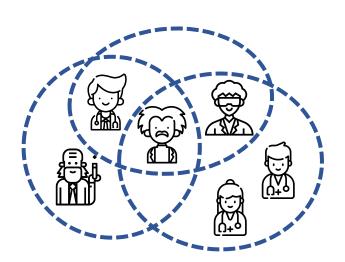
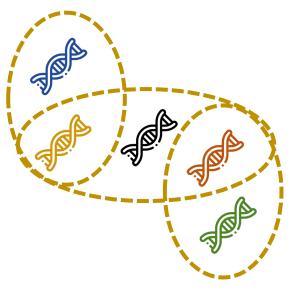


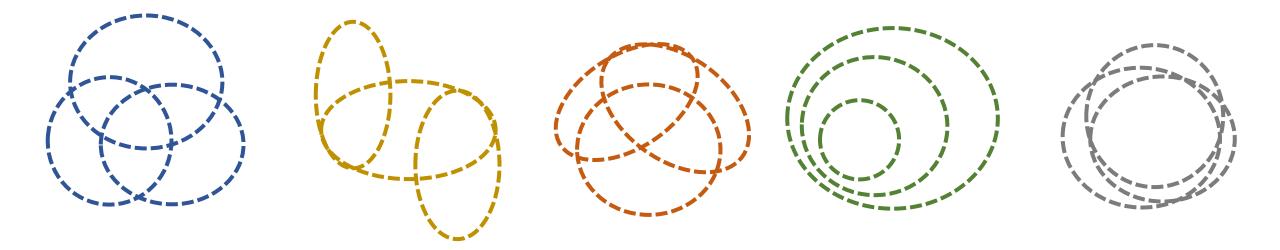
Geon Lee*


Minyoung Choe*


Kijung Shin

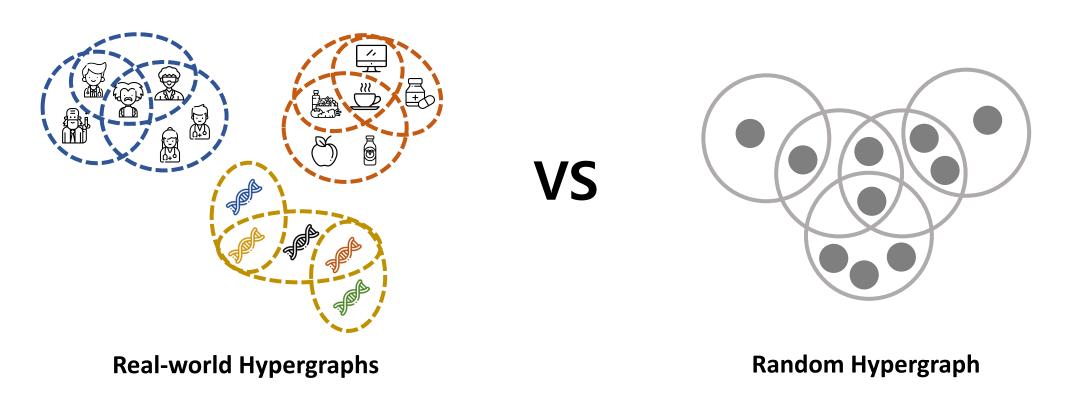
Hypergraphs are Everywhere

- Hypergraphs consist of nodes and hyperedges.
- Each hyperedge is a subset of any number of nodes.
- Hyperedges can overlap in infinitely many different ways.

