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Introduction

Group Interactions are EVERYWHERE

* Group interactions exist in many complex systems
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1 Introduction
the real world, group interactions, such as collaborative research, red by
-purchases of items, and group discussions on online platforms,
prevalent. These are well-represented by hypergraphs, where \dio
ch hyperedge indicates a group interaction as a subset of nodes
any size. Hypergraphs extend conventional graphs, overcoming
om
red by

their limitation of exclusively madeling pairwise interactions,
What patterns or “laws” shape the structure of real-world hyper-
graphs? While power laws are fundamental in real-world graphs
[15, 19], are they also prevalent in hypergraphs? To answer this, we
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Introduction

Hypergraphs represent group interactions

Authors (Nodes)
J. D. Watson (W) R. A. Laskowski (L)
F. H. C. Crick (C) J. M. Thornton (T)

Publications (Hyperedges)

E1l: THE STRUCTURE OF DNA
J. D. Watson, F. H. C. Crick — CSH’ 1953

E2: Predicting protein function from sequence ...
J.D. Watson, R.A. Laskowski, J. M. Thornton — COSB’ 2005

: Understanding the molecular machinery ...
R. A. Laskowski, J. M. Thornton — NRG’ 2008
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Introduction

RQ 1. What Patterns Exist in Real-world Hypergraphs?

* Patterns refer to frequently recurring structural properties in real-world hypergraphs

 They capture how group interactions typically form and evolve

* Understanding these patterns helps us define what makes a hypergraph realistic
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Introduction

RQ 2. What Mechanisms Underlie These Patterns?

e Structural patterns in hypergraphs emerge from underlying mechanisms

* Identifying these mechanisms is key to designing realistic generators

m Generated Hypergraph m
" E
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Introduction

RQ 3. How Can We Fit Generators to Real Hypergraphs?

* Flttlng means tuning a generator to reproduce d Target Real Hypergraph

target real hypergraph

e Once fitted, a generator can: Fitting Process
— Extrapolate: predict future growth }
Fitted Generator

— Anonymize: protect privacy

— Augment: create synthetic training data
— Summarize: extract key patterns il Extrapolate

svgmens [ summarize
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Introduction

Our Answers to the Research Questions

 RQ 1. What Patterns Exist in Real-world Hypergraphs?

- We discover eight structural patterns, including power-law and log-logistic distributions

e RQ 2. What Mechanisms Underlie These Patterns?

 —> We propose HyRec, a hypergraph generator based on self-similar (i.e., fractal) structure

* RQ 3. How Can We Fit HyRec to Real Data?

* — We develop SingFit, an efficient algorithm that scales to large real-world hypergraphs
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Discoveries

Discovering Eight Patterns in Real-World Hypergraphs

e Studied 11 real-world hypergraphs from six domains

* Emails, Contacts, Drugs (NDC), Tags, Threads, and Co-authorship
* |dentified three key discoveries (D1-D3):

O Discovery (D1): Node pair degrees, intersection sizes, and singular values
. exhibit power-law distributions

O Dlscovery (D2): Node degrees and hyperedge sizes follow log-logistic
distributions which are closely related to power laws

O Discovery (D3): Clustering coefficients, density, and overlapness in
egonets follow power-law patterns
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Discoveries

Discovery (D1) - Power-Law Distributions in Hypergraphs

O Discovery (D1): Node pair degrees, intersection sizes, and singular values
. exhibit power-law distributions

e Analysis:
* High log-likelihood ratios (LRs) & strong linear regression fits on a log-log
scale confirm power-law behavior
* Similar slopes within the same domain suggest domain-based similarities

Node Pair Degree Intersection Size  ~ Singular Value ® | ® Emails
' , é 5 - Q‘ A Contacts
p =-3.36 = o -6.0 + ¢ NDC
Goodness of"* £ % -8.01 & o + Tags
R2 = 0.90 s = A E Threads
23 27 211 21 23 25 n _100 m
Degree of node pairs Intersection size Dataset Coauth
Strong linear regression fitting (R* scores near 1) Similar slopes within the same domains

WWW 2025 Kronecker Generative Models for Power-Law Patterns in Real-World Hypergraphs



Discoveries

Discovery (D2) - Log-Logistic Distributions in Hypergraphs

O Discovery (D2): Node degrees and hyperedge sizes follow log-logistic
distributions which are closely related to power laws

e Analysis:
Power-law-like odds ratios suggest a closer fit to log-logistic distributions

