

Sunwoo Kim

Minyoung Choe

Jaemin Yoo

Kijung Shin

Roadmap

ICDM 2022

What is Directed Hypergraph?

- In the real world, there are...
 - Directional relations: "Follow" in a social media
 - Group relations: Academic collaborations

Social Media

Collaborations of

Researchers

What is Directed Hypergraph?

- Directional relations + Group relations = Directional group relations
 - Chemical reactions
 - Question & Answering

What is Directed Hypergraph?

- Directed hypergraph consists of nodes and hyperarcs.
- Each hyperarc consists of two node sets: Head set and Tail set.
- Head set: Destination & Tail set: Source

ICDM 2022

What is Reciprocity?

• How mutually are nodes linked?

In a graph: # of Mutually Connected Edges # of Edges

• Useful in understanding human interaction, computer virus spread

model, and behavior (trust) prediction.

Our Research Question

- RQ1) How can we measure reciprocity in a directed hypergraph?
- RQ2) What are the real-world hypergraphs' reciprocal patterns?
- RQ3) Can we generate real-world hypergraphs' reciprocal patterns?

Roadmap

OverviewReciprocity Measure

Observations

Generators

Conclusions

ICDM 2022

Overall Framework

AXIOM (8 axioms): 8 properties that a proper reciprocity measure should have.

ICDM 2022

HyperRec:

A hypergraph reciprocity measure that satisfies all the proposed axioms.

• We provide reciprocity measures for a hyperarc and a hypergraph.

- HyperRec is based on the random surfer's return probability.
- Consider measuring the reciprocity of a specific hyperarc e_1 .
- Ideally, it should return to each of its sources with prob. 1/(tail set size).

- There are observed hyperarcs (e_2, e_3) .
- We use these hyperarcs (Reciprocal set) to measure the reciprocity of e_1 .
- HyperRec measures how far observed hyperarcs are from the ideal case.
- Distance: Transition (return) probability distance between them.

• Transition (return) probability from node 2 to other nodes.

Reciprocity in Directed Hypergraphs: Measures, Findings, and Generators

• Transition (return) probability from node 2 to other nodes.

• Transition (return) probability from node 2 to other nodes.

• Transition (return) probability from node 3 to other nodes.

Reciprocity in Directed Hypergraphs: Measures, Findings, and Generators

• Transition (return) probability from node 3 to other nodes.

16/40

ICDM 2022

• Transition (return) probability from node 3 to other nodes.

17/40

ICDM 2022

• Transition (return) probability from node 3 to other nodes.

18/40

ICDM 2022

• Transition (return) probability from node 3 to other nodes.

ICDM 2022

Reciprocity in Directed Hypergraphs: Measures, Findings, and Generators

Roadmap

OverviewReciprocity Measure

O Observations

Generators

Conclusions

ICDM 2022

Observation

• What are the real-world hypergraphs' reciprocal patterns?

ICDM 2022

Reciprocity in Directed Hypergraphs: Measures, Findings, and Generators

23/40

Observation

Observation 1: Hypergraph Level.

Real-world hypergraphs are more reciprocal than randomized hypergraphs.

iAF1260biJO1366enroneudata miningsoftwaremathserver201420152016Real World $r(G)$ 21.45522.53359.00179.41612.07815.3169.60813.21910.8296.9233.045Null $r(G)$ 0.3060.27014.8624.6330.0940.1470.0180.0020.00010.000*0.000*NullD Stat0.6250.6420.5300.8070.3550.3770.1240.1600.1470.1000.005			metabolic		email		citation		q&a		bitcoin		
Real World $r(G)$ 21.45522.53359.00179.41612.07815.3169.60813.21910.8296.9233.045Null $r(G)$ 0.3060.27014.8624.6330.0940.1470.0180.0020.00010.000*0.000*Null $r(G)$ 0.6250.6420.5300.8070.3550.3770.1240.1600.1470.1000.005			iAF1260b	iJO1366	enron	eu	data mining	software	math	server	2014	2015	2016
Null $r(G)$ 0.306 0.270 14.862 4.633 0.094 0.147 0.018 0.002 0.0001 0.000* 0.000* Null D Stat 0.625 0.642 0.530 0.807 0.355 0.377 0.124 0.160 0.147 0.100 0.000*	Real World	r(G)	21.455	22.533	59.001	79.416	12.078	15.316	9.608	13.219	10.829	6.923	3.045
[17-31000] = 0.020] = 0.042] = 0.097 = 0.001 [= 0.001] = 0.011] = 0.011] = 0.124 = 0.100] = 0.141 = 0.100]	Null	r(G) D-Stat	0.306 0.625	$0.270 \\ 0.642$	$14.862 \\ 0.539$	$4.633 \\ 0.807$	$0.094 \\ 0.355$	$0.147 \\ 0.377$	0.018 0.124	$0.002 \\ 0.160$	0.0001 0.147	0.000* 0.100	0.000^{*} 0.050

** Null hypergraph is a randomized hypergraph that fills nodes uniformly at random where hyperarc size is preserved.

ICDM 2022

Observation

Observation 2: Hyperarc Level.

Arcs with non-zero reciprocity tend to have higher head set out-degree and tail set in-degree.

Roadmap

Overview

C Reciprocity Measure

Observations

O Generators

Conclusions

ICDM 2022

- Realistic ≒ Can preserve reciprocal patterns.
- ReDi iteratively add nodes and create hyperarcs ∝ group degree.
- Extent of reciprocity is being controlled by hyperparameters β_1 and β_2 .

- 0. Initialize with normal graph edges.
- Add one node and decide the number of hyperarcs to be added with node 7.
- 2. Choose new hyperarcs' size.

