

MARIO: Modality-Aware Attention and Modality-Preserving Decoders for Multimedia Recommendation

Taeri Kim*

Hanyang University

Yeon-Chang Lee*

Hanyang University and Georgia Tech KAIST

Sang-Wook Kim

Hanyang University

* Equal Contribution

Problem definition

Inputs

□User-item interaction information

Multimedia contents (*e.g.*, image and text information)

Output: the predicted preference values of the user-item pairs

Clothing, Shoes & Jewelry > Women > Clothing > Fashion Hoodies & Sweatshirts

Product description

The Heavy Blend Adult Hooded Sweatshirt delivers the durability, comfort, and style every the couch, this is the hoodie you've always needed in your life, but just didn't know it. Gilda apparel and socks. Gildan uses cotton grown in the USA, which represents the best combine products. Since 2009, Gildan has proudly displayed the cotton USA mark, licensed by cottor materials. Gildan environmental program accomplishes two core objectives: reduce our environmentat program levels, Gildan is aware of the fact that we operate a

Text information (Product description)

https://www.amazon.com/

Background: Multimedia Recommendation (cont'd)

Conceptual view of existing work

Motivation 1: Influence of Each Modality at the Interaction Level

Recent studies designed an attention mechanism to capture the influence of each modality on the interactions between users and items

However, none of these methods capture the individual influence of each modality at the interaction level

Influence of each modality may differ across interactions!

Motivation 2: Preservation of Items' Modality-Specific Properties

Pre-trained embeddings of items per modality reflect their modalityspecific properties that cannot be captured by interaction information

Even for the same item pair, the similarities in their visual, textual, and interaction modality differ significantly!

Motivation 2: Preservation of Items' Modality-Specific Properties

- Existing works learn the final item embeddings to be similar to the embeddings of users who interact with the items
- □ We observe that such learning procedures of existing works fail to preserve such modality-specific properties in the final item embeddings

Visual modality

Motivation 2: Preservation of Items' Modality-Specific Properties

Textual modality

Final item embeddings of existing multimedia recommender systems significantly lose the intrinsic modality-specific properties!

Our ideas

- (I1) To consider the influence of each modality on each interaction
- (I2) To obtain item embeddings that preserve the intrinsic modalityspecific properties
- □ We propose MARIO (Modality-aware Attention and modality-pReservIng decOders) for accurate multimedia recommendation
 - (C1) Encoders based on interaction and multimodal information
 - (C2) A predictor based on attention networks
 - (C3) Decoders for modality preservation
 - (C4) Training based on BPR loss and modality preservation (MP) loss

(C1) Encoders

We obtain the visual and textual-modality embeddings of each item v_j
 To this end, we encode its pre-trained embeddings from visual and textual modalities into embeddings of the same dimensionality

(C1) Encoders (cont'd)

 \Box We obtain the embedding of each user u_i and the interaction-modality embedding of each item v_j by employing *any* CF method

This design choice makes any CF methods be easily applied to MARIO to utilize items' multimodal features

(C2) A Predictor

 \Box We identify the influence of each modality m on each interaction between u_i and v_j based on a modality-aware attention mechansim

(C2) A Predictor (cont'd)

 \Box We obtain each item v_j 's personalized embedding w.r.t each user u_i by fusing v_j 's modality embeddings based on their influence

(C2) A Predictor (cont'd)

 \Box We predict each user u_i 's preference on each item v_j and recommend the most preferred top-*N* items to u_i

(C3) Decoders for Modality Preservation

 \Box We reconstruct the item v_j 's pre-trained embeddings by decoding the modality embeddings obtained in (C1)

The recovered-feature embeddings will be used to preserve v_j 's modality-specific properties in the learning process of MARIO

(C4) Training

 \Box We learn each user u_i 's embedding u_i and each item v_j 's modality embeddings \overline{v}_j^{IN} , \overline{v}_j^V , \overline{v}_j^T

.....