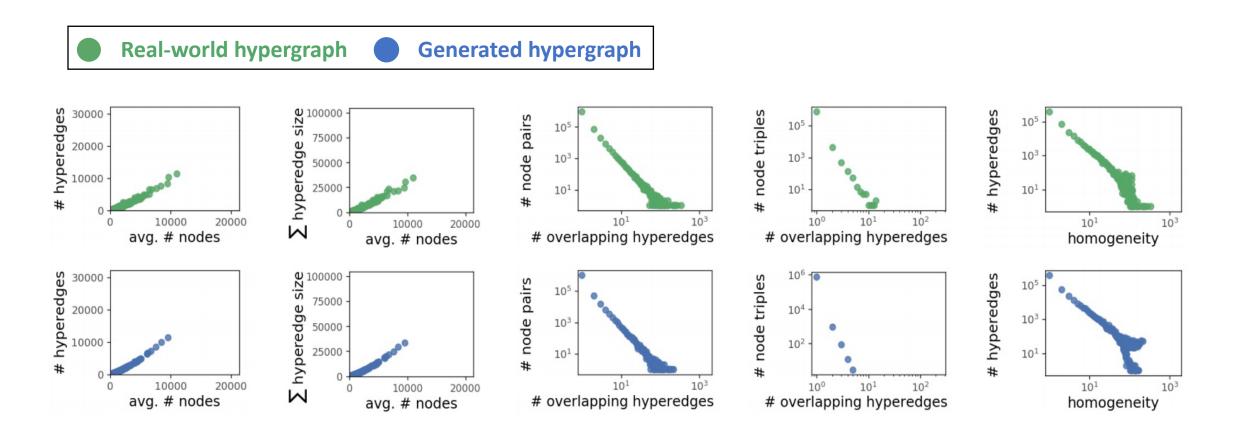

Collaborations of Researchers

Co-purchases of Items

Joint Interactions of Proteins

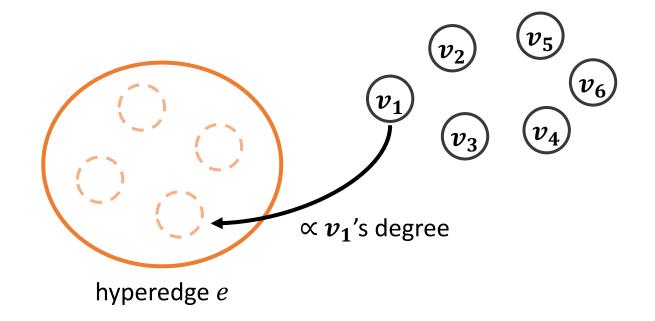

Our Questions

Q1 How do hyperedges overlap in real-world hypergraphs?


Our Questions (cont.)

Q2 Are there any non-trivial patterns that distinguish real-world hypergraphs from random hypergraphs?

Our Questions (cont.)


Q3 How can we reproduce the patterns through simple mechanisms?

Null Model

HyperCL: Random Hypergraph Generator (Null Model)

- Nodes are sampled with probability proportional to the degree of each node.
- The degree distribution of nodes is empirically preserved.

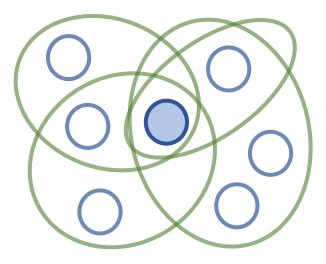
Datasets

Thirteen real-world hypergraphs from six domains

Domain	Datasets
Email	email-Enron, email-Eu
Contact	contact-primary, contact-high
Drugs	NDC-classes, NDC-substances
Tags	tags-ubnutu, tags-math
Threads	threads-ubuntu, threads-math
Co-authorship	coauth-DBLP, coauth-geology, coauth-history

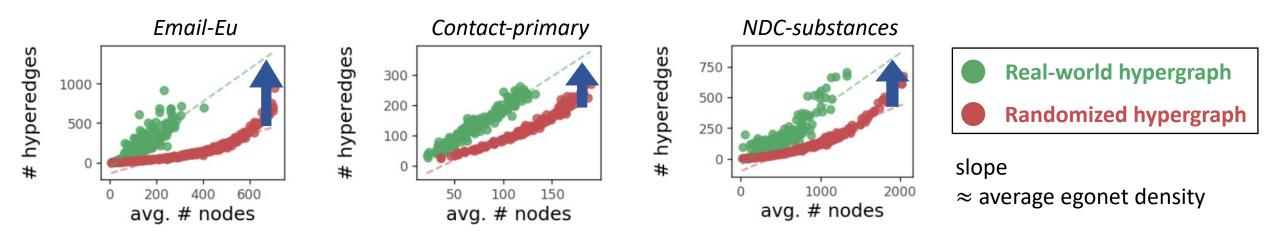
Roadmap

1. Observation: Egonet Level


- 2. Observation: Pair/Triple of Nodes Level
- 3. Observation: Hyperedge Level
- 4. Generators
- 5. Conclusions

Observation: Egonet Level

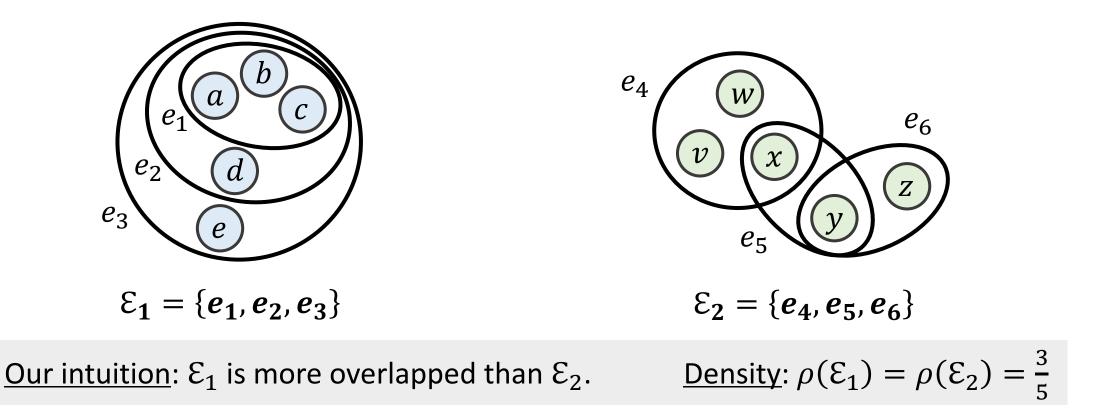
How substantially do the hyperedges around a node overlap with each other in the real-world hypergraphs?



