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Part 1. Static Structural Patterns
“What do real-world hypergraphs look like?”

“Given a static hypergraph, how can we analyze its structure?”
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Part 1-1. Basic Static Structural Patterns
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Background

» Degree of a node v Is the number of hyperedges containing v.

 Size of a hyperedge e is the number of nodes In e.

Degree of vg Is 2.

Size of e, Is 3.

Hypergraph Example

Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators
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Background (cont.)

- Incidence matrix H = {0, 1}/VI*IEl of a hypergraph G = (V,E) is:
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~ 1% H[i][j] =
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0, otherwise
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Hypergraph Incidence matrix

Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators
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KKS20: Three Basic Static Patterns

* P1. Degree distribution

« P2. Hyperedge size distribution

» P3. Intersection size distribution 25
ey
Node
— m Hyperedge
Hypergraph
N Sub-
{" ~ | hypergraph

Y. Kook, J. Ko, K. Shin, “Evolution of Real-world Hypergraphs: Patterns and Models without Oracles”,
ICDM 2020
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Simple Questions

Y. Kook, J. Ko, K. Shin, “Evolution of Real-world Hypergraphs: Patterns and Models without Oracles”,
ICDM 2020

oW many groups does a person belong to?
ow many people are in each group?
ow many people belong to two groups at the same time?

8
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Answers to the Simple Questions

* Degree distributions of real-world hypergraphs are heavy-tailed.
 Size distributions of real-world hypergraphs are heavy-tailed.
* Intersection size distributions of real-world hypergraphs are heavy-tailed.

10° 10" 107 10° 10" 107
Edge size Intersection size

Y. Kook, J. Ko, K. Shin, “Evolution of Real-world Hypergraphs: Patterns and Models without Oracles”,

ICDM 2020 9
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LCS21: Two Basic Static Patterns

« P1. Pair/triple-of-nodes degree distribution

« P2. Hyperedge homogeneity distribution

Node

Hyperedge

Hypergraph

Sub-

hypergraph

Measures, and Generators”, WWW 2021

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

)
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Pair/Triple Degree Distribution

* Degree of pair/triple of nodes Is the number of hyperedges
overlapping the nodes.

> Degree of {v;,vs} is 3.

Degree of {vs, vs, v¢} IS 2.

Hypergraph Example

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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Pair/Triple Degree Distribution (cont.)

» Degree distributions of pair/triple of nodes in real-world hypergraphs
are more skewed with a heavier tail than those in randomized ones.

Pair-of-Nodes
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@® Real-world hypergraph
@® Randomized hypergraph

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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111 za
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Hyperedge Homogeneity

« Homogeneity of a hyperedge e is the average number of
hyperedges overlapping at all the pairs of nodes in the hyperedge.

Hyperedge e

Number of hyperedges overlapping nodes u and v.

homogeneity(e) := <

= .
(uvied ifle| > 1

8

L 0, otherwise

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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Hyperedge Homogeneity (cont.)

» Hyperedges in real-world hypergraphs tend to have higher
homogeneity than those in randomized ones.

@ Real-world hypergraph @ Randomized hypergraph
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G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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DYHS20: Five Basic Static Patterns

» P1. Heavy-tailed degree distribution

« P2. Skewed singular values distribution l
» P3. Glant connected component =&
* P4, High clustering coefficient Node P1
« P5. Small effective diameter — D Hyperedge
P2,P3,
Hypergraph P4 PS5
NE9%: Sub-
{" ~ | hypergraph

M. T. Do, S. Yoon, B. Hooi, K. Shin, “Structural Patterns and Generative Models of Real-world

Hypergraphs”, KDD 2020
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Multi-level Decomposition

* Hypergraphs: not straightforward to analyze.
« Complex representation
 Lack of tools

* Projection (a.k.a., cligue expansion)

* Information loss
* No higher-order information

Only interactions at
the level of nodes

M. T. Do, S. Yoon, B. Hooi, K. Shin, “Structural Patterns and Generative Models of Real-world

Hypergraphs”, KDD 2020
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Multi-level Decomposition (cont.)

* Multi-level decomposition

e Representation by pairwise unipartite graphs
* Leveraging existing tools & measurements
* No information loss: Original hypergraph is reconstructible

M. T. Do, S. Yoon, B. Hooi, K. Shin, “Structural Patterns and Generative Models of Real-world
Hypergraphs”, KDD 2020
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Multi-level Decomposition (cont.)