* Linear regression on a log-log scale of odds ratios yields high R? scores

confirming strong log-logistic characteristics
Hyperedge Size

Node Degree

x follows |Og-|0giStiC & Goodness of fit ° - Goodness of fit

= 2!/ R2 = 0.95 = 2 R2 = 0.94 /

‘ % 2 %7 L 2,05
B £ 0.6 B 5
CDF(x) ° | ° L

. o 23 27 211 21 23 25

OddsRatlo(x) " 1-CDF(x) Node degree Hyperedge size
High R? scores validate log-logistic distribution

follows power-law
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Discoveries

Discovery (D3) - Additional Power-Law Patterns

O Discovery (D3): Clustering coefficients, density, and overlapness in
egonets follow power-law patterns

e Analysis:
* Clustering Coefficients: Ratio of intersecting hyperedge pairs to node degree
* Density: Ratio of hyperedge count to node count
* Overlapness: Ratio of sum of hyperedge sizes to node count
* High R? values in log-log regression confirm power-law behavior

Overlapness

Clustering Coef. o Density 0
=S N -
2 | Goodness of fit ot 5212 Goodness of fit .4 | ‘» 2'*{ Goodness of fi
g8’ & %
o+ Q 28 2 o ;o 3
£ oow = 1.84 o 8 P ="1.32
c i
Y— .= > — $
o+ £ 54 O 26
O 25 2 o
# 0 re > .
0 =
24 28 712 H* W 22 25 28
Node degree # of nodes # of nodes
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Generator

HyRec: A Generative Model for Real-World Hypergraphs

 HyRec generates hypergraphs using the Kronecker product of incidence matrices
* Given an initiator hypergraph G with incidence matrix I(G) and order K,
* HyRec(G, K) generates a hypergraph with an incidence matrix 1(G) K1

representing the K-th Kronecker power of I(G)

€1 €2 €3 €4
171 1
- e]_ ez vz 1 1
el,’ N\ e (%]
1 &y ‘\ \ g o
\ 7 ! (2 N | »
A\ | Y J Vel 1 1 1
\;,_,/ / vsl 1 1 | Kronecker Power (2 I
\~‘, of Order 2 Vgl 1 1 1
Initiator Hypergraph (G) and (2] S 1

Corresponding Incidence Matrix (1(G))
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Generator

Theoretical Properties of HyRec

|Theorem: Structural Patterns| HyRec generates hypergraphs where key
statistics follow multinomial distributions™: (1) degrees, (2) hyperedge sizes, (3)

pair degrees, (4) intersection sizes, and (5) singular values

* Multinomial distributions can resemble power-law and log-logistic distributions found in real-world hypergraphs

|Theorem: Evolutionary Patterns| HyRec models hypergraph growth by
simulating changes in (1) density and (2) (effective) diameter as the Kronecker

power exponent K increases, reflecting the evolution of hypergraphs over time.
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Generator

Stochastic Version of HyRec

 The Kronecker power of binary initiators always produces the same structure
* We adopt a stochastic version with real-valued initiators and Bernoulli sampling
e This introduces variability

* The following slides will focus on the stochastic version of HyRec

v, — =)
1
v3._ Kronecker Power Sampling

[ [N = =

Real-valued N R Generated
Initiator Matrix 1

Hypergraph
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Generator
SingFit: Fitting HyRec to Real-World Hypergraphs

* Problem: How can we generate a Kronecker hypergraph that closely matches a

given real-world hypergraph?

* Goal: Find the initiator matrix (@ € [0, 1]Y*M) that best captures key

properties of the target hypergraph

* We develop SingFit, alv}‘ast and efficient algorithm to fit HyRec to real-world data
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Initiator Matrix (0) Target Hypergraph
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Generator

SingFit - Key Challenges in Fitting HyRec

* Fitting an initiator matrix (@) requires overcoming three key challenges:

C1. Computational Cost of C2. Non-differentiability of . - .
> . . y C3. Density of Probability Matrix
Alignment Generation

Are these matrices equivalent? o oIkl .
Sam-
11317 3] pling 6|74
6|.7| 4 71| 2| 4
7|24 31416
6|3|.4]|.6| Back-

prop.

Incidence matrices remain equivalent
under row/column permutations,
making alignment with the target

matrix require an exhaustive search.

Generating the hypergraph involves
handling all node-hyperedge
connections, leading to high

computational and memory overhead

The sampling process is non-
differentiable, preventing gradient-
based optimization for parameter fitting
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Generator

SingFit - Overcoming Fitting Challenges

* SingFit tackles key challenges with three strategies:

S3. Acceleration with

S1. Singular Value Matching S2. Differentiable Sampling Kronecker Product Properties

R R oK1
Distribution of Distribution of R 5| Gumbel

singular values of singular values of

Distribution of
singular values of 91X [K]

pum— —

Distribution of
singular values of 0

Softmax

B , ?
| Reparameter

Trick

Equivalent! — .
Significantly Reduce Complexity!