We quantitatively measure this by using density and overlapness.

Density of Egonets

Egonet of a node (\mathcal{E}): set of hyperedges that contains the node


Density: $\rho(\mathcal{E}) \coloneqq \frac{|\mathcal{E}|}{|\bigcup_{e \in \mathcal{E}} e|} \leftarrow \text{number of hyperedges}$

Egonets in real-world hypergraphs tend to have **higher density** than those in randomized ones.

Density of Egonets (cont.)

Does **density** fully capture the degree of overlaps of a set of hyperedges?

What is the principled measure for evaluating the degree of overlaps of a set of hyperedges?

Degree of Hyperedge Overlaps

Any reasonable measure f of the hyperedge overlaps should satisfy the

following axioms.

Axiom 1: Number of Hyperedges

Consider two sets of hyperedges \mathcal{E} and \mathcal{E}' .

If \mathcal{E} and \mathcal{E}' have the same (1) hyperedge sizes and (2) number of distinct nodes,

but \mathcal{E} have more hyperedges than \mathcal{E}' , then $f(\mathcal{E}) > f(\mathcal{E}')$.

Degree of Hyperedge Overlaps (cont.)

Any reasonable measure f of the hyperedge overlaps should satisfy the

following axioms.

Axiom 2: Number of Distinct Nodes

Consider two sets of hyperedges \mathcal{E} and \mathcal{E}' .

If \mathcal{E} and \mathcal{E}' have the same (1) number of hyperedges and (2) size distribution of

hyperedges, but \mathcal{E} have less distinct nodes than \mathcal{E}' , then $f(\mathcal{E}) > f(\mathcal{E}')$.

Degree of Hyperedge Overlaps (cont.)

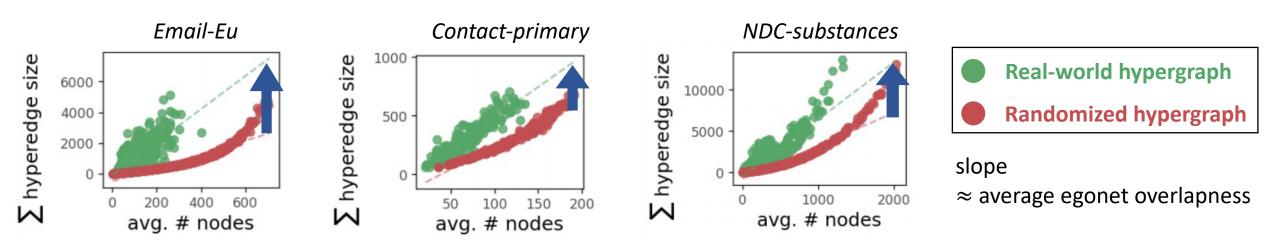
Any reasonable measure f of the hyperedge overlaps should satisfy the

following axioms.

Axiom 3: Sizes of Hyperedges

Consider two sets of hyperedges \mathcal{E} and \mathcal{E}' .

If \mathcal{E} and \mathcal{E}' have the same (1) number of distinct nodes and (2) number of


hyperedges, but \mathcal{E} have larger hyperedges than \mathcal{E}' , then $f(\mathcal{E}) > f(\mathcal{E}')$.

Overlapness of Egonets

Egonet of a node (\mathcal{E}): set of hyperedges that contains the node

Overlapness:
$$o(\mathcal{E}) \coloneqq \frac{\sum_{e \in \mathcal{E}} |e|}{|\bigcup_{e \in \mathcal{E}} e|} \leftarrow \text{sum of the hyperedge sizes}$$

 $\leftarrow \text{number of nodes}$

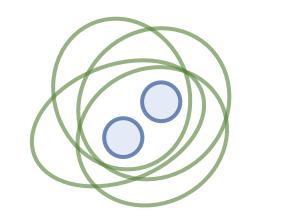
Egonets in real-world hypergraphs tend to have **higher overlapness** than those in randomized ones.

Overlapness of Egonets (cont.)

Overlapness satisfies all the axioms while others does not.

Metric	Axiom 1	Axiom 2	Axiom 3
Intersection	×	×	×
Union Inverse	×	\checkmark	×
Jaccard Index	×	×	×
Overlap Coefficient	×	×	×
Density	\checkmark	\checkmark	×
Overlapness (Proposed)	 ✓ 	 ✓ 	 ✓

