380£0.034 | 0.337£0.024 | 0.683:0.014 [| 0.333x0.026 | 0.630£0.015 || 18 MEraGC || 03630017 | 0.230+0.013 [ 07070007 [[ 033020025 | 01940021 | 067720012 [[ 028920017 | 015120013 | 0.640+0.009 3.3

(e) Citeseer

(c) Cora



Experiments

(Q2) Effectiveness of Meta-Weighting

= The meta-model accurately distinguish noise edges from the real ones.

Dataset Cora Cora-ML Citeseer Amazon-Photo Pubmed
Noise Level I II III I II III I 1I III I II III I 1I III
Meta-Weighting || 0.927 | 0.875 | 0.831 0.934 | 0.878 | 0.825 || 0.908 | 0.843 | 0.793 || 0.993 | 0.985 | 0.976 || 0.890 | 0.813 | 0.757
Baseline 0.769 | 0.625 | 0.526 || 0.769 | 0.625 | 0.526 || 0.769 | 0.625 | 0.526 || 0.769 | 0.625 | 0.526 || 0.769 | 0.625 | 0.526
= Noise Level I = Noise Level 11 = Noise Level III
1.0 1.0 1.0 1.0 1.0
0.9 0.9 0.9 0.9 0.9
o = = = =
2 0.8 208 2 0.8 20.8 20.8
© 0.7 © 0.7 © 0.7 © 0.7 © 0.7
< & A~ < o
0.6 0.6 0.6 0.6 0.6
%30 02 04 06 08 10 %0 02 04 06 08 10 %30 02 04 06 08 10 %30 02 04 06 08 %0 02 o024 06
Recall Recall Recall Recall Recall
(a) Cora (b) Cora-ML (c) Citeseer (d) Amazon-Photo (e) Pubmed




(Q3) Ablation Study

Every component of MetaGC contributes to the performance gain.

Experiments

Noise Level I I I
Metric F1 Score NMI Modularity F1 Score NMI Modularity F1 Score NMI Moduarity
METAGC-X 0.340+0.022 0.203+0.016 0.695+0.006 0.308+0.017 0.173+£0.014 0.662+0.007 0.280+0.018 0.142+0.013 0.634+0.009
METAGC-A 0.346+0.020 0.214+0.014 0.701+0.007 0.324+0.019 0.187+0.016 0.674+0.011 0.288+0.017 0.150+0.012 0.638+0.009
METAGC 0.363+0.017 | 0.230+0.013 | 0.707+0.007 || 0.330+0.025 | 0.194+0.021 | 0.677+0.012 || 0.289+0.017 | 0.151+0.013 | 0.640+0.009

MetaGC-A: MetaGC with the meta-model using only node attributes.

MetaGC-X: MetaGC without the meta-model, i.e., the weights for all node pair are the same.
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Conclusion

= We propose MetaGC for robust GNN-based graph clustering against noise edges.

= MetaGC is robust against noise edges, achieving the best clustering performance

overall among all the 14 considered methods.

= The meta-model in MetaGC assigns high weights to real edges and low weights to

noise edges, leading to MetaGC's performance gain.

o Source Code & Dataset: https://github.com/HyeonsoolJo/MetaGC


https://github.com/HyeonsooJo/MetaGC

