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Tensor

A (regular) tensor is a multi-dimensional array.

• In this work, we assume tensors of real values.
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Irregular tensor

A (3-order) irregular tensor is a collection of matrices with varying row counts.

3

1
st

O
rd

e
r

2nd Order



Various real-world data are irregular tensors
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Problem definition

Lossy compression of an irregular tensor. 

• Given: an irregular tensor 𝓧𝒌 𝒌=𝟏
𝑲

• Find: the compressed data 𝑫

• To minimize: (1) the size of 𝑫 and the approximation error σ𝒌=𝟏
𝑲 𝓧𝒌 − ෩𝓧𝒌 𝑭

𝟐

where ෩𝓧𝒌 𝒌=𝟏

𝑲
is the approximation of the input tensor.
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Previous lossy compression: PARAFAC2

PARAFAC2 approximates an irregular tensor with the products of factor matrices.
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Previous lossy compression: PARAFAC2

PARAFAC2 approximates an irregular tensor with the products of factor matrices.
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Previous lossy compression: PARAFAC2

Factor matrices can be stored instead of the input irregular tensor.

That is, factor matrices can be regarded as the compressed output.
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Overview of Light-IT and Light-IT++

We propose Light-IT and Light-IT++, lossy compression algorithms for irregular
tensors, built upon PARAFAC2.

• Q1. Compactness: How can we compress irregular tensors compactly?

• Q2. Expressiveness: How can we increase the expression power of PARAFAC2?

• Q3. How can we efficiently compress sparse irregular tensors?

• Q4. How can we compress higher-order irregular tensors?
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Limited compression ability of PARAFAC2

PARAFAC2 gives a first mode matrix for each slice of an irregular tensor.
• Bottleneck: saving all the 1st mode factor matrices is expensive.

Q1 .How can we make the compression result more compact?
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A1.  Vocabulary-based compression (Light-IT)

We use a single vocabulary matrix 𝑽 shared by all 1st mode factor matrices.

The 1st mode factor matrix for each slice is constructed from 𝑽 by mappings.
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Compression results using Light-IT

Only a single factor matrix per mode is required.

Mappings are further compressed by Huffman encoding.
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Limited expressional ability of PARAFAC2 (and Light-IT)

Each entry is approximated by the (weighted) product of feature vectors.

It fails to capture the relationships between different features.
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A2. Extension with a core tensor (Light-IT++)

Incorporate a core tensor to capture relationships between different features, 
enhancing the expressiveness of the model.
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Training of Light-IT and Light-IT++

Light-IT: gradient descent to minimize the squared error
• Mappings can be also made differentiable*

Light-IT++: alternating least square (ALS) for sequential updates
• Mappings are fixed to those from Light-IT.

18* Differentiable product quantization for end-to-end embedding compression. In ICML 2020.
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A3. Sparse design

Exploit the sparsity of sparse tensors for the efficient computation.

E.g.) complexity of loss computation in Light-IT: 
• Naïve computation ∝ all entry count.

• Efficient computation ∝ non-zero entry count.

• Key idea: compute the losses for zero entries efficiently in a closed form

19

Time 
complexity ∝ # 𝑵𝒐𝒏𝒛𝒆𝒓𝒐

𝒆𝒏𝒕𝒓𝒊𝒆𝒔



A4. Higher-order design

Our methods are applicable to irregular tensors of any order.

Key idea: matricize the input irregular tensor and its approximation.
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Experimental settings: Datasets

Used 6 public real-world datasets.
• Four 3-order and two 4-order irregular tensors.

• Four sparse and two dense irregular tensors.
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Experimental settings: Baselines

We used lossy-compression baselines.

• Methods for 3-order dense irregular tensors.
• PARAFAC2-ALS, RD-ALS, DPar2, and HyTuck2.

• Methods for 3-order sparse irregular tensors.
• COPA, SPARTan, and REPAIR.

• A method for 4-order dense irregular tensors.
• BTD2.
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Our methods are concise and precise

The compressed outputs of our methods are up to 37x smaller.

Our methods show up to 5x better accuracy. 
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All components of our methods are useful

(1) vocabulary-based compression and (2) extension with a core tensor are 
effective for compression.
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Our methods for sparse tensors are faster

For sparse irregular tensors, the sparse versions of our methods are faster than 
their dense versions.
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Our methods are scalable

Compression time of our methods is linear in the number of (non-zero) entries.
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Total compression time

Our methods tend to be slower than most competitors.

However, our methods took at most 1.1 hours for all considered datasets.
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Conclusions
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We propose Light-IT and Light-IT++, lossy compression algorithms for irregular
tensors, built upon PARAFAC2.
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