- Realistic ≒ Can preserve reciprocal patterns.
- ReDi iteratively add nodes and create hyperarcs ∝ group degree.
- Extent of reciprocity is being controlled by hyperparameters β_1 and β_2 .

ICDM 2022

ン

Add two hyperarcs!

-). Initialize with normal graph edges.
- Add one node and decide the number of hyperarcs to be added with node 7.
- 2. Choose new hyperarcs' size.

- Realistic ≒ Can preserve reciprocal patterns.
- ReDi iteratively add nodes and create hyperarcs \propto group degree.
- Extent of reciprocity is being controlled by hyperparameters β_1 and β_2 .

- D. Initialize with normal graph edges.
- Add one node and decide the number of hyperarcs to be added with node 7.
- 2. Choose new hyperarcs' size.

- 3. Toss a coin, and decide whether current hyperarc is reciprocal ($\propto \beta_1$) or random ($\propto 1 \beta_1$).
- 4. (Random) Put a new node in either head or tail set, and fill the remaining positions ∝ the group degree. Then add hyperarc.
- 5. (Reciprocal) Choose a hyperarc to be reciprocal.
- 6. Toss a coin ($\propto \beta_2$), and decide how many and which nodes will we bring.
- 7. Fill remaining positions \propto the group degree, and add hyperarc.

- 3. Toss a coin, and decide whether current hyperarc is reciprocal ($\propto \beta_1$) or random ($\propto 1 \beta_1$).
- 4. (Random) Put a new node in either head or tail set, and fill the remaining positions ∝ the group degree. Then add hyperarc.
- 5. (Reciprocal) Choose a hyperarc to be reciprocal.
- 6. Toss a coin ($\propto \beta_2$), and decide how many and which nodes will we bring.
- 7. Fill remaining positions \propto the group degree, and add hyperarc.

- 3. Toss a coin, and decide whether current hyperarc is reciprocal ($\propto \beta_1$) or random ($\propto 1 \beta_1$).
 - 4. (Random) Put a new node in either head or tail set, and fill the remaining positions ∝ the group degree. Then add hyperarc.
 - 5. (Reciprocal) Choose a hyperarc to be reciprocal.
 - 6. Toss a coin ($\propto \beta_2$), and decide how many and which nodes will we bring.
 - 7. Fill remaining positions \propto the group degree, and add hyperarc.

- 3. Toss a coin, and decide whether current hyperarc is reciprocal ($\propto \beta_1$) or random ($\propto 1 \beta_1$).
 - 4. (Random) Put a new node in either head or tail set, and fill the remaining positions ∝ the group degree. Then add hyperarc.
 - 5. (Reciprocal) Choose a hyperarc to be reciprocal.
- 6. Toss a coin ($\propto \beta_2$), and decide how many and which nodes will we bring.
- 7. Fill remaining positions \propto the group degree, and add hyperarc.

- 3. Toss a coin, and decide whether current hyperarc is reciprocal ($\propto \beta_1$) or random ($\propto 1 \beta_1$).
- 4. (Random) Put a new node in either head or tail set, and fill the remaining positions ∝ the group degree. Then add hyperarc.
- 5. (Reciprocal) Choose a hyperarc to be reciprocal.
- 6. Toss a coin ($\propto \beta_2$), and decide how many and which nodes will we bring.
- Fill remaining positions ∝ the group degree. Then add hyperarc.

Reproducibility of observation 1 of ReDi:

ICDM 2022

ReDi can preserve the reciprocity value of hypergraphs.

	metal		oolic em		nail	citation		q&a		bitcoin		
		iAF1260b	iJO1366	enron	eu	data mining	software	math	server	2014	2015	2016
Real World	r(G)	21.455	22.533	59.001	79.416	12.078	15.316	9.608	13.219	10.829	6.923	3.045
-												
${\bf ReDi}$	r(G)	21.727	22.185	59.161	79.489	12.601	14.279	9.427	13.229	10.267	6.587	3.497
(Section 5)	D-Stat	<u>0.098</u>	<u>0.104</u>	0.053	<u>0.043</u>	0.212	0.151	<u>0.011</u>	0.005	<u>0.045</u>	0.033	0.017
Null	r(G)	0.306	0.270	14.862	4.633	0.094	0.147	0.018	0.002	0.0001	0.000^{*}	0.000^{*}
	D-Stat	0.625	0.642	0.539	0.807	0.355	0.377	0.124	0.160	0.147	0.100	0.050

Reproducibility of observation 2 of ReDi:

ICDM 2022

ReDi can preserve the relationship between arc degree and reciprocity.

Roadmap

Reciprocity Measure

Observations

Generators

Conclusions

ICDM 2022

Conclusions

Our contributions in this work:

- Principled Reciprocal Measure: HyperRec
- Observations in Real-world Directed Hypergraphs
 - 1. Hypergraph level
 - 2. Hyperarc level
- Realistic Generative Model: ReDi

The code and datasets used in the paper are available at

https://github.com/kswoo97/hyprec

Skipped Details

- AXIOMs: Properties that a proper reciprocity measure should have.
- Reciprocal set: Composing a reciprocal set of the target arc.
- Components of HyperRec: Formal expression of HyperRec.
- Searching algorithm (Ferret): Finding a proper reciprocal set fast & accurately.
- Soundness of HyperRec: Theoretical analysis that a HyperRec can satisfy all the axioms.
- Exactness of Ferret: Theoretical analysis that a Ferret's output is accurate.
- Additional experimental results: Additional experiments and full dataset results regarding observations and generations.

