

Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators Part 3. Generative Models

Geon Lee

Jaemin Yoo

Kijung Shin

Part 3. Generative Models

"How can we generate realistic hypergraphs?"

"What are underlying mechanisms that lead to the observed patterns?"

Why Generative Models?

- Explaining Patterns: Shed a light on why patterns occur
- Statistical Test: Test the statistical significance of patterns
- Benchmark Data Generation
 - Create large realistic hypergraphs for evaluation of hypergraph algorithms
 - Useful when real hypergraphs are hard/impossible to collect
- Anonymization
 - Generate and publicize synthetic hypergraphs to structurally-similar real ones
 - Useful real hypergraphs cannot be publicized (due to sensitive information etc.)

Roadmap

- Part 1. Static Structural Patterns
 - Basic Patterns
 - Advanced Patterns

Part 2. Dynamic Structural Patterns

- Basic Patterns
- Advanced Patterns
- Part 3. Generative Models
 - Static Hypergraph Generator <
 - Dynamic Hypergraph Generator

Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators

Part 3-1. Static Hypergraph Generative Models

Part 3. demonstrative Models

Ð	Static Models	Full-Hypergraphs	C20, LCS21
		Sub-Hypergraphs	CYLBKS22
	Dynamic Models	Full-Hypergraphs	DYHS20, KKS20, KBCYS23, GLLB23
		Sub-Hypergraphs	BKT18, CK21

Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators

C20: Configuration Models

• G1: Pairwise reshuffling

Configuration Models

 Configuration models generate random hypergraphs while preserving distributions of node degrees and hyperedge sizes.

Real-world hypergraph

Randomized hypergraph

Pairwise Reshuffling

Step 1. Hyperedge Pair Sampling

<u>Step 1</u>

Sample a pair of hyperedges uniformly at random.

$$(e_i, e_j) \in \begin{pmatrix} E \\ 2 \end{pmatrix}$$

Pairwise Reshuffling (cont.)

Step 2. Shuffle Hyperedges

<u>Step 2-1</u>

For each node $v \in e_i \cap e_j$, add to both e'_i and e'_i .

Pairwise Reshuffling (cont.)

Step 2. Shuffle Hyperedges

Step 2-2

From $(e_i \cup e_j) - (e_i \cap e_j)$, sample $|e_i - e_j|$ nodes and add to e'_i .

Step 2-3

Add remaining nodes to e'_i .

LCS21: Static Full-Hypergraph Generator

- **G1.** HyperCL: <u>Hyper</u>grpaph <u>C</u>hung-<u>L</u>u (Basic model)
- **G2.** HyperLap: <u>Hyper</u>graph Over<u>Lap</u> (Multilevel HyperCL)

HyperCL: Basic Model

- An approximate configuration model.
- HyperCL fills each hyperedge with sampled nodes.
 - Samples nodes with **probability** \propto degrees.

Random sampling prob. $\propto d$'s degree

Evaluation of Configuration Models

G. Lee, J. Yoo, K. Shin

1971

- Configuration models preserve node degrees and hyperedge sizes.
- They are limited in reproducing realistic overlapping patterns.
- Especially, they fail to produce highly-overlapping hyperedges.

HyperLap: Multilevel HyperCL

Step 1. Random Hierarchical Grouping of Nodes

HyperLap: Multilevel HyperCL (cont.)

Step 2. Hyperedge Generation

Step 2-1

Select a level with probability

proportional to the given weight of each level $\{w_1, \dots, w_L\}$.

HyperLap: Multilevel HyperCL (cont.)

Step 2. Hyperedge Generation

Step 2-2

Select a group uniformly at random.

HyperLap: Multilevel HyperCL (cont.)

Step 2. Hyperedge Generation

Step 2-3

Sample nodes independently with probability proportional to the degree of each node to form a hyperedge.

Evaluation of HyperLap

G. Lee, J. Yoo, K. Shin

1971

- HyperLap produces realistic overlaps of hypereges in many aspects.
- For example, HyperLap yields highly-overlapping hyperedges.

Evaluation of HyperLap (cont.)

Question: How can HyperLap yield realistic overlapping patterns of hyperedges?

Answer:

- HyperLap generates hyperedges from groups of various sizes.
- Hyperedges from small groups highly overlap with each other.
- Hyperedges from large groups
 less overlap with each other.