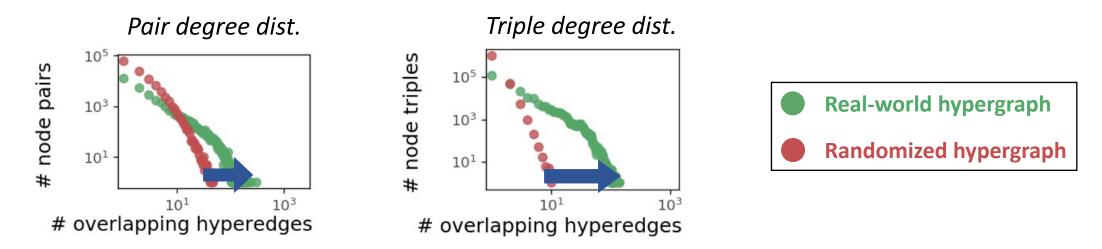
Roadmap


- 1. Observation: Egonet Level
- **2.** Observation: Pair/Triple of Nodes Level
- 3. Observation: Hyperedge Level
- 4. Generators
- 5. Conclusions

Observation: Pair/Triple of Nodes Level

How many hyperedges overlap at a pair or triple of nodes in the realworld hypergraphs?

Pair of nodes


Triple of nodes

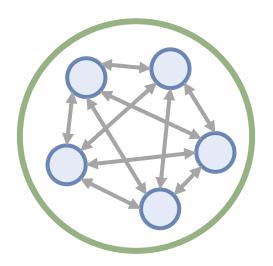
We extend the concept of degree to pairs and triples of nodes.

Degree of Node Pair/Triple

 E_S : set of hyperedges overlapping at subset S of nodes

Consider the number of hyperedges overlapping at each pair or triple of nodes: $|E_{\{i,j\}}|$ and $|E_{\{i,j,k\}}|$.

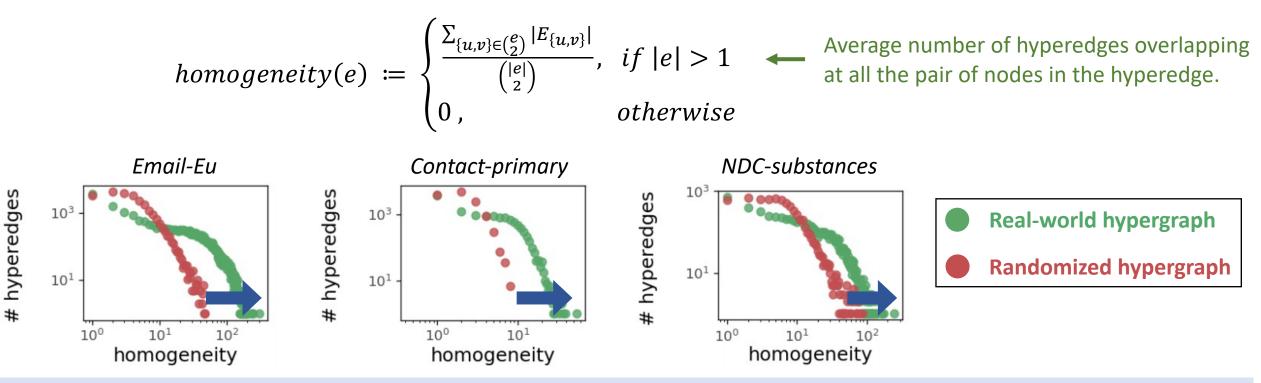
The distribution of the number of hyperedges overlapping at each node pair & triple is **more skewed with a heavier tail** in real-world hypergraphs than in randomized ones.


Roadmap

- 1. Observation: Egonet Level
- 2. Observation: Pair/Triple of Nodes Level
- **3. Observation: Hyperedge Level**
- 4. Generators
- 5. Conclusions

Observation: Hyperedge Level

How structurally similar are nodes that form hyperedges together related to each other in the real-world hypergraphs?



We define a new measure to investigate the similarity.

Homogeneity of a Hyperedge

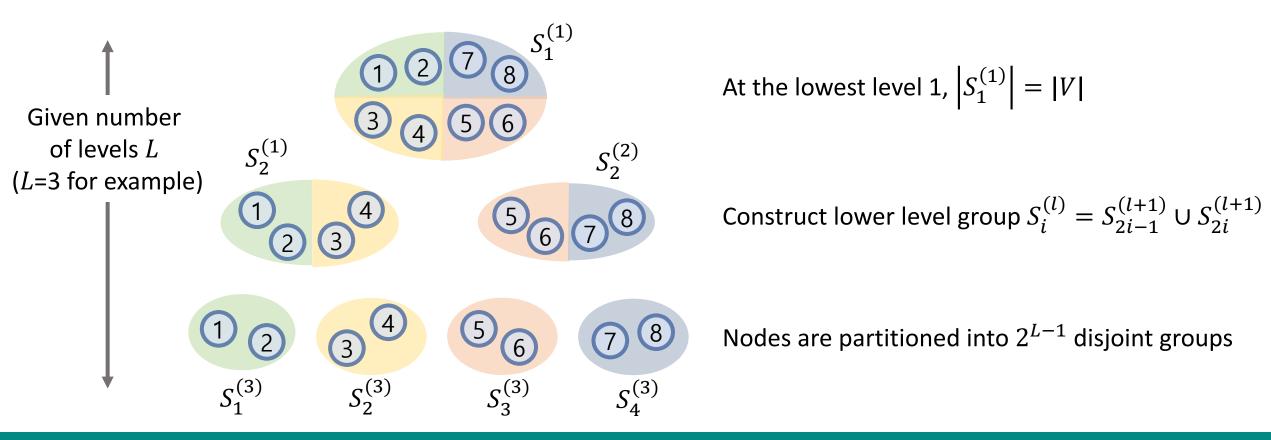
How to measure the similarity among the nodes forming a hyperedge?