Bayesian personalized ranking (BPR) loss

$$\mathcal{L}_{BPR} = -\sum_{u_i \in U} \sum_{v_j \in N_i} \sum_{v_p \in N_i \setminus I} \frac{\ln \sigma(\hat{r}_{ij} - \hat{r}_{ip})}{v_i \text{ 's preference } \hat{r}_{ij} \text{ on the interacted item } v_j \text{ is likely to be higher than } u_i \text{ 's preference } \hat{r}_{ip} \text{ on a (randomly-sampled) non-interacted item } v_p}$$

(C4) Training (cont'd)

Modality preservation (MP) loss

$$\mathcal{L}_{MP} = \sum_{m \in M \setminus IN} \sum_{v_j \in I} \sum_{j=1}^{d_m} \left| \widetilde{v_j}^m(f) - v_j^m(f) \right|$$

Aim to minimize the difference between v_j 's recovered-feature embedding $\tilde{v}_j^V / \tilde{v}_j^T$ and v_j 's pre-trained embedding v_j^V / v_j^T

(C4) Training (cont'd)

Final loss

 $\mathcal{L} = \mathcal{L}_{BPR} + \mu \mathcal{L}_{MP}$

Hyperparameter to control the balance between \mathcal{L}_{BPR} and \mathcal{L}_{MP}

By jointly optimizing the two losses, MARIO fully utilizes rich modalityspecific semantics in addition to user-item interaction information

Experimental Settings

Datasets	Datast	и т .т		// T	0	
	Dataset	# User	# Item	# Interaction	Sparsity	Dim. of V / I
	Baby	19,445	7,050	160,792	99.88%	4,096 / 1,024
	Clothing	4,955	5,028	32,363	99.87%	4,096 / 1,024
	Office	4,874	2,406	52,957	99.55%	4,096 / 1,024
	Musical	1,429	900	10,261	99.20%	4,096 / 1,024

Seven competitors

Three CF methods (*i.e.*, using collaborative information only)
BPRMF [UAI'09] DNGCF [ACM SIGIR'19] LightGCN [ACM SIGIR'20]

Four state-of-the-art multimedia recommender systems

MAML [ACM MM'19]MMGCN [ACM MM'19]GRCN [ACM MM'20]LATTICE [ACM MM'21]

Evaluation metrics: NDCG, Recall, Precision @ 10/20

Questions to Be Answered

- □ RO1: Does MARIO provide more-accurate top-*N* recommendation than state-of-the-art multimedia recommender systems?
- □ RQ2: Does equipping MARIO with different CF methods consistently improve their accuracies?
- □ RQ3: Are the modality-aware attention networks of MARIO effective for multimedia recommendation?
- □ RQ4: Does the MP loss of MARIO help modality preservation and accurate multimedia recommendation?

Results for RQ1

Comparison with state-of-the-art multimedia recommender systems

Top-10	Datasets		Baby			Clothing	
	Metrics	NDCG@10	Recall@10	Pre@10	NDCG@10	Recall@10	Pre@10
Results	MAML	_	_	-	0.0226	0.0442	0.0044
	MMGCN	0.0187	0.0370	0.0039	0.0133	0.0260	0.0026
	GRCN	0.0262	0.0468	0.0050	0.0194	0.0355	0.0036
	LATTICE	0.0276	0.0503	0.0053	0.0221	0.0404	0.0040
	MARIO	0.0300*	0.0539*	0.0056*	0.0259*	0.0484*	0.0048^{*}
	Improvement	8.58%	7.20%	6.81%	14.61%	9.59%	9.09%
	Datasets		Office			Musical	
	Datasets Metrics	NDCG@10	Office Recall@10	Pre@10	NDCG@10	Musical Recall@10	Pre@10
	Datasets Metrics MAML	NDCG@10 0.0505	Office Recall@10 0.0887	Pre@10 0.0112	NDCG@10 0.0662	Musical Recall@10 0.1302	Pre@10 0.0134
	Datasets Metrics MAML MMGCN	NDCG@10 0.0505 0.0281	Office Recall@10 0.0887 0.0534	Pre@10 0.0112 0.0067	NDCG@10 0.0662 0.0517	Musical Recall@10 0.1302 0.0980	Pre@10 0.0134 0.0101
	Datasets Metrics MAML MMGCN GRCN	NDCG@10 0.0505 0.0281 0.0553	Office Recall@10 0.0887 0.0534 0.0845	Pre@10 0.0112 0.0067 0.0106	NDCG@10 0.0662 0.0517 0.0541	Musical Recall@10 0.1302 0.0980 0.1068	Pre@10 0.0134 0.0101 0.0110
	Datasets Metrics MAML MMGCN GRCN LATTICE	NDCG@10 0.0505 0.0281 0.0553 0.0589	Office Recall@10 0.0887 0.0534 0.0845 0.0902	Pre@10 0.0112 0.0067 0.0106 0.0109	NDCG@10 0.0662 0.0517 0.0541 0.0769	Musical Recall@10 0.1302 0.0980 0.1068 0.1459	Pre@10 0.0134 0.0101 0.0110 0.0148
	Datasets Metrics MAML MMGCN GRCN LATTICE MARIO	NDCG@10 0.0505 0.0281 0.0553 0.0589 0.0583	Office Recall@10 0.0887 0.0534 0.0845 0.0902 0.0932*	Pre@10 0.0112 0.0067 0.0106 0.0109 0.0110	NDCG@10 0.0662 0.0517 0.0541 0.0769 0.0790*	Musical Recall@10 0.1302 0.0980 0.1068 0.1459 0.1513*	Pre@10 0.0134 0.0101 0.0110 0.0148 0.0153*
	Datasets Metrics MAML MMGCN GRCN LATTICE MARIO Improvement	NDCG@10 0.0505 0.0281 0.0553 0.0589 0.0583 -0.89%	Office Recall@10 0.0887 0.0534 0.0845 0.0902 0.0902 3.38%	Pre@10 0.0112 0.0067 0.0106 0.0109 0.0110 -1.47%	NDCG@10 0.0662 0.0517 0.0541 0.0769 0.0790* 2.73%	Musical Recall@10 0.1302 0.0980 0.1068 0.1459 0.1513* 3.68%	Pre@10 0.0134 0.0101 0.0110 0.0148 0.0153* 3.30%