CYLBKS22: Static Sub-Hypergraph Generator

• **G1.** MiDaS: <u>Minimum Degree Biased</u> Sampling of Hyperedges

20

Hypergraph Representative Sampling

Question:

From a hypergraph G, how can we generate a **smaller** hypergraph \widehat{G} that preserves the structural properties?

Answer:

We sample a **representative sub-hypergraph** $\widehat{\mathcal{G}}$ from \mathcal{G}

Hypergraph Representative Sampling (cont.)

Question:

What is a **representative** sub-hypergraph?

Answer:

We consider **10 structural properties**.

P1. DegreeP5. Singular ValuesP8. DensityP2. Pair DegreeP6. Connected Component SizeP9. OverlapnessP3. SizeP7. Global Clustering CoefficientP10. Effective Diameter

22

P4. Intersection Size

Node-level, hyperedge-level, and hypergraph-level structural properties

Simple and Intuitive Approaches

• Node selection (NS) chooses a subset of nodes and returns the sub-hypergraph induced by the nodes.

• Hyperedge selection (HS) directly chooses a subset of hyperedges.

23

Simple and Intuitive Approaches (cont.)

- RHS (Random Hyperedge Sampling) performs best overall
 - RHS chooses hyperedges uniformly at random

G. Lee, J. Yoo, K. Shin

1971

Random Hyperedge Sampling: Pros

G. Lee, J. Yoo, K. Shin

1971

• RHS preserves many structural properties surprisingly well.

M. Choe, J. Yoo, G. Lee, W. Baek, U Kang, K. Shin. "MiDaS: Representative Sampling from Realworld Hypergraphs", **WWW 2022**

:

Random Hyperedge Sampling: Cons

- **RHS** gives a weakly connected sub-hypergraph.
- Especially, RHS suffers from a lack of high-degree nodes.

MiDaS-Basic: Main Idea

 To increase the fraction of high-degree nodes, prioritize hyperedges composed of high-degree nodes.

MiDaS-Basic: Main Idea (cont.)

• Sampling a target number of hyperedges with probability proportional to the **minimum degree of nodes** in each hyperedge to the power of α .

MiDaS-Basic: Empirical Properties

G. Lee, J. Yoo, K. Shin

KAIST

- With a proper α value, degree distributions are well preserved.
- Motivates (full-fledged) MiDaS with a hill-climbing search of α

M. Choe, J. Yoo, G. Lee, W. Baek, U Kang, K. Shin. "MiDaS: Representative Sampling from Realworld Hypergraphs", **WWW 2022**

Details

MiDaS: Evaluation

• **MiDaS** provides overall the most representative samples in terms of both average rankings and Z-scores.

MiDaS: Evaluation (cont.)

• MiDaS is the fastest except for the simplest methods.

31

Roadmap

- Part 1. Static Structural Patterns
 - Basic Patterns
 - Advanced Patterns

Part 2. Dynamic Structural Patterns

- Basic Patterns
- Advanced Patterns

Part 3. Generative Models

- Static Hypergraph Generator
- Dynamic Hypergraph Generator <

Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators

Part 3-2. Dynamic Hypergraph Generative Models

Part 3. df Generative Models

Ð	Static Models	Full-Hypergraphs	C20, LCS21
		Sub-Hypergraphs	CYLBKS22
	Dynamic Models	Full-Hypergraphs	DYHS20, KKS20, KBCYS23, GLLB23
		Sub-Hypergraphs	BKT18, CK21

DYHS20: Dynamic Full-Hypergraph Generator

• G1. HyperPA: <u>Hyper</u>graph <u>P</u>referential <u>A</u>ttachment

M. T. Do, S. Yoon, B. Hooi, K. Shin, "Structural Patterns and Generative Models of Real-world Hypergraphs", **KDD 2020**

HyperPA: Preferential Attachment

- Inspired by the PA model for pairwise graphs [AA02]
 - Preferential attachment or "the rich get richer"
- Main idea: "Subsets get rich together"

G. Lee, J. Yoo, K. Shin

• Groups of nodes appear with **probability** \propto **"group degrees**."