Homogeneity of a hyperedge:

Hyperedges in real-world hypergraphs tend to have **higher homogeneity** than those in randomized ones.

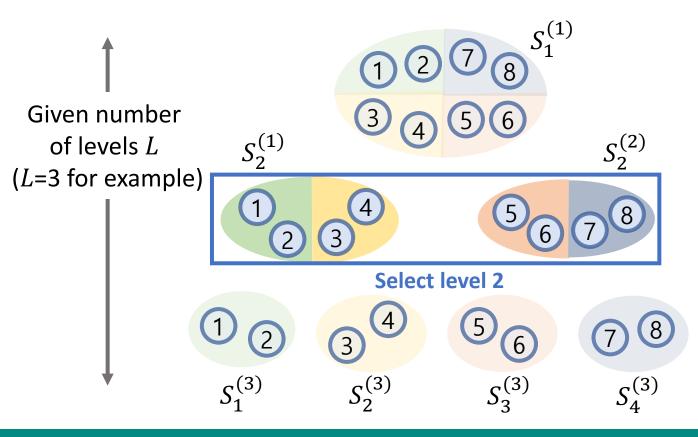
Roadmap

- 1. Observation: Egonet Level
- 2. Observation: Pair/Triple of Nodes Level
- 3. Observation: Hyperedge Level
- 4. Generators
- 5. Conclusions



Our Model: HyperLap

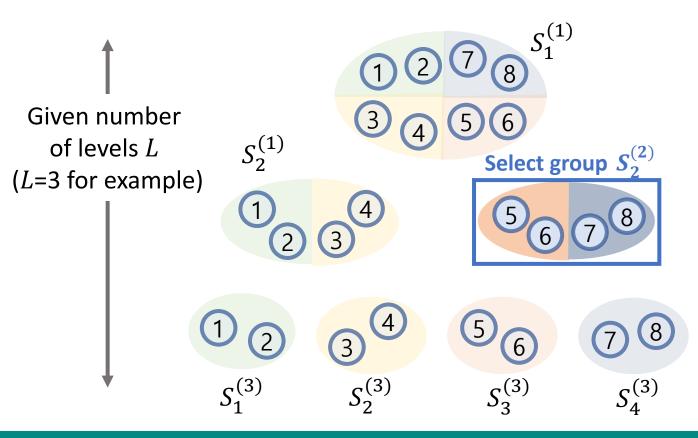
Main Idea: Extension of HyperCL


Step 1. Hierarchical Node Partitioning

Our Model: HyperLap (cont.)

Main Idea: Extension of HyperCL

Step 2. Hyperedge Generation

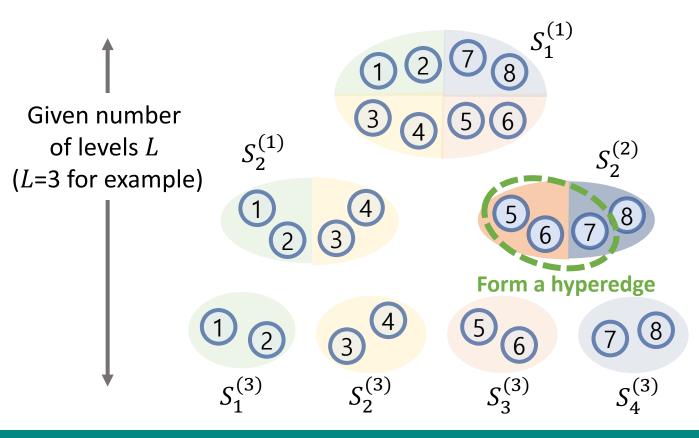


- 1. Select a level with probability proportional to the given weight of each level $\{w_1, ..., w_L\}$.
- 2. Select a group uniformly at random.
- Sample nodes independently with probability proportional to the degree of each node to form a hyperedge.

Our Model: HyperLap (cont.)