107 ,lags-stackoverflow
At every decomposition level, AT =4
* degree distributions are heavy-tailed §1gj '
* singular value distributions are heavy-tailed - 11?)?
- a large proportion of nodes are connected 0 [;ggzree TE
« Most nodes are in a single component. 102 __email-Eu

o oo .ee

clustering coefficient is high

« Real-world hypergraphs are clustered.

Singular value
-
o

diameter Is small

 Most pairs of nodes are reachable in a few steps. 00 101

M. T. Do, S. Yoon, B. Hooi, K. Shin, “Structural Patterns and Generative Models of Real-world
Hypergraphs”, KDD 2020
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Part 1-2. Advanced Static Structural Patterns

Part 1.

Static Patterns

Part 2. 5@
Dynamic Patterns

Node- DYHS20, KKS20, LCS21 BKT18, CS22
Level
Basic Hyperedge- BKT18, LS21
KKS20, LCS21 Sy
m Patterns Level GLLB23, CBLK21
Hypergraph- BASJK18, DYHS20,
Level KKS20 KKS20
o _ ll  kscvs23, BAsiKis,
g Advanced | Sub h?_’per?raph LMMB22, LKS20, BASJK18, CJ21, LS21
Patterns eve LCS21, LL23, BLS23

Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators
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BASJK18: One Advanced Static Pattern

* P1. Open and closed triangles

Node
m Hyperedge
Hypergraph

N Sub-
~ | hypergraph

A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, J. Kleinberg, “Simplicial Closure and Higher-

21

order Link Prediction”, PNAS (2018



&= G. Lee, J. Yoo, K. Shin

% wn z
o)\ 4
ELEL

Background

« Atriangle iIs a cligue (complete subgraph) of 3 nodes

* The count of triangles is an important primitive.

* E.g., Community detection, spam detection, link prediction

-

A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, J. Kleinberg, “Simplicial Closure and Higher-
order Link Prediction”, PNAS (2018
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Triangles Iin Hypergraphs

a Question:
How can we define triangles in hypergraphs?

Answer:

Tri-wise relations (i.e., group interactions of three nodes)
should be taken into account.

A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, J. Kleinberg, “Simplicial Closure and Higher-
order Link Prediction”, PNAS (2018 23
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Open and Closed Triangles: Definition

* There are two types of triangles in hypergraphs.

» Closed triangles cannot be captured by pairwise graphs.

Any hyperedge that
contains the pair of nodes

N

Any hyperedge that
contains all 3 nodes

Open Triangle Closed Triangle

A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, J. Kleinberg, “Simplicial Closure and Higher-

order Link Prediction”, PNAS (2018 24
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Triangles across Domains

* Fractions of open triangles are similar within domains.

C
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g 0.25 N < . threads-math-sx ‘ NDC-classes
= @ threads-ask-ubuntu
)
© 0.00 A — ¢ contact-high-school ® DAWN
10—5 10—4 10—3 10—2 10—1 ‘ contact-primary-school v music-rap-genius

Edge density in projected graph

A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, J. Kleinberg, “Simplicial Closure and Higher-

order Link Prediction”, PNAS (2018 25
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Triangles across Domains (cont.)

* Fractions of open triangles are similar within domains.

Decision boundary ® coauth-DBLP
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8 0.8 ® tags-stack-overflow
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Ego-network of a node Average degree e

A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie, J. Kleinberg, “Simplicial Closure and Higher-

order Link Prediction”, PNAS (2018 26



B4 G. Lee, J. Yoo, K. Shin

LMMB?20: One Advanced Static Pattern

* P1. Higher-order network motifs

Node
m Hyperedge
Hypergraph

N Sub-
hypergraph
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Background

* Network motifs are fundamental building blocks of complex networks.

« They appear in real-world graphs at a frequency that is significantly higher
than randomized graphs.
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Higher-order Network Motifs: Definition

* Higher-order network motifs are a generalization of network motifs.
* They additionally consider group interactions between the nodes.

Network motifs can only describe 2 patterns.

4

VYV ST VYV Y

6 different types of 3-node higher-order motifs




&5 G. Lee, ). Yoo, K. Shin

Comparison across Domains

* Different higher-order motifs are highlighted in each domain.