M. T. Do, S. Yoon, B. Hooi, K. Shin, "Structural Patterns and Generative Models of Real-world Hypergraphs", **KDD 2020**

HyperPA: Preferential Attachment (cont.)

Hyperedge Generation

Group Degrees

M. T. Do, S. Yoon, B. Hooi, K. Shin, "Structural Patterns and Generative Models of Real-world Hypergraphs", **KDD 2020**

HyperPA: Preferential Attachment (cont.)

Hyperedge Generation

Group Degrees

M. T. Do, S. Yoon, B. Hooi, K. Shin, "Structural Patterns and Generative Models of Real-world Hypergraphs", **KDD 2020**

HyperPA: Preferential Attachment (cont.)

Hyperedge Generation

M. T. Do, S. Yoon, B. Hooi, K. Shin, "Structural Patterns and Generative Models of Real-world Hypergraphs", **KDD 2020**

HyperPA: Evaluation (cont.)

- HyperPA generates realistic higher-order structures.
 - HyperPA considers "group degrees."

G. Lee, J. Yoo, K. Shin

KAIST

• NaivePA (baseline) considers node degrees individually.

Degree distributions of the triangle-level decomposed graphs

M. T. Do, S. Yoon, B. Hooi, K. Shin, "Structural Patterns and Generative Models of Real-world Hypergraphs", **KDD 2020**

KKS20: Dynamic Full-Hypergraph Generator

• **G1.** HyperFF: <u>Hyper</u>graph <u>Forest</u> <u>Fire</u>

Y. Kook, J. Ko, K. Shin, "Evolution of Real-world Hypergraphs: Patterns and Models without Oracles", **ICDM 2020**

HyperFF: Motivation

• Inspired by the forest fire model for pairwise graphs [LKF05]

Y. Kook, J. Ko, K. Shin, "Evolution of Real-world Hypergraphs: Patterns and Models without Oracles", **ICDM 2020**

HyperFF: (Step 1) Hyperedge Formation

- For a new node, HyperFF simulates a forest fire from an ambassador.
- The forest fire is spread through hyperedges.

G. Lee, J. Yoo, K. Shin

• The new nodes forms a size-2 hyperedge with each burned node.

Y. Kook, J. Ko, K. Shin, "Evolution of Real-world Hypergraphs: Patterns and Models without Oracles", **ICDM 2020**

HyperFF: (Step 2) Expansion

• Each size-2 hyperedge is expanded again through a forest fire.

Y. Kook, J. Ko, K. Shin, "Evolution of Real-world Hypergraphs: Patterns and Models without Oracles", **ICDM 2020**

HyperFF: Evaluation

• HyperFF reproduces static structural patterns in real hypergraphs.

Y. Kook, J. Ko, K. Shin, "Evolution of Real-world Hypergraphs: Patterns and Models without Oracles", **ICDM 2020**

HyperFF: Evaluation (cont.)

• HyperFF reproduces static structural patterns in real hypergraphs.

Intersection size distribution

Singular value distribution

45

Y. Kook, J. Ko, K. Shin, "Evolution of Real-world Hypergraphs: Patterns and Models without Oracles", **ICDM 2020**

HyperFF: Evaluation (cont.)

G. Lee, J. Yoo, K. Shin

KAIST

• HyperFF reproduces dynamic structural patterns in real hypergraphs.

Diminishing overlaps

Increasing edge density

46

Y. Kook, J. Ko, K. Shin, "Evolution of Real-world Hypergraphs: Patterns and Models without Oracles", **ICDM 2020**

HyperFF: Evaluation (cont.)

• HyperFF reproduces dynamic structural patterns in real hypergraphs.

Shrinking diameter

47

Y. Kook, J. Ko, K. Shin, "Evolution of Real-world Hypergraphs: Patterns and Models without Oracles", **ICDM 2020**

How Can HyperFF be Realistic?

- By simplifying HyperFF, several properties can be "proven."
 - Heavy-tailed degree distribution
 - Densification

Simplified HyperFF: nodes are burned with prob.

depending on the distance in a hierarchy tree

J. Ko, Y. Kook, K. Shin, "Growth patterns and models of real-world hypergraphs", **Knowledge and Information Systems (2022)**

KBCYS23: Dynamic Full-Hypergraph Generator

- G1. Naïve THera: Preliminary Version
- **G2.** THera: <u>Transitive</u> <u>Hypergraph</u> Gen<u>era</u>tor

Recap: Transitivity of Hypergraphs

• Real-world hypergraphs exhibit transitivity.