Main Idea: Extension of HyperCL

Step 2. Hyperedge Generation



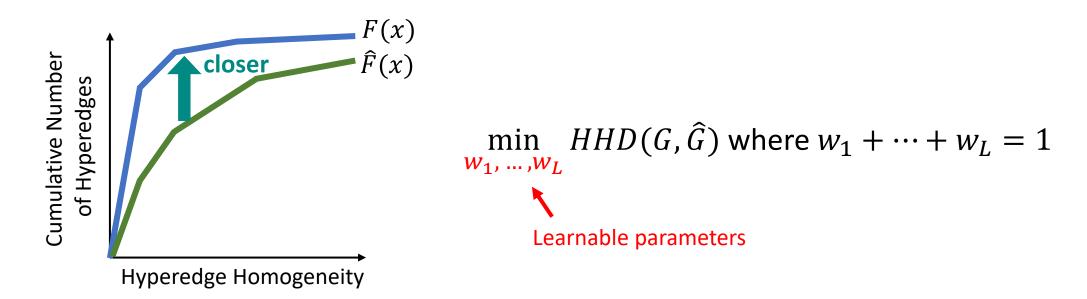
- 1. Select a level with probability proportional to the given weight of each level $\{w_1, \dots, w_L\}$.
- 2. Select a group uniformly at random.
- Sample nodes independently with probability proportional to the degree of each node to form a hyperedge.

Our Model: HyperLap (cont.)

Main Idea: Extension of HyperCL

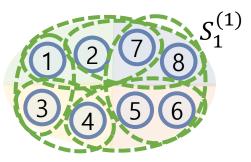
Step 2. Hyperedge Generation

- 1. Select a level with probability proportional to the given weight of each level $\{w_1, \dots, w_L\}$.
- 2. Select a group uniformly at random.
- 3. Sample nodes independently with probability proportional to the degree of each node to form a hyperedge.


Our Model: HyperLap⁺

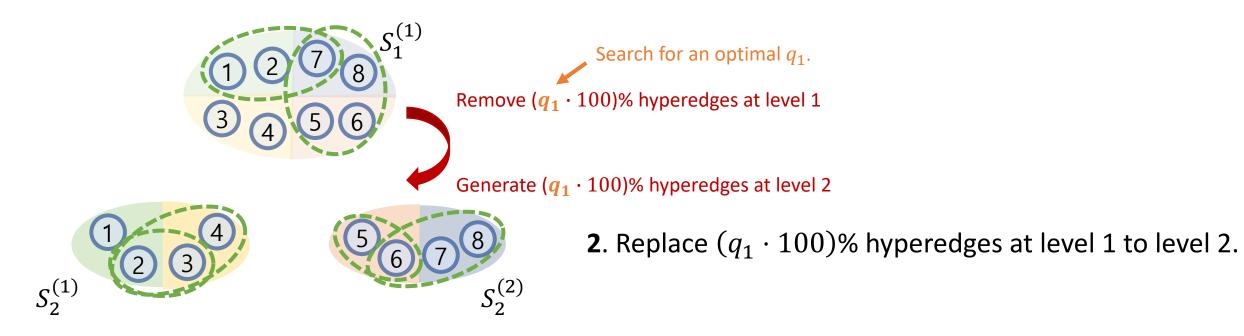
HyperLap⁺ automatically tunes the parameters of HyperLap.

Objective: Minimize the hyperedge homogeneity distance $HHD(G, \widehat{G})$.

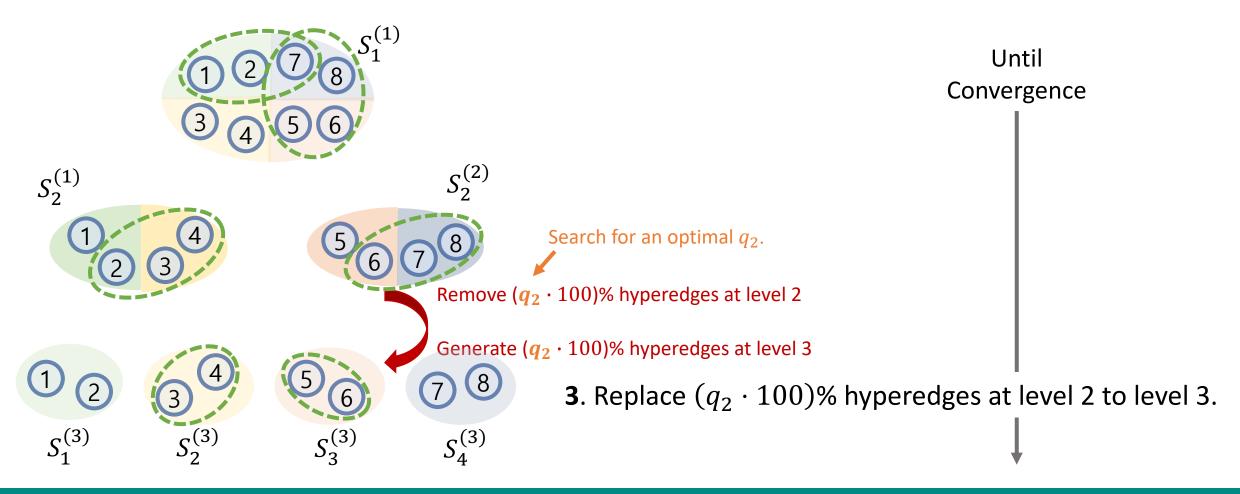

$$HHD(G,\widehat{G}) = \max_{x} \{ |F(x) - \widehat{F}(x)| \}$$

where F and \hat{F} are the cumulative hyperedge homogeneity distribution of hypergraphs G and \hat{G} , respectively.