1.00

—— Socio
0.751 —— Tech
—— Co-auth
0.501 ___ gio
0.25 1
ok
/ Z025]
Abundance of higher- ~0.50
order motifs relative to 075
random networks ~1.00

V'v.'.. ,;. VV

Q. F. Lotito, F. Musciotto, A. Montresor, F. Battiston, “Higher-order Motif Analysis in Hypergraphs”,

Communication Ph
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Comparison across Domains (cont.)

* Distributions of higher-order motifs are similar within domains and

different across domains.

Social domain
E-mail domain
Co-authorship domain

Biological domain




&= G. Lee, J. Yoo, K. Shin

% wn z
o)\ 4
ELEL

LKS20: One Advanced Static Pattern
* P1. Hypergraph motifs (h-motifs)

Node

m Hyperedge

Hypergraph

N Sub-
{" ~ | hypergraph

G. Lee, J. Ko, K. Shin, “Hypergraph Motifs: Concepts, Algorithms, and Discoveries”, VLDB 2020
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Hypergraph Motifs: Definition

* Hypergraph motifs (h-motifs) describe connectivity patterns of
three connected hyperedges.

* H-motifs describe the connectivity pattern of hyperedges e;, e;,
and e, by the emptiness of seven subsets (1) — (7).

(1) ei\ej\ex (@) e; nej\e
(5) ej N ek\ei
(2) ej\ex\e;
3) (6) ex N e;\e;
C\ENe (7) e; nejney

G. Lee, J. Ko, K. Shin, “Hypergraph Motifs: Concepts, Algorithms, and Discoveries”, VLDB 2020
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Hypergraph Motifs: Definition (cont.)

 While there can exist 27 h-motifs, 26 h-motifs remain once we exclude:
1. symmetric ones
2. those cannot be obtained from distinct hyperedges

those cannot be obtained from connected hyperedges

@6@@@@@@@@@0@

h-motif1 h-motif2 h-motif3 h-motif4 h-motif5 h-motifé6 h-motif7 h-motif8 h-motif9 h-motif10 h-motif11 h-motif12 h-motif 13

PO IOCOIVOOH

h-motif 14 h-motif 15 h-motif 16 h-motif17 h-motif 18 h-motif 19 h-motif20 h-motif21 h-motif22 h-motif23 h-motif24 h-motif25 h-motif 26

G. Lee, J. Ko, K. Shin, “Hypergraph Motifs: Concepts, Algorithms, and Discoveries”, VLDB 2020
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Hypergraph Motifs: Example
« Example: A hypergraph with 8 nodes and 4 hyperedges

€1
€4
3

U U

h-motif 6 h-motif 21 h-motif 22

Hypergraph

G. Lee, J. Ko, K. Shin, “Hypergraph Motifs: Concepts, Algorithms, and Discoveries”, VLDB 2020
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Hypergraph Motifs: Properties (cont.)

Q Question:
Why are non-pairwise relations considered?

Answer:

Non-pairwise relations play a key role in capturing the
local structural patterns of real-world hypergraphs.

QD G-

For example, {e,, e;,e,} and {eq, e3, e,} have same pairwise relations,
while their connectivity patterns are distinguished by h-motifs.

G. Lee, J. Ko, K. Shin, “Hypergraph Motifs: Concepts, Algorithms, and Discoveries”, VLDB 2020
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Comparison across Domains

e CPs are similar within domains but different across domains.
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G. Lee, J. Ko, K. Shin, “Hypergraph Motifs: Concepts, Algorithms, and Discoveries”, VLDB 2020
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Comparison across Domains (cont.)

* CPs based on h-motifs capture local structural patterns more

accurately than CPs based on network motifs.

coauth =

contact £

email |

tags

threads

G. Lee, J. Ko, K. Shin, “Hypergraph Motifs: Concepts, Algorithms, and Discoveries”, VLDB 2020
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LCS21: One Advanced Static Pattern

* P1. Density & overlapness of ego-network

!

G
Node
m Hyperedge
Hypergraph
— hypilrjgr-aph

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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Hypergraph Ego-network

* An ego-network & of node u Is the set of hyperedges that contains u.
E(u) ={e € E:u€e}

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,
Measures, and Generators”, WWW 2021
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Density of Ego-networks

* Density measures how densely hyperedges overlap.

|E| <— # of hyperedges

E) =
P(E) ‘Ueeee‘ <— # of nodes

> Density of egonet E(u) is %-

Hypergraph Example
G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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Density of Ego-networks (cont.)