G. Lee, J. Yoo, K. Shin

KAIST

• The level of transitivity introduced by HyperPA and HyperPA often deviates much from that in real-world hypergraphs.

Naïve-THera: Preliminary Version

- Naïve-THera assigns each node to a community and generates intra-community hyperedges.
- The level of transitivity can be controlled by the size of communities.

Naïve-THera: Preliminary Version (cont.)

- However, Naïve-THera generates unrealistic hypergraphs:
 - Near-uniform node degree distribution

G. Lee, J. Yoo, K. Shin

KAIST

Divided and disconnected hypergraphs

1.0 b 0.5 0.5 0.0 Beal-world THera Naïve-THera 50 Node Degree

THera: Transitivity-Preserving Generator

• **THera** generates two types of hyperedges:

G. Lee, J. Yoo, K. Shin

KAIST

- Intra-community edges consist of nodes within the same community.
- Hierarchical edges consist of nodes from different communities.
- Hierarchical edges address disconnectivity by bridging communities.

Intra-community edge

THera: Transitivity-Preserving Generator (cont.)

- Hierarchical edges lead to a skewed node degree distribution.
 - Tree-like hierarchy of nodes is assumed.

G. Lee, J. Yoo, K. Shin

KAIST

• Each node appears in edges with priority based on the level it belongs to.

THera: Transitivity-Preserving Generator (cont.)

• The number of levels in hierarchy grows over time.

G. Lee, J. Yoo, K. Shin

• This growth models the growth of real-world hypergraphs.

THera: Evaluation

• THera reproduces a realistic level of transitivity while addressing

the obvious limitations of Naïve-THera.

	Generator	email		NDC		contact		coauthorship			q&a		
		enron	eu	classes	substances	high	primary	dblp	geology	history	ubuntu	server	math
-	Real World	0.195	0.125	0.052	0.019	0.345	0.336	0.007	0.005	0.002	0.005	0.005	0.025
	THERA	0.192	0.124	0.052	0.019	0.344	0.334	0.007	0.005	0.002	0.004	0.004	0.025
Г	HyperCL [33]	0.078	0.053	0.008	0.005	0.119	0.223	0.000*	0.000^{*}	0.000*	0.014	0.017	0.040
	HyperPA [16]	0.090	0.110	0.070	-	0.121	0.153	-	-	-	0.003	-	-
$\left\{ \right\}$	HyperFF [30]	0.176	0.125	0.006	0.003	0.006	0.007	0.047	0.048	0.048	0.051	0.050	0.054
	HyperLap [33]	0.123	0.085	0.008	0.008	0.220	0.301	0.001	0.000^{*}	0.000^{*}	0.016	0.015	0.004
	HyperLap+ [33]	0.231	0.144	0.026	0.016	0.322	0.338	0.042	0.019	0.005	0.029	0.023	0.007

Hypergraph Transitivity

competitors

GLLB23: Dynamic Full Hypergraph Generator

- G1. Discrete Auto Regressive Hypergraph (DARH) model
- G2. Cross-memory DARH (cDARH) model

57

Reproduction of Temporal Dynamics

Question: Given a set of hyperedges, how can we produce a realistic **sequence of hypergraph snapshots** over time?

Answer: Exploit intra-order and cross-order correlations in real-world hypergraphs!

L. Gallo, L. Lacasa, V. Latora, and F. Battiston, "Higher-order Correlations Reveal Complex Memory in Temporal Hypergraphs", **arXiv (2023)**

Recap: Empirical Observations

• Intra-order correlations: Temporal correlations emerge between hyperedges of the same sizes.

G. Lee, J. Yoo, K. Shin

Real-world	Random
Size 2 hyperedges	Size 2 hyperedges
🛑 Size 3 hyperedges	Size 3 hyperedges
Size 4 hyperedges	Size 4 hyperedges
Size 5 hyperedges	Size 5 hyperedges

59

Recap: Empirical Observations (cont.)

• Cross-order correlations: Temporal correlations emerge between hyperedges of different sizes.

