

Kronecker Generative Models for Power-Law Patterns in Real-World Hypergraphs

Minyoung Choe

Jihoon Ko

Taehyung Kwon

Kijung Shin

Christos Faloutsos

WWW 2025

Kronecker Generative Models for Power-Law Patterns in Real-World Hypergraphs

1

Group Interactions are EVERYWHERE

Group interactions exist in many complex systems

Co-Authorship

Q&A Platform

Hypergraphs represent group interactions

<u>Authors (Nodes)</u>

J. D. Watson	(W)	R. A. Laskowski	(L)
F. H. C. Crick	(C)	J. M. Thornton	(T)

Publications (Hyperedges)

E1: THE STRUCTURE OF DNA J. D. Watson, F. H. C. Crick – CSH' 1953

E2: Predicting protein function from sequence ... J.D. Watson, R.A. Laskowski, J. M. Thornton – COSB' 2005

E3: Understanding the molecular machinery ... R. A. Laskowski, J. M. Thornton – NRG' 2008

<u>Hypergraph</u>

RQ 1. What Patterns Exist in Real-world Hypergraphs?

- Patterns refer to frequently recurring structural properties in real-world hypergraphs
- They capture how group interactions typically form and evolve
- Understanding these patterns helps us define what makes a hypergraph realistic

WWW 2025

RQ 2. What Mechanisms Underlie These Patterns?

- Structural patterns in hypergraphs emerge from **underlying mechanisms**
- Identifying these mechanisms is key to designing **realistic generators**

RQ 3. How Can We Fit Generators to Real Hypergraphs?

- Fitting means tuning a generator to reproduce a target real hypergraph
- Once fitted, a generator can:
 - Extrapolate: predict future growth
 - Anonymize: protect privacy
 - Augment: create synthetic training data
 - Summarize: extract key patterns

Our Answers to the Research Questions

- RQ 1. What Patterns Exist in Real-world Hypergraphs?
 - \rightarrow We discover **eight structural patterns**, including power-law and log-logistic distributions
- RQ 2. What Mechanisms Underlie These Patterns?
 - → We propose **HyRec**, a hypergraph generator based on **self-similar** (i.e., fractal) structure
- RQ 3. How Can We Fit HyRec to Real Data?
 - → We develop **SingFit**, an efficient algorithm that scales to **large real-world hypergraphs**

Discovering Eight Patterns in Real-World Hypergraphs

- Studied 11 real-world hypergraphs from six domains
 - Emails, Contacts, Drugs (NDC), Tags, Threads, and Co-authorship
- Identified three key discoveries (D1–D3):

Discovery (D1): Node pair degrees, intersection sizes, and singular values exhibit power-law distributions

Discovery (D2): Node degrees and hyperedge sizes follow log-logistic distributions which are closely related to power laws

Discovery (D3): Clustering coefficients, density, and overlapness in egonets follow power-law patterns

Discovery (D1) - Power-Law Distributions in Hypergraphs

Discovery (D1): Node pair degrees, intersection sizes, and singular values exhibit power-law distributions

• Analysis:

- High log-likelihood ratios (LRs) & strong linear regression fits on a log-log scale confirm power-law behavior
- Similar slopes within the same domain suggest domain-based similarities

Discovery (D2) - Log-Logistic Distributions in Hypergraphs

Discovery (D2): Node degrees and hyperedge sizes follow log-logistic distributions which are closely related to power laws

- Analysis:
 - Power-law-like odds ratios suggest a closer fit to log-logistic distributions
 - Linear regression on a log-log scale of odds ratios yields high R² scores, confirming strong log-logistic characteristics

Discovery (D3) - Additional Power-Law Patterns

Discovery (D3): Clustering coefficients, density, and overlapness in egonets follow power-law patterns

- Analysis:
 - **Clustering Coefficients:** Ratio of intersecting hyperedge pairs to node degree
 - **Density:** Ratio of hyperedge count to node count
 - **Overlapness:** Ratio of sum of hyperedge sizes to node count
 - High R² values in log-log regression confirm power-law behavior