« Ego-networks In real-world hypergraphs tend to have higher density

than those In randomized ones.

@ Real-world hypergraph @ Randomized hypergraph

slope =~ average

egonet density  email-Eu contact-primary
0 0 ,
S 1000 o 3007
g g 200 1
o 500 S
il o= L
# : : , , # & il ' ,
0 200 400 600 50 100 150
avg. # nodes avg. # nodes

# hyperedges

NDC-substances

—

750 A
500 -

250 A

0 A

0 1000 2000
avg. # nodes

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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Density of Ego-networks (cont.)

* Does density fully capture the degree of overlaps of a set of
hyperedges?

@ Our intuition

N @ e €1 Is more overlapped than €,.
J @ @ @( Density
e3 @ N

3
p(€1) = p(&y) = c

€1 ={ey, ez €3} €, =1{ey, €5, €4}

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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Degree of Hyperedge Overlaps

Q Question:
What is the principled measure for the degree of overlaps
of a set of hyperedges?

Answer:
« We present three axioms that any reasonable
measure of the hyperedge overlaps should satisfy.

« Then, we propose overlapness, a new measure that
satisfies all the axioms.

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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Overlapness of Ego-networks
* Overlapness measures how densely hyperedges overlap.

Zeeg le|] «<— sum of the hyperedge sizes

o(€) =

‘Ueege <— # of nodes

j‘> Overlapness of egonet E(u) is 1—72

Hypergraph Example

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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Overlapness of Ego-networks (cont.)

* Does overlapness capture the degree of overlaps of a set of

hyperedges? Our intuition
€1 Is more overlapped than €&,.

Density

o @
€6 3
N @ ® @(@@ p(€:) = p(€2) = 3
& @ es Overlapness

81 — {ell €2, 63} 82 — {84-) €s, e6} 0(81) — % > 0(82) — g

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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Overlapness of Ego-networks (cont.)

* Overlapness satisfies all the axioms while others do not.

Metric

Axiom 1

Axiom 2

Axiom 3

Intersection

Union Inverse
Jaccard Index
Overlap Coefficient
Density

Overlapness (Proposed)

NN X X X X

NN X XN X

N X X X X %

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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Overlapness of Ego-networks (cont.)

* Ego-networks Iin real-world hypergraphs tend to have higher
overlapness than those in randomized ones.

slope = average @ Real-world hypergraph @ Randomized hypergraph

egonet overlapnesss _
email-Eu

contact-primary NDC-substances

1000
N ¢ ]

S -
. ’

5b 160 150 200
avg. # nodes

000 10000 +

4000

5000 A
2000

> hyperedge size
> hyperedge size

0 1000 2000
avg. # nodes

0 260 460 660
avg. # nodes

> hyperedge size

G. Lee, M. Choe, K. Shin, “How Do Hyperedges Overlap in Real-world Hypergraphs? — Patterns,

Measures, and Generators”, WWW 2021
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KBCYS23: Five Advanced Static Patterns

* P1. Transitivity of hypergraphs

« P2. Transitivity of hyperwedges l
« P3. Transitivity of nodes P
oL
* P4. Transitivity of hyperedges Node
m Hyperedge
Hypergraph
NE%%: Sub-
— {" < | hypergraph

S. Kim, F. Bu, M. Choe, J. Yoo, and K. Shin, “How Transitive Are Real-World Group Interactions?

Measurement and Reproduction”, KDD 2023
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Background

* Transitivity (a.k.a., clustering coefficient) measures the
Ikelihood of two neighbors of a node in a graph being adjacent.

* |t has been used in diverse fields, e.g., neuroscience and finance.

N

Transitivity of node u =

# of pairs of neighbors of u that are connected
# of pairs of neighbors of u

S. Kim, F. Bu, M. Choe, J. Yoo, and K. Shin, “How Transitive Are Real-World Group Interactions?

Measurement and Reproduction”, KDD 2023
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Background

a Question:
How can we define transitivity of group interactions?

Answer:

Higher-order interactions between the two groups
of neighbors should be taken into account.

S. Kim, F. Bu, M. Choe, J. Yoo, and K. Shin, “How Transitive Are Real-World Group Interactions?
Measurement and Reproduction”, KDD 2023
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Hypergraph Transitivity: Definition

* HyperTrans Is a principled hypergraph transitivity measure.
* |t quantifies the group interactions between left and right wings.