G. Lee, J. Yoo, K. Shin

Discrete Auto Regressive Hypergraph

G. Lee, J. Yoo, K. Shin

- In **Discrete Auto Regressive Hypergraph** (**DARH**), each hyperedge evolves based on an independent stochastic process.
- At each time *t*, it determines whether each hyperedge occurs or not.

L. Gallo, L. Lacasa, V. Latora, and F. Battiston, "Higher-order Correlations Reveal Complex Memory in Temporal Hypergraphs", **arXiv (2023)**

Discrete Auto Regressive Hypergraph (cont.)

- Step 1. Determine the criterion of the hyperedge's occurrence
- Step 2. Sample from the past occurrences of the hyperedge

G. Lee, J. Yoo, K. Shin

Step 2

62

Cross-memory DARH (cDARH) model

G. Lee, J. Yoo, K. Shin

• cDARH samples an occurrence also from the occurrences of supersets & subsets to model cross-order correlations.

63

Cross-memory DARH (cDARH) model (cont.)

G. Lee, J. Yoo, K. Shin

• cDARH reproduces intra-order temporal correlations of hyperedges.

Cross-memory DARH (cDARH) model (cont.)

G. Lee, J. Yoo, K. Shin

KAIST

• cDARH reproduces cross-order temporal correlations of hyperedges.

BKT18: Dynamic Sub-Hypergraph Generator

• G1. Correlated Repeated Unions (CRU) model

Next Hyperedge Prediction

Question:

Given a (sub-)sequence of temporal hyperedges, how can we predict the **next hyperedge**?

Answer:

The CRU model predicts the next hyperedge based on three empirical observations: (1) repeat behavior, (2) subset correlation, and (3) recency bias.

Recap: Three Empirical Observations

Repeat Behavior

Temporal hyperedges tend to **repeat** previous ones.

Subset Correlation

Subsets of nodes tend to be **correlated**.

Recency Bias

Temporal hyperedges tend to be similar to recent ones.

CRU: Correlated Repeated Unions (cont.)

Step 0. Initialization

Recer	Recency weight vector w							
0.08	0.15	0.29	0.48					
t-4	t-3	t-2	t-1					
Correlation probability $p = 0.80$								

Two parameters of CRU

CRU: Correlated Repeated Unions (cont.)

Step 1. Sample an existing hyperedge

G. Lee, J. Yoo, K. Shin

1971

CRU: Correlated Repeated Unions (cont.)

Step 2. Sample nodes

G. Lee, J. Yoo, K. Shin

Intuition: p controls the subset correlation. A larger $p \rightarrow$ More correlation in selecting items from the same hyperedge

CRU: Trained Parameters

G. Lee, J. Yoo, K. Shin

KAIST

- Correlation probability p and recency weight vector w are trained
- Recency bias and subset correlation are observed

CK21: Dynamic Sub-Hypergraph Generator

- G1. Temporal order prediction model
- G2. Temporal reconstruction model

C. Comrie, J. Kleinberg, "Hypergraph Ego-networks and Their Temporal Evolution", ICDM 2021

Task 1: Temporal Order Prediction

Question:

Has the given dynamic ego-network evolved reasonably?

Answer:

47

- A supervised **binary classification** task is defined.
- Are the hyperedges in a given dynamic ego-network correctly or randomly ordered?

Recap: Four Empirical Observations

Intersection Size of Ego-networks

Temporally adjacent hyperedges in ego-networks are similar.

Spread of Alter-networks

Spread of alter-networks are temporally local.

Anthropic Principle of Ego-networks

The arrival of ego-nodes occurs after pre-dated hyperedges.

Novelty of Ego-networks

Novelty decreases in ego-networks.

Temporal Order Prediction (cont.)

G. Lee, J. Yoo, K. Shin

KAIST

- We extract six features based on the patterns to train a classifier.
- Compared to random guessing (baseline), the trained classifier significantly outperforms on all datasets and ego-network types.

	Star ego-network		Radial ego-network		Contracted ego-network	
	Random	Proposed	Random	Proposed	Random	Proposed
coauth-DBLP	0.50	0.93 ± 0.01	0.50	0.91 ± 0.01	0.50	0.85 ± 0.01
email-Avocado	0.50	0.84 ± 0.09	-	Omittad dua	to their oir	-
threads-ask-ubuntu	0.50	$\textbf{0.72} \pm \textbf{0.05}$	-			-

Classification accuracy

C. Comrie, J. Kleinberg, "Hypergraph Ego-networks and Their Temporal Evolution", ICDM 2021

Task 2: Temporal Reconstruction

Question: How can we properly reconstruct the temporal order of hyperedges in the given ego-network?