Our Model: HyperLap⁺ (cont.)


HyperLap⁺ automatically tunes the parameters of HyperLap.

1. Generate |E| hyperedges at level 1.


Our Model: HyperLap⁺ (cont.)

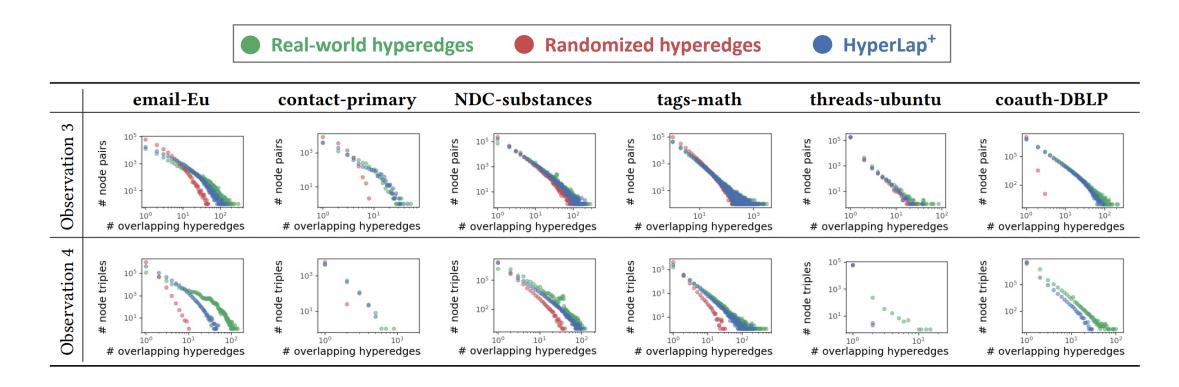
HyperLap⁺ automatically tunes the parameters of HyperLap.

Our Model: HyperLap⁺ (cont.)

HyperLap⁺ automatically tunes the parameters of HyperLap.

Evaluation of Our Model

HyperLap⁺ reproduces most accurately the distributions of(1) egonet density (2) egonet overlapness (3) hyperedge homogeneity


Dataset	Ι	Density	of Egor	nets (Obs	. 1)	Ov	erlapne	onets (O	bs. 2)	Home	Homogeneity of Hyperedges (Obs. 5)					
Dataset	H-CL	H-PA	H-FF	H-LAP	H-LAP ⁺	H-CL	H-PA	H-FF	H-LAP	H-LAP ⁺	H-CL	H-PA	H-FF	H-LAP	H-LAP ⁺	
email-Enron	0.545	0.202	0.391	0.405	0.125	0.517	0.398	0.398	0.391	0.111	0.498	0.241	0.656	0.191	0.136	
email-Eu	0.724	-	0.402	0.577	0.310	0.534	-	0.639	0.432	0.197	0.505	-	0.688	0.247	0.168	
contact-primary	0.896	0.537	0.975	0.334	0.128	0.867	0.471	0.942	0.285	0.095	0.430	0.236	0.484	0.142	0.188	
contact-high	0.948	0.529	0.880	0.522	0.345	0.874	0.431	0.703	0.486	0.296	0.423	0.196	0.336	0.120	0.178	
NDC-classes	0.694	0.785	0.731	0.696	0.635	0.302	0.715	0.406	0.231	0.248	0.274	0.410	0.484	0.272	0.225	
NDC-substances	0.451	-	0.801	0.426	0.366	0.321	-	0.338	0.243	0.157	0.377	-	0.740	0.262	0.108	
tags-ubuntu	0.522	0.162	0.216	0.410	0.300	0.432	0.117	0.398	0.487	0.210	0.245	0.136	0.844	0.105	0.011	
tags-math	0.496	0.350	0.561	0.195	0.227	0.460	0.325	0.709	0.151	0.186	0.337	0.217	0.921	0.086	0.015	
threads-ubuntu	0.159	0.856	-	0.163	0.159	0.299	0.953	-	0.300	0.297	0.020	0.291	-	0.016	0.011	
threads-math	0.137	0.492	-	0.120	0.135	0.232	0.714	-	0.235	0.229	0.060	0.368	-	0.102	0.019	
coauth-DBLP	0.228	-	-	0.227	0.132	0.302	-	-	0.267	0.244	0.715	-	-	0.540	0.026	
coauth-geology	0.200	-	-	0.202	0.138	0.248	-	-	0.252	0.266	0.624	-	-	0.481	0.044	
coauth-history	0.087	-	-	0.090	0.089	0.316	-	-	0.321	0.324	0.154	-	-	0.125	0.020	
Average	0.468	0.489	0.619	0.335	0.237	0.439	0.515	0.566	0.313	0.219	0.358	0.261	0.644	0.206	0.088	