Page 20 / 26

Results for RQ1 (cont'd)

Comparison with state-of-the-art multimedia recommender systems

Top-20	Datasets		Baby			Clothing	
	Metrics	NDCG@20	Recall@20	Pre@20	NDCG@20	Recall@20	Pre@20
Results	MAML	_	_	_	0.0289	0.0694	0.0035
	MMGCN	0.0249	0.0615	0.0033	0.0168	0.0399	0.0020
	GRCN	0.0335	0.0743	0.0040	0.0242	0.0544	0.0027
	LATTICE	0.0355	0.0804	0.0042	0.0279	0.0634	0.0032
	MARIO	0.0378*	0.0838*	0.0044*	0.0314*	0.0706*	0.0035
	Improvement	6.58%	4.13%	4.02%	8.50%	1.79%	0.00%
	Datasata		Office			Musical	
	Datasets		Office	D 0.00		Musical	
	Datasets Metrics	NDCG@20	Office Recall@20	Pre@20	NDCG@20	Musical Recall@20	Pre@20
	Datasets Metrics MAML	NDCG@20 0.0628	Office Recall@20 0.1350	Pre@20 0.0086	NDCG@20 0.0822	Musical Recall@20 0.1919	Pre@20 0.0099
	Datasets Metrics MAML MMGCN	NDCG@20 0.0628 0.0375	Office Recall@20 0.1350 0.0892	Pre@20 0.0086 0.0056	NDCG@20 0.0822 0.0692	Musical Recall@20 0.1919 0.1682	Pre@20 0.0099 0.0086
	Datasets Metrics MAML MMGCN GRCN	NDCG@20 0.0628 0.0375 0.0689	Office Recall@20 0.1350 0.0892 0.1326	Pre@20 0.0086 0.0056 0.0084	NDCG@20 0.0822 0.0692 0.0707	Musical Recall@20 0.1919 0.1682 0.1726	Pre@20 0.0099 0.0086 0.0089
	Datasets Metrics MAML MMGCN GRCN LATTICE	NDCG@20 0.0628 0.0375 0.0689 0.0725	Office Recall@20 0.1350 0.0892 0.1326 0.1360	Pre@20 0.0086 0.0056 <u>0.0084</u> 0.0083	NDCG@20 0.0822 0.0692 0.0707 0.0944	Musical Recall@20 0.1919 0.1682 0.1726 0.2126	Pre@20 0.0099 0.0086 0.0089 0.0109
	Datasets Metrics MAML MMGCN GRCN GRCN LATTICE MARIO	NDCG@20 0.0628 0.0375 0.0689 0.0725 0.0728*	Office Recall@20 0.1350 0.0892 0.1326 0.1360 0.1418*	Pre@20 0.0086 0.0056 0.0084 0.0083 0.0086	NDCG@20 0.0822 0.0692 0.0707 0.0944 0.0968*	Musical Recall@20 0.1919 0.1682 0.1726 0.2126 0.2195*	Pre@20 0.0099 0.0086 0.0089 0.0109 0.0113*
	Datasets Metrics MAML MMGCN GRCN LATTICE MARIO Improvement	NDCG@20 0.0628 0.0375 0.0689 0.0725 0.0728* 0.38%	Office Recall@20 0.1350 0.0892 0.1326 0.1360 0.1418* 4.26%	Pre@20 0.0086 0.0056 0.0084 0.0083 0.0086 0.00%	NDCG@20 0.0822 0.0692 0.0707 0.0944 0.0968* 2.53%	Musical Recall@20 0.1919 0.1682 0.1726 0.2126 0.2195* 3.26%	Pre@20 0.0099 0.0086 0.0089 0.0109 0.0113* 3.21%

