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In this document, we discuss future applications and directions of hypergraph mining, especially hypergraph
patterns. We mainly review and discuss existing applications and research topics related to graph mining
and graph patterns, especially the graph counterparts of what we have discussed in this survey. Since most
hypergraph patterns are generalized from graph patterns, we expect many existing applications and directions
of graph mining and graph patterns will also be extended and generalized to hypergraphs in the future.
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1 APPLICATIONS TO ALGORITHMIC DESIGN
First, we discuss the possible applications of hypergraph mining to algorithmic design. Many results
of graph mining, especially graph patterns, have inspired the design of innovative graph algorithms
for real-world applications. These algorithms have proved to be highly practical, demonstrating
excellent efficiency and/or effectiveness. We expect that such applications can be generalized to
hypergraphs in the future using the corresponding hypergraph patterns, and they can be useful for
hypergraph algorithms and hypergraph mining, especially considering the high natural complexity
of hypergraphs [42, 50, 77, 146].
Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.Degree distributions and singular value distributions.The observation that real-world graphs
usually exhibit heavy-tailed degree distributions has been used for the design of graph algorithms,
including distributed graph algorithms [58, 137], degree distribution estimation algorithms [46],
graph traversal algorithms [186], knowledge graph completion [145], and triangle counting algo-
rithms [94]. Similarly, skewed singular values in real-world graphs have been used for optimizing
triangle counting [90, 159]. Skewed degree distributions and singular value distributions are also
observed in real-world hypergraphs (see P1 and P14). Therefore, the above applications are possibly
extendable to hypergraphs, for the counterpart algorithmic problems on hypergraphs.
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Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality.Temporal locality. In many real-world temporal graphs, the temporal locality is observed, where
edges appearing within a smaller temporal window are more likely to interact. This property has
been used for designing efficient algorithms for triangle counting [100] and graph traversal [93].
Several patterns related to temporal locality have been observed in hypergraphs (see P16 and P20),
and we expect such patterns to be useful in the design of algorithms for temporal hypergraphs.
Diameters.Diameters.Diameters.Diameters.Diameters.Diameters.Diameters.Diameters.Diameters.Diameters.Diameters.Diameters.Diameters.Diameters.Diameters.Diameters.Diameters. Small diameters in real-world graphs have been considered in designing algorithms for
large-scale graph mining [86]. Therefore, shrinking diameters observed in real-world hypergraphs
(see P26) are also possibly useful for large-scale hypergraph mining.
Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures.Core-periphery structures. Several algorithms leverage core-periphery structures in real-world
graphs for efficient graph compression [109] and the rapid retrieval of similar nodes [82, 144], and
thus we expect such structures in hypergraphs (see P3) to be useful in related tasks [35].
Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Treewidth.Bounded treewidth in real-world graphs has been used for optimizing graph queries [117],
designing graph clustering algorithms [17], and Bayesian inference [140]. Although the study of
treewidth in hypergraphs is still mainly limited to the theoretical field [114, 119, 156], we expect
more patterns regarding treewidth will be discovered in real-world hypergraphs and those patterns
will be used in many applications.

2 APPLICATIONS TO MACHINE LEARNING
In addition to algorithmic design, graph patterns have also been widely used in machine learning,
especially machine learning on graphs. This suggests the potential usefulness of observed patterns
within real-world hypergraphs across hypergraph-related applications, as discussed below.
Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation.Graph neural networks and general feature representation. One of the most common topics
in machine learning on graphs is feature representation, where graph neural networks (GNNs)
are often used. Many graph properties and patterns have been considered for enhancing the
performance of GNNs, including degree distributions [107, 111, 174, 183], assortativity [155], graph
motifs [18, 25, 41, 55, 80, 121, 128, 180, 189, 190], ego-networks [124, 138]. Structural patterns can
also be used as additional node features to enrich the features used for graph learning [39, 64].
Recently, a line of research focused on using graph patterns for the theoretical analysis of GNNs.