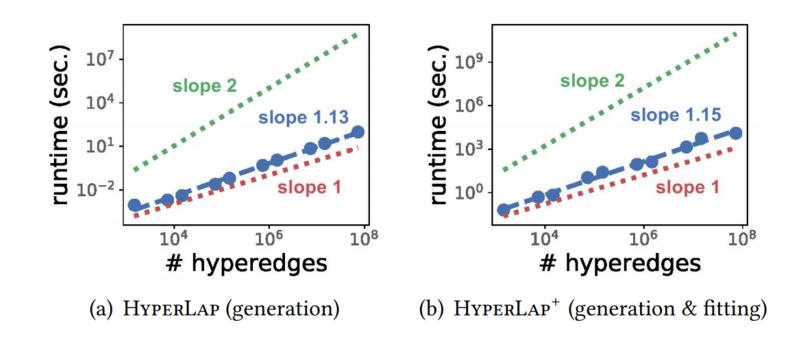
Measure: the similarity between the distributions derived from the real-world and the generated hypergraph by Kolmogorov-Smirnov D-statistics.

-: out of time (taking more than 10 hours) or out of memory

Evaluation of Our Model (cont.)

HyperLap⁺ reproduces the heavy-tailed distributions of the number of overlapping hyperedges at each *pair* and each *triple* of nodes accurately.

Evaluation of Our Model (cont.)


HyperLap⁺ reproduces the heavy-tailed distributions of the number of overlapping hyperedges at each *pair* and each *triple* of nodes accurately.

	Pair of Nodes (Obs. 3)								Triple of Nodes (Obs. 4)							
Dataset	Distance from Real (D-statistics)					Heavy-tail Test			Di	stance fi	rom Rea	Heavy-tail Test				
	H-CL	H-PA	H-FF	H-LAP	H-LAP ⁺	pw	tpw	logn	H-CL	H-PA	H-FF	H-LAP	H-LAP ⁺	pw	twp	logn
email-Enron	0.143	0.056	0.217	0.075	0.139	-2.37	-0.29	-1.53	0.089	0.295	0.136	0.061	0.072	-0.22	0.38	0.24
email-Eu	0.225	-	0.352	0.162	0.066	0.24	2.75	2.53	0.480	-	0.516	0.337	0.206	0.41	2.11	1.96
contact-primary	0.196	0.062	0.223	0.070	0.051	9.53	15.74	13.92	0.137	0.061	0.110	0.053	0.031	-1.86	-1.27	1.23
contact-high	0.277	0.062	0.141	0.127	0.067	-3.09	-0.95	-0.06	0.210	0.131	0.182	0.182	0.193	-3.95	-	0.50
NDC-classes	0.273	0.197	0.196	0.246	0.172	12.15	14.42	14.04	0.376	0.167	0.405	0.349	0.286	3.22	7.92	7.34
NDC-substances	0.272	-	0.244	0.251	0.202	33.69	40.13	39.66	0.521	-	0.591	0.492	0.453	45.30	55.38	54.99
tags-ubuntu	0.091	0.019	0.182	0.034	0.033	42.33	43.70	43.55	0.148	0.067	0.191	0.020	0.074	14.25	15.57	15.43
tags-math	0.095	0.066	0.278	0.073	0.011	42.75	45.60	45.41	0.209	0.053	0.286	0.113	0.079	21.38	23.12	22.99
threads-ubuntu	0.011	0.137	-	0.008	0.009	1.28	1.75	1.75	0.004	0.130	-	0.004	0.004	-1,346	-1.72	-1.72
threads-math	0.041	0.163	-	0.014	0.033	15.79	16.66	16.52	0.006	0.138	-	0.001	0.005	-1.49	-0.98	0.96
coauth-DBLP	0.224	-	-	0.191	0.032	55.86	74.95	73.45	0.215	-	-	0.214	0.192	2.87	6.73	6.46
coauth-geology	0.178	-	-	0.157	0.040	31.13	45.08	44.06	0.086	-	-	0.085	0.069	-0.10	1.10	0.84
coauth-history	0.033	-	-	0.030	0.009	1.74	1.77	1.63	0.001	-	-	0.001	0.001	-0.86	-	0.57
Average	0.158	0.095	0.229	0.110	0.066				0.193	0.130	0.302	0.147	0.128			

-: out of time (taking more than 10 hours) or out of memory

Scalability of Our Model

HyperLap and HyperLap⁺ scale near linearly with the size of the considered hypergraph.

Roadmap

- 1. Observation: Egonet Level
- 2. Observation: Pair/Triple of Nodes Level
- 3. Observation: Hyperedge Level
- 4. Generators
- **5.** Conclusions

Conclusions

Our contributions in this work:

- 1. Egonet Level Observation
- 2. Pair/Triple of Nodes Level Observation
- 3. Hyperedge Level Observation
- Novel Measures

The code and datasets used in the paper are available at https://github.com/young917/www21-hyperlap

Geon Lee*

Minyoung Choe*

Kijung Shin