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Group Interactions are EVERYWHERE
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Co-Authorship Q&A PlatformEmail

• Group interactions exist in many complex systems
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Hypergraphs represent group interactions
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RQ 1. What Patterns Exist in Real-world Hypergraphs?
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• Patterns refer to frequently recurring structural properties in real-world hypergraphs

• They capture how group interactions typically form and evolve

• Understanding these patterns helps us define what makes a hypergraph realistic
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RQ 2. What Mechanisms Underlie These Patterns?
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• Structural patterns in hypergraphs emerge from underlying mechanisms

• Identifying these mechanisms is key to designing realistic generators
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RQ 3. How Can We Fit Generators to Real Hypergraphs?
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• Fitting means tuning a generator to reproduce a 

target real hypergraph

• Once fitted, a generator can:

ￚ Extrapolate: predict future growth

ￚ Anonymize: protect privacy

ￚ Augment: create synthetic training data

ￚ Summarize: extract key patterns
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Our Answers to the Research Questions
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• RQ 1. What Patterns Exist in Real-world Hypergraphs?

• → We discover eight structural patterns, including power-law and log-logistic distributions

• RQ 2. What Mechanisms Underlie These Patterns?

• → We propose HyRec, a hypergraph generator based on self-similar (i.e., fractal) structure

• RQ 3. How Can We Fit HyRec to Real Data?

• → We develop SingFit, an efficient algorithm that scales to large real-world hypergraphs
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Discovering Eight Patterns in Real-World Hypergraphs
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• Studied 11 real-world hypergraphs from six domains

• Emails, Contacts, Drugs (NDC), Tags, Threads, and Co-authorship

• Identified three key discoveries (D1–D3):
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Discovery (D1): Node pair degrees, intersection sizes, and singular values 
exhibit power-law distributions

Discovery (D2): Node degrees and hyperedge sizes follow log-logistic
distributions which are closely related to power laws

Discovery (D3): Clustering coefficients, density, and overlapness in
egonets follow power-law patterns



Discovery (D1) - Power-Law Distributions in Hypergraphs
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• Analysis:
• High log-likelihood ratios (LRs) & strong linear regression fits on a log-log 

scale confirm power-law behavior
• Similar slopes within the same domain suggest domain-based similarities
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Discovery (D1): Node pair degrees, intersection sizes, and singular values 
exhibit power-law distributions

Node Pair Degree Intersection Size Singular Value

Strong linear regression fitting (R² scores near 1 ) Similar slopes within the same domains



Discovery (D2) - Log-Logistic Distributions in Hypergraphs
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• Analysis:
• Power-law-like odds ratios suggest a closer fit to log-logistic distributions
• Linear regression on a log-log scale of odds ratios yields high R² scores, 

confirming strong log-logistic characteristics
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𝒙 follows log-logistic

OddsRatio 𝒙 ≔
𝑪𝑫𝑭 𝒙

𝟏−𝑪𝑫𝑭(𝒙)

follows power-law 

Discovery (D2): Node degrees and hyperedge sizes follow log-logistic
distributions which are closely related to power laws

Node Degree Hyperedge Size

High R² scores validate log-logistic distribution



Discovery (D3) - Additional Power-Law Patterns
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• Analysis:
• Clustering Coefficients: Ratio of intersecting hyperedge pairs to node degree
• Density: Ratio of hyperedge count to node count
• Overlapness: Ratio of sum of hyperedge sizes to node count
• High R² values in log-log regression confirm power-law behavior
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Discovery (D3): Clustering coefficients, density, and overlapness in 
egonets follow power-law patterns

Clustering Coef. Density Overlapness



HyRec: A Generative Model for Real-World Hypergraphs
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• HyRec generates hypergraphs using the Kronecker product of incidence matrices

• Given an initiator hypergraph 𝑮 with incidence matrix I(G) and order 𝑲,

• HyRec(𝑮,𝑲) generates a hypergraph with an incidence matrix 𝑰 𝑮 𝑲 ,  

representing the 𝐾-th Kronecker power of 𝑰(𝑮)
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Theoretical Properties of HyRec
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* Multinomial distributions can resemble power-law and log-logistic distributions found in real-world hypergraphs
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[𝐓𝐡𝐞𝐨𝐫𝐞𝐦: 𝐒𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐚𝐥 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬] HyRec generates hypergraphs where key 

statistics follow multinomial distributions*: (1) degrees, (2) hyperedge sizes, (3) 

pair degrees,  (4) intersection sizes, and (5) singular values

[𝐓𝐡𝐞𝐨𝐫𝐞𝐦: 𝐄𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧𝐚𝐫𝐲 𝐏𝐚𝐭𝐭𝐞𝐫𝐧𝐬] HyRec models hypergraph growth by 

simulating changes in (1) density and (2) (effective) diameter as the Kronecker 

power exponent 𝐾 increases, reflecting the evolution of hypergraphs over time.