For example, graph motifs have been used to explain the learning process and the outcomes
produced by GNNs [127], and ego-networks have been used for designing a theoretically and
practically transferable GNN model [193]. Besides, graph patterns, especially graph motifs, can
be used for general feature representation at both the node level and the graph level. Typically,
graph motifs are extensively used for the comprehensive analysis and representation of whole
graphs [11, 13, 120, 169], as well as for comparing multiple graphs [131, 175]. Moreover, graph
motifs are also used for modeling the evolution of temporal graphs [38, 139]. We expect hypergraph
patterns to be useful, as their graph counterparts, not only in GNNs (e.g., a straightforward
generalization of 𝑘-cores in hypergraphs has been utilized for the initialization of GNNs [110]),
but also in increasingly popular hypergraph neural networks [16, 29, 50, 56, 60, 66, 68, 76, 88, 108]
and general feature representation in hypergraphs [12] for applications including educational
management [105] and fake news detection [74].
Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection.Link prediction and community detection. Link prediction [96, 113] and community detec-
tion [53] are two traditional machine-learning problems on graphs. Many graph patterns have been
used in those two problems, including assortativity [7, 36], graph motifs [1, 136, 164, 170], the struc-
ture of ego-networks [3, 157], and structural similarity (especially neighborhood homogeneity) [19,
27, 149, 166, 177]. Link prediction (i.e., hyperedge prediction) [26, 71, 97, 160, 163, 171, 173, 176]
and community detection in hypergraphs [30, 37, 48, 84, 85, 87, 192] have gained more and more
attention recently. Specific applications where they have been employed include (1) recognizing
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unique sets of items to be purchased together [106], (2) proposing new combinations of ingredients
for recipes [188], (3) suggesting novel collaborations among researchers [112], and (4) uncovering
clusters of genes that collaborate for specific biological functions [122]. We look forward to seeing
hypergraph patterns be used for these two tasks.
Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection.Anomaly detection. Anomaly detection [23] is another traditional machine-learning problem,
and graph-based anomaly detection [5] is a popular subtopic. Many graph patterns have been used
in graph-based anomaly detection, including graph motifs [123], the structure of ego-networks [4],
𝑘-cores [143], and structural similarity (especially neighborhood homogeneity) [22]. Recently,
anomaly detection in hypergraphs has also been studied [101, 165], and Do and Shin [43] have
considered a simple heuristic of anomaly detection on nodes by comparing the hypercoreness
values and degrees of nodes. We anticipate more usage of hypergraph patterns for this application.
Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation.Recommendation. Recommendation [73, 141] is a long-standing research topic in machine learn-
ing. Graphs are an important tool for building recommendation systems [24, 63, 153], and many
graph patterns, including graph motifs [40, 59, 152, 191] and the structure of ego-networks [47],
have been used in graph-based recommendation models. Furthermore, many challenges and reme-
dies in recommendation systems are closely linked to graph patterns, such as addressing popularity
bias stemming from heavy-tailed degree distributions [115, 168]. Hypergraphs are also useful for
this task, especially bundle recommendation [154, 194] and group recommendation [9, 182], which
can be modeled using hypergraphs [75, 118, 181, 185]. We await more applications of hypergraph
patterns for recommendation systems.
Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling.Subgraph sampling. In machine learning on graphs, subgraph sampling is a useful technique
for, e.g., better representation [8] and higher time efficiency [28, 142, 184]. A line of works exists
on representative subgraph sampling [70, 103, 116], where the target is to sample subgraphs with
similar characteristics as a given graph. Subgraph sampling has also been used for estimating
quantities of a given graph [78, 179], where the estimation algorithms exploit the skewed degree
distribution [2] and fast mixing time [61] of real-world graphs. Recently, this task has been consid-
ered on hypergraphs [34]. Hopefully, hypergraph patterns can be proven useful on related tasks,
just like their graph counterparts.