Left-wing  Right- HYPereCfe score

P ]
7TW) max|f(w,e)||1|v, v’ € e]
O _ ecE
e 7o) veL(w) v'eR(w) LWl < IR(w) lA

O
Hyperwedge w Cons_ider hyperedges that include
each pair of nodes from L(w) and R(w)

S. Kim, F. Bu, M. Choe, J. Yoo, and K. Shin, “How Transitive Are Real-World Group Interactions?

Measurement and Reproduction”, KDD 2023
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Hypergraph Transitivity: Definition (cont.)

* HyperTrans satisfies all axioms that a proper hypergraph

transitivity measure should satisfy.

Measure

Axioms

>

B1 (Jaccard index)

B2 (Ratio of covered interacations)
B3 (Klamt et al. [29])

B4 (Torres et al. [47])

B5 (Gallager et al. [20] A)

B6 (Gallager et al. [20] B)

B7 (HYPERTRANS-mean)

B8 (HYPERTRANS-non-P(w))

B9 (HYPERTRANS-unnormalized)

Proposed: HYPERTRANS

L N N NS S W W
U U > 2> U Ux |

VIR X X XXX X|w

RSN X% X XXX

AN R0 N N N N N N N
AN S N3 N N N N N
AN R N N N N N N N

Measurement and Reproduction”, KDD 2023

S. Kim, F. Bu, M. Choe, J. Yoo, and K. Shin, “How Transitive Are Real-World Group Interactions?
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Transitivity of Hypergraphs
* Real-world hypergraphs are more transitive than randomized ones.

 Transitivity of a hypergraph is the average transitivity of hyperwedges.

Data Real |[HyperCL | Z-stat | P-value

email-enron 0.195 0.078 378.3 0.00**

email-eu 0.125 0.053 240.1 0.00** v
ndc-classes 0052 || 0008 | 1467 | 0.00* A@
ndc-substances | 0.019 0.005 47.3 0.00™*

contact-high 0.345 0.119 764.7 0.00**

contact-primary | 0.336 || 0.223 380.7 | 0.00**

coauth-dblp 0.007 0.000* 23.2 0.00**

coauth-geology | 0.005 0.000* 16.6 0.00**

coauth-history 0.002 0.000* 6.6 0.00™* Real -WO rl d Ran d om I Zed
gna-ubuntu 0.005 0.014 32.0 0.00**

qna-server 0.005 || 0.017 383 | 0.00** Hyperg raph Hyperg raph
gna-math 0.025 J{_0.040 ) 46.6 0.00**

S. Kim, F. Bu, M. Choe, J. Yoo, and K. Shin, “How Transitive Are Real-World Group Interactions?

Measurement and Reproduction”, KDD 2023
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Transitivity of Hyperwedges

* The larger the body-group size of hyperwedges, the more likely they
are to exhibit high transitivity.

Data | Real | HyperCL.  Correlations between
email-enron 0.09 |  -0.09 body-group size and
email-eu 0.12 -0.14 tranS|t|V|ty

ndc-classes 0.32 -0.10

ndc-substances | 0.14 -0.10

contact-high 0.13 0.00*

contact-primary | 0.13 0.00*

coauth-dblp 0.12 0.00*

coauth-geology | 0.14 0.00*

coauth-history 0.12 0.05

qna-ubuntu 0.04 0.00*

qna-server 0.04 0.00* M ore Tr ans I t I ve
qna-math 0.04 0.01

S. Kim, F. Bu, M. Choe, J. Yoo, and K. Shin, “How Transitive Are Real-World Group Interactions?

Measurement and Reproduction”, KDD 2023



& G.Lee, ). Yoo, K. Shin

Transitivity of Nodes

* High-degree nodes are likely to have low transitivity.

0.08

0.05

0.02

gna-math

I Real-world B HyperCL (Random)
> email-eu contact-primala/ coauth-histor
= 0.4 .004
2 0.6
2
S 0.2 0.4 0.002
-
% 0.2 I
S 07101 102 £1016 1022 101 102

S. Kim, F. Bu, M. Choe, J. Yoo, and K. Shin, “How Transitive Are Real-World Group Interactions?

Node Degree

Measurement and Reproduction”, KDD 2023
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102 103
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Transitivity of Hyperedges

* Hyperedges in real-world hypergraphs have wider ranges of
transitivity compared to those in randomized hypergraphs.