Stochastic Version of HyRec
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• The Kronecker power of binary initiators always produces the same structure

• We adopt a stochastic version with real-valued initiators and Bernoulli sampling

• This introduces variability

• The following slides will focus on the stochastic version of HyRec
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SingFit: Fitting HyRec to Real-World Hypergraphs
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• Problem: How can we generate a Kronecker hypergraph that closely matches a 

given real-world hypergraph?

• Goal: Find the initiator matrix (𝜽 ∈ 𝟎, 𝟏 𝑵×𝑴) that best captures key 

properties of the target hypergraph

• We develop SingFit, a fast and efficient algorithm to fit HyRec to real-world data
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SingFit - Key Challenges in Fitting HyRec
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• Fitting an initiator matrix (𝜽) requires overcoming three key challenges:
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C1. Computational Cost of 
Alignment

C2. Non-differentiability of 
Generation

C3. Density of Probability Matrix

Incidence matrices remain equivalent 
under row/column permutations, 
making alignment with the target 

matrix require an exhaustive search.

The sampling process is non-
differentiable, preventing gradient-

based optimization for parameter fitting

Generating the hypergraph involves 
handling all node-hyperedge 
connections, leading to high 

computational and memory overhead
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SingFit - Overcoming Fitting Challenges
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S1. Singular Value Matching S2. Differentiable Sampling
S3. Acceleration with 

Kronecker Product Properties

Aligns singular values, which remain 
invariant under row/column 
permutations, avoiding high 

alignment costs (C1).

Uses Gumbel Softmax Trick to bridge 
the gap between the probability matrix 

and binary incidence matrix (C2).

Kronecker product properties enable 
computing large-matrix properties from smaller 
matrices, significantly reducing computational 

overhead (C3).
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• SingFit tackles key challenges with three strategies:
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SingFit: Description of Fitting and Generation
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𝜽[𝑲/𝐋]Initiator Matrix
𝜽 ∈ 𝟎, 𝟏 𝑵𝟏×𝑴𝟏

• Avoids full Kronecker expansion and uses a smaller intermediate matrix
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SingFit: Description of Fitting and Generation
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Application: Hypergraph Extrapolation using HyRec
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• Extrapolation is achieved by expanding the fitted HyRec model with Kronecker power

Fit to Observed Hypergraph

Initiator 
Matrix (𝜽)

Observed Hypergraph
(Time < T)

Generate Future Hypergraph

Expanded 
Incidence Matrix

Predicted Hypergraph
(Time = T)

Fit
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Expansion



Experimental Results: Fitting to Real-World Hypergraphs
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• HyRec models real-world hypergraphs accurately and efficiently

• It reproduces 9 hypergraph properties with a small number of parameters
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Closest to the optimal point 

HyRec achieves the strong alignment with     real-world data



Experimental Results: Strong Extrapolation
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• HyRec accurately extrapolates the future structure of real hypergraphs

• It predicts 9 hypergraph properties, outperforming all baselines with minimal input
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Closest to the optimal point 

HyRec provides the closest forecast to      real-world hypergraph data



Experimental Results: Efficient Fitting and Generation
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• SingFit scales to large hypergraphs with near-linear runtime

• It enables efficient fitting and generation through Kronecker expansion
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• Our contributions are summarized as follows:

✓ Discoveries: Identification of eight power-law-related patterns in eleven real-

world hypergraphs

✓ Model: Design of HyRec, a tractable and realistic generative model of 

hypergraphs, supported by SingFit

✓ Proofs: Mathematical validation that HyRec adheres to these identified patterns

Code & Dataset: https://github.com/young917/HyRec

Conclusions
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https://github.com/young917/HyRec
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Minyoung Choe: minyoung.choe@kaist.ac.kr

Code & Dataset: https://github.com/young917/HyRec
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