3 ANALYSIS AND MINING OF GENERALIZED HYPERGRAPHS
In this survey, we have mainly discussed simple hypergraphs (i.e., undirected and unweighted
ones). Below, we would like to discuss several types of generalized hypergraphs.
Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs.Directed hypergraphs, where nodes within each hyperedge are partitioned
into a source set and a destination set, have been studied in the fields of theoretical mathematics and
theoretical computer science with researchers paying continuous attention [14, 15, 54, 134]. Directed
hypergraphs are applied to many tasks, including expert systems [132], image segmentation [44],
music composition [67], metabolic network analysis [158], chemical reaction modeling [81], and
objects retrieval [10]. Ranshous et al. [133] studied patterns in real-world directed transaction
hypergraphs, and applied the observed patterns to transaction classification. Recently, Kim et al. [89]
extended the concept of reciprocity to directed hypergraphs and studied related patterns within
real-world directed hypergraphs. We expect more patterns to be explored on directed hypergraphs.
Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs.Weighted hypergraphs. Most works mentioned in this survey deal with unweighted real-world
hypergraphs or explicitly preprocess the datasets into unweighted ones, although some take the
repetition of hyperedges into consideration [20, 102]. At the same time, weighted hypergraphs
provide amore general and expressiveway to represent systems.Weighted hypergraphs, particularly
those with each hyperedge associated with a numerical value, have been used for biological
studies [72], image retrieval [69], concept-to-text generation [91, 92], and object classification [150].
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Recently, there also has been a growing interest in hypergraphs with edge-dependent vertex weights
(where a node can have different weights in different hyperedges) [31, 33, 62, 196]. We expect more
patterns to be explored on weighted hypergraphs.
Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs.Heterogeneous hypergraphs. Heterogeneous hypergraphs are another type of generalized hy-
pergraphs, where nodes can belong to different classes (or types, labels, etc.). Some theoretical
studies have been conducted on heterogeneous hypergraphs [148, 162]. Recently, heterogenous
hypergraphs have also been considered for hypergraph representation learning [49, 151, 172, 195].
More patterns await discovery on heterogeneous hypergraphs.
Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Uncertain hypergraphs.Generalized hypergraphs also include uncertain hypergraphs, where the
presence or absence of hyperedges is not deterministic but governed by probabilities or uncertainty
measures. Uncertainty naturally arises in real-world scenarios, and it is important to consider
uncertainty when modeling real-world systems into graphs or hypergraphs [21, 79, 129]. The
studies on uncertain hypergraphs are still mainly limited to theoretical ones [126, 147, 167, 187],
and we expect that more patterns can be discovered on uncertain hypergraphs.

4 OUT-OF-SCOPE DISCUSSIONS
In this survey, we have focused on tools, measures, and generators that are used for or based on
patterns in real-world hypergraphs. Below, we would like to provide discussions on related work
that is out of the scope of this survey.
Distances.Distances.Distances.Distances.Distances.Distances.Distances.Distances.Distances.Distances.Distances.Distances.Distances.Distances.Distances.Distances.Distances. Recently, some researchers have tried to propose distance metrics in hyperedges.
Vasilyeva et al. [161] proposed distance metrics based on the random walks in weighted line graphs
of hypergraphs. Aksoy et al. [6] proposed a distance metric considering higher-order connectivity
in hypergraphs, and Preti et al. [130] proposed a fast approximation algorithm of such a metric.
Li and Fadlallah [104] considered another distance metric based on the expected hitting times of
random walks in hypergraphs, and they proposed an efficient computational algorithm for the
metric. The above distance measures have not been used for mining real-world patterns yet.
Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models.Mathematical models. There are also various existing mathematical models of hypergraphs [32,
37, 45, 51, 52, 57, 65, 83, 95, 98, 99, 125, 135, 178], where real-world hypergraph properties and
patterns are not considered. Using the mathematical ideas and tools in such works to enhance
hypergraph generation might be an interesting future direction.
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