Data

Randomized hypergraph

email-enron
email-eu

ndc-classes
ndc-substances

Real-world hypergraph

contact-high
contact-primary

coauth-dblp
coauth-geology
coauth-history

# of Hyperedges

gna-ubuntu
gna-server
gna-math

Hyperedge Transitivity

S. Kim, F. Bu, M. Choe, J. Yoo, and K. Shin, “How Transitive Are Real-World Group Interactions?

Measurement and Reproduction”, KDD 2023
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LL23: One Advanced Static Pattern

* P1. Degree of hyperedge encapsulation

Node

m Hyperedge

Hypergraph

N Sub-
'* hypergraph

T. LaRock and R. Lambiotte, “Encapsulation Structure and Dynamics in Hypergraphs”, arXiv (2023)

65
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8 wn z
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Encapsulation of Hyperedges

* Hyperedges can contain smaller hyperedges.

* However, they do not contain all possible sub-hyperedges.

@ 61C62Ce3

T. LaRock and R. Lambiotte, “Encapsulation Structure and Dynamics in Hypergraphs”, arXiv (2023) gg
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Difference from Simplicial Complexes

* Asimplicial complex includes all subsets of the complex.

* Ahyperedge can include various subsets in different ways.

- @ @@

Simplicial Complex Hyperedges

T. LaRock and R. Lambiotte, “Encapsulation Structure and Dynamics in Hypergraphs”, arXiv (2023) g7
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Degree of Encapsulation

 Larger hyperedges encapsulate smaller hyperedges.

100+ size-2 hyperedges are

Co-authorship Email  ncluded in a size-25 hyperedge.

o0 100 - O m=2

o 00000 o

o © 8o
o 5000 © 0800668

0 - " 08332900009868885553885 0- Oogg55388§§§§§80000°0083 O m=
5 10 15 20 25 5 10 15 20 25

# of Encapsulation of
Size-m Hyperedges
per Size-n Hyperedge
O
3
I

n n

T. LaRock and R. Lambiotte, “Encapsulation Structure and Dynamics in Hypergraphs”, arXiv (2023) gg
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Degree of Encapsulation (cont.)

« Hyperedges exhibit different encapsulation patterns across domains.

Co-authorship Email ® -5 m-2
3000 - ®n=-5m=3
& 40000 -
5 2000 - ®n=5m=2
-
. n=4m=3
g 20000 1000 4 ®
LL On=4m=2
= 0 -
O T T T T T T T T ‘ n= 3’ m = 2
~0.00.250.50.751.0 0.00.250.50.75 1.0 .
Sparse encapsulation < > Full encapsulation

# of Encapsulation / ()

T. LaRock and R. Lambiotte, “Encapsulation Structure and Dynamics in Hypergraphs”, arXiv (2023) gq
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BLS23: Three Advanced Static Patterns

* P1. Hypercore sizes of hypergraphs
» P2. Distributions of hypercoreness l
» P3. Heterogeneity of hypercoreness ﬂ@%
Node
m Hyperedge
Hypergraph
N Sub-
—> {" < | hypergraph

F. Bu, G. Lee, K. Shin, “Hypercore Decomposition for Non-Fragile Hyperedges: Concepts,

Algorithms, Observations, and Applications”, Data Mining and Knowledge Discover
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Background

* A k-core Is a maximal subgraph of nodes with degree at least k.

* |t Is useful In community detection, anomaly detection, etc.

——_-

1-Core
@ Nodes with coreness
1
2-Core @® Nodes with coreness
2
Nodes with coreness
3-Core 3

F. Bu, G. Lee, K. Shin, “Hypercore Decomposition for Non-Fragile Hyperedges: Concepts,

Algorithms, Observations, and Applications”, Data Mining and Knowledge Discover
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Hypercores

Q Question:
How can we define k-cores in hypergraphs?

Answer:
We can easily generalize them to hypergraphs:

@ Nodes with hypercoreness 1
@ Nodes with hypercoreness 2
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Hypercores (cont.)

Q Question:
How can we define k-cores in hypergraphs?

Answer (cont.):
Consider the fragility of hyperedges.