55{] = Phara + Dij — S9@Dij)

Kronecker product properties enable
computing large-matrix properties from smaller
matrices, significantly reducing computational
overhead (C3).

Aligns singular values, which remain
invariant under row/column
permutations, avoiding high

alignment costs (C1).

Uses Gumbel Softmax Trick to bridge
the gap between the probability matrix
and binary incidence matrix (C2).
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Generator

SingFit: Description of Fitting and Generation

* Avoids full Kronecker expansion and uses a smaller intermediate matrix

Full
Intermediate Kronecker Expansion
Kronecker Matrix 0K
Less [ ] [ ]
Initiator Matrix Computation | B —
0 € [0,1]V1*<M1
o = e
[ | [ | H
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Generator
SingFit: Description of Fitting and Generation

| s1. Singular Value Matching |

’5'[1‘] o (I(gTarget))

' S2. Gumbel Softmax
Trick

4

QK/L] )

0

Initiator Matrix
0 € [0,1]N1xM1

LT T T ot <

Descending-order
singular values

L] § S3. Significant Complexity Reduction:

0'K/Ll « 9Kl | > 2

4
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Experiments

Application: Hypergraph Extrapolation using HyRec

* Extrapolation is achieved by expanding the fitted HyRec model with Kronecker power

" Fit to Observed Hpergrph |

' Generate Future Hpergrph |

Extrapolate
- with Kronecker
| Expansion
Initiator Observed Hypergraph
Matrix (0) (Time<T)

Expanded Predicted Hypergraph
Incidence Matrix (Time=T)
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Experiments

Experimental Results: Fitting to Real-World Hypergraphs

 HyRec models real-world hypergraphs accurately and efficiently

* Itreproduces 9 hypergraph properties with a small number of parameters

@) 501 . Data HyperCL . HyperFF . HyperPA . HyperLAP THera . HyRec
= 2
< 4.0 2 &9
C : - X 1 5 -6 ’ 4 o 2
2 ./HyRec : L ’ :". g 2" T ———
3.0 * 22_11 °o@ 22 ;..

- . oo - 5 2°
o, xsi0 @ SRR N i
< 2.0 @ Closest to the optimal point . o 5 =

109 102 104 106 Degree of node pairs Intersection size Rank
Number of Parameters @®HyRec achieves the strong alignment with @ real-world data
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Experiments

Experimental Results: Strong Extrapolation

* HyRec accurately extrapolates the future structure of real hypergraphs

* |t predicts 9 hypergraph properties, outperforming all baselines with minimal input

PREDICT: . Data . HyperFF . HyperPA THera . HyRec
g 3.0 1 27_
kv, T & s o 271 © . v °
C 2—6 :' © 2°1 o :
© w 27 L ;>_ y
m 2 5 X 1.4 (@) il ° 0 5-11 ." O 53]
: HyRec B2 ) & . =P
(@) * ' ® >-15 A >-16 . 8121
> | X ®e - 0.. ) ]
< 2'01@‘ . x1,200 2t 2 2° 277 22 2 21 2 2°
10% 102 108 ' 106 Degree of node pairs Intersection size Rank

Num bef‘pf Parameters © HyRec provides the closest forecast to @ real-world hypergraph data
Closest to the optimal point
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Experiments

Experimental Results: Efficient Fitting and Generation

* SingFit scales to large hypergraphs with near-linear runtime

* |t enables efficient fitting and generation through Kronecker expansion

HyperCL . HyperFF @ HyperPA @ HyperlAP THera Y& HyRec

- ® Takes more than 5 hours

8 104 104
= 103 & 108 X Linear
GE) « 30 ® g ol Hyperedges)
= 10 HyRec o

c */ £ 10

=) =
o 10% € 10°

. s

(@) -

> . X 2,400 10
< 10GH L ' , 3 e

102 104 106 10 104 105 106 107 108
Number of Parameters Number of Hyperedges
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Conclusion

Conclusions

 Qur contributions are summarized as follows:

v' Discoveries: Identification of eight power-law-related patterns in eleven real-
world hypergraphs

v" Model: Design of HyRec, a tractable and realistic generative model of
hypergraphs, supported by SingFit

v" Proofs: Mathematical validation that HyRec adheres to these identified patterns

O Code & Dataset: https://github.com/young917/HyRec
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