Page 21 / 26

Effectiveness of MARIOs equipped with three CF methods

Effectiveness of our attention network (Clothing dataset)

Model	NDCG@10	Recall@10	Pre@10
MARIO _{mean}	0.0256	0.0478	0.0048
MARIO _{max}	0.0232	0.0429	0.0043
MARIO _{f c}	0.0117	0.0214	0.0022
MARIO	0.0259	0.0484	0.0048

• MARIO consistently outperforms $MARIO_{mean}$, $MARIO_{max}$, and $MARIO_{fc}$

It is most effective to use the proposed attention mechanism to aggregate all modality embeddings of items

□By considering the individual influence of each modality at the interaction level

Effectiveness of our MP loss in terms of modality preservation (Clothing dataset)

The smaller the differences are, the better the modality-specific properties are preserved

Modali	ty	MMGCN	LATTICE	MARIO
All Items	Visual	0.6111	0.2721	0.2668
	Textual	0.6541	0.1961	0.1842
Items with	Visual	0.6576	$0.4075 \\ 0.3155$	0.3062
High-degree	Textual	0.7221		0.2739

- The MP loss affects modality preservation more for high-degree items than for low-degree items
- MARIO is most effective in preserving the intrinsic modality-specific properties

Results for RQ4 (cont'd)

Effectiveness of our MP loss in terms of recommendation accuracy (Clothing dataset)

Accuracy of MARIO is always the worst when $\mu = 0$

Preserving the modality-specific properties is also effective in improving the accuracy of multimedia recommendation □ (Observation) We pointed out that existing multimedia recommender systems face difficulties in

Capturing the individual influence of each modality at interaction level
 Exploiting the intrinsic modality-specific properties of items

□ (Framework Design) We proposed MARIO based on modality-aware attention and modality-preserving decoders

(Extensive Evaluation) We demonstrated that MARIO
 Outperforms its seven competitors on four real-life datasets
 Preserves the intrinsic properties of item modalities better

HANYANG UNIVERSITY

KAIST

Procedure of Density Function

□ (1) Obtaining the final item embeddings from the existing multimedia recommender systems (*e.g.*, MMGCN and LATTICE)

Procedure of Density Function (cont'd)

 \Box (2) For each item, computing the cosine similarity with every other item by using their final embeddings obtained by each method (*f*-similarities)

□ (3) For each item, computing the cosine similarity with every other item by using their pre-trained embeddings (*p*-similarities) per modality

Procedure of Density Function (cont'd)

□ (4) For each item, computing the differences between *f*-similarity and *p*-similarity with every other item per modality

Visual:
$$abs([0.3, 0.4, \ldots, 0.7] - [0.1, 0.8, \ldots, 0.9])$$
Textual: $abs([0.3, 0.4, \ldots, 0.7] - [0.2, 0.4, \ldots, 0.1])$

□ (5) For each item, computing the average difference of *f*-similarity and those of *p*-similarity with every other item per modality

Visual:
$$oldsymbol{avg}([0.2, 0.4, ..., 0.2])$$

Textual: $oldsymbol{avg}([0.1, 0.0, ..., 0.6])$

Other Experiment Result

□ The effects of exploiting all the item modalities (Clothing dataset)

MARIO consistently achieves the best accuracy when it exploits all the item modalities

Model	NDCG@10	Recall@10	Pre@10
MARIO _{w/oV}	0.0233	0.0415	0.0042
MARIO _{w/oT}	0.0243	0.0460	0.0046
MARIO	0.0259	0.0484	0.0048