HyRec: A Generative Model for Real-World Hypergraphs

- **HyRec** generates hypergraphs using the Kronecker product of incidence matrices
- Given an initiator hypergraph G with incidence matrix I(G) and order K,
- HyRec(G, K) generates a hypergraph with an incidence matrix $I(G)^{[K]}$,

Corresponding Incidence Matrix (I(G))

Theoretical Properties of HyRec

[**Theorem: Structural Patterns**] HyRec generates hypergraphs where key statistics follow **multinomial distributions**^{*}: (1) degrees, (2) hyperedge sizes, (3) pair degrees, (4) intersection sizes, and (5) singular values

* Multinomial distributions can resemble power-law and log-logistic distributions found in real-world hypergraphs

[**Theorem**: **Evolutionary Patterns**] HyRec models hypergraph growth by simulating changes in (1) density and (2) (effective) diameter as the Kronecker power exponent *K* increases, reflecting the evolution of hypergraphs over time.

Stochastic Version of HyRec

- The Kronecker power of **binary** initiators always produces the same structure
- We adopt a **stochastic** version with **real-valued** initiators and Bernoulli sampling
- This introduces variability
- The following slides will focus on the stochastic version of HyRec

SingFit: Fitting HyRec to Real-World Hypergraphs

- **Problem**: How can we generate a Kronecker hypergraph that closely matches a given real-world hypergraph?
- Goal: Find the initiator matrix ($\theta \in [0, 1]^{N \times M}$) that best captures key properties of the target hypergraph
- We develop **SingFit**, a fast and efficient algorithm to fit HyRec to real-world data

WWW 2025

SingFit - Key Challenges in Fitting HyRec

• Fitting an initiator matrix (θ) requires overcoming three key challenges:

Incidence matrices remain equivalent under row/column permutations, making alignment with the target matrix require an exhaustive search.

The sampling process is nondifferentiable, preventing gradientbased optimization for parameter fitting

Generating the hypergraph involves handling all node-hyperedge connections, leading to high computational and memory overhead

Detail

SingFit - Overcoming Fitting Challenges

• SingFit tackles key challenges with three strategies:

invariant under row/column permutations, avoiding high alignment costs (C1). Uses **Gumbel Softmax Trick** to bridge the gap between the probability matrix and binary incidence matrix (C2). Kronecker product properties enable computing large-matrix properties from smaller matrices, significantly reducing computational overhead (C3).

SingFit: Description of Fitting and Generation

• Avoids full Kronecker expansion and uses a smaller intermediate matrix

SingFit: Description of Fitting and Generation

Application: Hypergraph Extrapolation using HyRec

• Extrapolation is achieved by expanding the fitted HyRec model with Kronecker power

Experimental Results: Fitting to Real-World Hypergraphs

- HyRec models real-world hypergraphs accurately and efficiently
- It reproduces 9 hypergraph properties with a small number of parameters

Experimental Results: Strong Extrapolation

- HyRec accurately extrapolates the future structure of real hypergraphs
- It predicts 9 hypergraph properties, outperforming all baselines with minimal input

Experimental Results: Efficient Fitting and Generation

- SingFit scales to large hypergraphs with near-linear runtime
- It enables efficient fitting and generation through Kronecker expansion

Conclusions

- Our contributions are summarized as follows:
- Discoveries: Identification of eight power-law-related patterns in eleven realworld hypergraphs
- ✓ **Model:** Design of HyRec, a tractable and realistic generative model of

hypergraphs, supported by SingFit

Proofs: Mathematical validation that HyRec adheres to these identified patterns

Minyoung Choe: minyoung.choe@kaist.ac.kr Code & Dataset: https://github.com/young917/HyRec

Minyoung Choe

Jihoon Ko

Taehyung Kwon

Kijung Shin

Christos Faloutsos