Answer:

A local search algorithm is used to iteratively update the temporal order

Step 1. Swap pairs

All possible swaps

Step 2. Predict the order based on Fitness (\mathcal{M} : Model for Task 1)

Step 3. Multiple trials

Best orders from each trial

C. Comrie, J. Kleinberg, "Hypergraph Ego-networks and Their Temporal Evolution", ICDM 2021

G. Lee, J. Yoo, K. Shin

KAIST

• The proposed algorithm shows a **non-trivial improvement** over random guessing (baseline).

	Star ego-network		Radial ego-network		Contracted ego-network	
	Random	Proposed	Random	Proposed	Random	Proposed
coauth-DBLP	0.50	0.65 ± 0.08	0.50	0.56 ± 0.05	0.50	0.65 ± 0.08
email-Avocado	0.50	0.63 ± 0.11	-		to the in sim	-
threads-ask-ubuntu	0.50	0.70 ± 0.07	-	Omitted due	to their siz	.es -

Reconstruction accuracy, i.e., the ratio of corrected predicted pairs of hyperedges

Part 3. Hypergraph Generative Models

Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators

G. Lee, J. Yoo, K. Shin

Conclusions

- Hypergraph modeling of group interactions
 - Provides a new perspective ("set of sets")
 - Reveals new structural patterns that are previously overlooked
- Hypergraph mining tools and measures
 - Many tools (e.g., hypergraph motifs) and measures are available
- Hypergraph generative models
 - Shed a light on why the patterns occur
 - Applications: statistical testing, anonymization, benchmark data generation

Future Research Directions

- Mining of directed hypergraphs (e.g., chemical reactions)
 - How do real-world directed hypergraphs look and evolve time?
- Hypergraph representation learning
 - How can we embed hyperedges while preserving their structural properties?
- Anomaly detection

<u>G. Lee, J. Yoo, K. Shin</u>

• How can we identify abnormal group interactions?

Tutorial Materials

- https://sites.google.com/view/hypergraph-tutorial
 - Slides 🔑 📴
 - Videos 🕟
 - Code and Datasets

References

- 1. [AA02] Albert, Réka, and Albert-László Barabási. "Statistical mechanics of complex networks." Reviews of modern physics 74.1 (2002): 47.
- 2. [BKT18] Benson, Austin R., Ravi Kumar, and Andrew Tomkins, "Sequences of Sets." KDD 2018.
- 3. [CK21] Comrie, Cazamere, and Jon Kleinberg. "Hypergraph Ego-networks and Their Temporal Evolution." ICDM 2021.
- [CYLBKS22] Choe, Minyoung, et al. "MiDaS: Representative Sampling from Real-world Hypergraphs." WWW 2022.
- 5. [DYHS20] Do, Manh Tuan, et al. "Structural Patterns and Generative Models of Real-world Hypergraphs." KDD 2020.
- 6. [GLLB23] Gallo, Luca et al. "Higher-order Correlations Reveal Complex Memory in Temporal Hypergraphs", arXiv 2023.

Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators

References (cont.)

- 7. [KBCYS23] Kim, Sunwoo et al. "How Transitive Are Real-World Group Interactions? Measurement and Reproduction." KDD 2023.
- 8. [KKS20] Kook, Yunbum, Jihoon Ko, and Kijung Shin. "Evolution of Real-world Hypergraphs: Patterns and Models without Oracles." ICDM 2020.
- 9. [KKS22] Ko, Jihoon, Yunbum Kook, and Kijung Shin. "Growth patterns and models of real-world hypergraphs." Knowledge and Information Systems 64.11 (2022): 2883-2920.
- 10. [LCS21] Lee, Geon, Minyoung Choe, and Kijung Shin. "How Do Hyperedges Overlap in Real-world Hypergraphs? Patterns, Measures, and Generators." WWW 2021.
- 11. [LKF05] Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. "Graph evolution: Densification and shrinking diameters." KDD 2005