_______
s [N

O 0© {OION
% O ® 2w

~ 4
~ R
.--_—

Removing a single node Does a single node break
breaks all of its edges. the entire group interaction?
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Hypercores (cont.)

Q Question:
How can we define k-cores in hypergraphs?

Answer (cont.):
In many cases, group interactions are non-fragile.

r%\ — (@& &P
AN
BRE (BB @O X P

F. Bu, G. Lee, K. Shin, “Hypercore Decomposition for Non-Fragile Hyperedges: Concepts,

Algorithms, Observations, and Applications”, Data Mining and Knowledge Discover
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Non-Fragile Hyperedges

* Non-fragile hyperedges break if at least t fraction of the nodes remain.

* The larger the value of t is, the more fragile the hyperedges are.

« Example: t = 0.5

@@ @
@
8@8 E>

60% of the nodes remain 40% of the nodes remain
Degrees of nodes 1, 2, 4 Degrees of nodes 1 and 4
are unchanged. are decreased by 1.

F. Bu, G. Lee, K. Shin, “Hypercore Decomposition for Non-Fragile Hyperedges: Concepts,

Algorithms, Observations, and Applications”, Data Mining and Knowledge Discover
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Hypercores for Non-Fragile Hyperedges

 (k,t)-hypercore is the maximal sub-hypergraph of:

* Nodes with degree at least k

* Hyperedges with at least ¢ proportion of its nodes remaining

* Example: t = 0.3

@ Nodes with hypercoreness 1
@ Nodes with hypercoreness 2
@ Nodes with hypercoreness 3
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Hypercores for Non-Fragile Hyperedges

(@tD‘ETEn) t values give us different insights into cohesive structures.

@ hypercoreness 2 @ hypercoreness 3

§ s <t=7 55 t?

@ hypercoreness 1

Algorithms, Observations, and Applications”, Data Mining and Knowledge Discover
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Hypercore Sizes of Hypergraphs

* Hypergraphs from the same domain tend to have similar hypercore
size distribution, while they vary across domains.

coauth-DBLP
coauth-Geology .

NDC-classes
NDC-substances
contact-high
contact-primary
email-Enron
email-Eu
tags-ubuntu
tags-math
tags-SO
threads-ubuntu
threads-math
threads-SO

F. Bu, G. Lee, K. Shin, “Hypercore Decomposition for Non-Fragile Hyperedges: Concepts,

Algorithms, Observations, and Applications”, Data Mining and Knowledge Discover
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Distributions of Hypercoreness

 t-hypercoreness of nodes in real-world hypergraphs follows heavy-
tailed distributions regardless of t.

t=0,R%2=0.98

~

—
o
.

—
o
(3%

# nodes with
t-hypercorenss = k

™~

N

109

node-degree threshold k

101

10°

# nodes with
t-hypercorenss =k

—
o
-h

—
o
%)

t=0.6,R2=0.96

~

N

>~

109

node-degree threshold k

10’

# nodes with
t-hypercorenss =k

—
o
L

—
o
Lad

t=1,R2=0.98

109

10’

node-degree threshold k

F. Bu, G. Lee, K. Shin, “Hypercore Decomposition for Non-Fragile Hyperedges: Concepts,

Algorithms, Observations, and Applications”, Data Mining and Knowledge Discover
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Heterogeneity of Hypercoreness

* t-hypercoreness of nodes gives distinct information depending on t.

1.00
0 I
0.2
0.95
0.4
0.6 0.90

0.8 A
N )
0 02 04 06 0.8 1

hyperedge-fraction
threshold t

1

F. Bu, G. Lee, K. Shin, “Hypercore Decomposition for Non-Fragile Hyperedges: Concepts,

Algorithms, Observations, and Applications”, Data Mining and Knowledge Discover



Other Definition of Hypercores

* Neighborhood-based hypercore is the maximal sub-hypergraph of
every node having at least a certain number of neighbors.

@ Nodes with hypercoreness 3
© Nodes with hypercoreness 4
@ Nodes with hypercoreness 5
@ Nodes with hypercoreness 6
@ Nodes with hypercoreness 7
@ Nodes with hypercoreness 8
@ Nodes with hypercoreness 9

3-Hypercore

6-Hypercore

N. A. Arafat, A. Khan, A. K. Rai, and B. Ghosh, “Neighborhood-based Hypergraph Core

Decomposition”, VLDB 2023
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