

Mining of Real-world Hypergraphs: Concepts, Patterns, and Generators Part 1. Static Structural Patterns

Geon Lee

Jaemin Yoo

Kijung Shin

Part 1. Static Structural Patterns

"What do real-world hypergraphs look like?"

"Given a static hypergraph, how can we analyze its structure?"

Input Hypergraph

Basic Patterns (Part 1-1)

 \square

Advanced Patterns (Part 1-2)

Roadmap

- Part 1. Static Structural Patterns
 - Basic Patterns <
 - Advanced Patterns
- Part 2. Dynamic Structural Patterns
 - Basic Patterns
 - Advanced Patterns
- Part 3. Generative Models
 - Static hypergraph Generator
 - Dynamic hypergraph Generator

Part 1-1. Basic Static Structural Patterns

			Part 1. 🏵 Static Patterns	Part 2. 👸
Ш	Basic Patterns	Node- Level	DYHS20, KKS20, LCS21	BKT18, CS22
		Hyperedge- Level	KKS20, LCS21	BKT18, LS21, GLLB23, CBLK21
		Hypergraph- Level	BASJK18, DYHS20, KKS20	KKS20
	Advanced Patterns	Sub-hypergraph- Level	KBCYK23, BASJK18, LMMB22, LKS20, LCS21,LL23, BLS23	BASJK18, CJ21, LS21

Background

- **Degree** of a node v is the number of hyperedges containing v.
- Size of a hyperedge e is the number of nodes in e.

Hypergraph

Example

Background (cont.)

• Incidence matrix $H = \{0, 1\}^{|V| \times |E|}$ of a hypergraph G = (V, E) is:

 $H[i][j] = egin{cases} \mathbf{1}, & ext{if } oldsymbol{v_i} \in oldsymbol{e_j} \ \mathbf{0}, & ext{otherwise} \end{cases}$

Hypergraph

Incidence matrix

KKS20: Three Basic Static Patterns

- P1. Degree distribution
- P2. Hyperedge size distribution
- P3. Intersection size distribution

Simple Questions

- How many groups does a person belong to?
- How many people are in each group?
- How many people belong to two groups at the same time?

Answers to the Simple Questions

- Degree distributions of real-world hypergraphs are heavy-tailed.
- Size distributions of real-world hypergraphs are heavy-tailed.
- Intersection size distributions of real-world hypergraphs are heavy-tailed.

LCS21: Two Basic Static Patterns

• P1. Pair/triple-of-nodes degree distribution

• P2. Hyperedge homogeneity distribution

Pair/Triple Degree Distribution

• **Degree of pair/triple of nodes** is the number of hyperedges overlapping the nodes.

Hypergraph

Example

Pair/Triple Degree Distribution (cont.)

 Degree distributions of pair/triple of nodes in real-world hypergraphs are more skewed with a heavier tail than those in randomized ones.

Pair-of-Nodes

Triple-of-Nodes

Randomized hypergraph

Hyperedge Homogeneity

 Homogeneity of a hyperedge e is the average number of hyperedges overlapping at all the pairs of nodes in the hyperedge.

Hyperedge *e*

Number of hyperedges overlapping nodes u and v.

$$\mathbf{homogeneity}(e) \coloneqq \begin{cases} \frac{\sum_{\{u,v\} \in \binom{e}{2}} |E_{\{u,v\}}|}{\binom{|e|}{2}}, & \text{if } |e| > 1\\ \mathbf{0}, & \text{otherwise} \end{cases}$$

Hyperedge Homogeneity (cont.)

 Hyperedges in real-world hypergraphs tend to have higher homogeneity than those in randomized ones.

DYHS20: Five Basic Static Patterns

- P1. Heavy-tailed degree distribution
- P2. Skewed singular values distribution
- P3. Giant connected component
- **P4.** High clustering coefficient
- P5. Small effective diameter

				(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)
	Node Hyperedge	Node	P1	
	Ш	Hypergraph	P2,P3, P4,P5	
		Sub- hypergraph		

Multi-level Decomposition

- Hypergraphs: not straightforward to analyze.
 - Complex representation
 - Lack of tools
- Projection (a.k.a., clique expansion)
 - Information loss
 - No higher-order information

Only interactions at the level of nodes

Multi-level Decomposition (cont.)

- Multi-level decomposition
 - Representation by pairwise unipartite graphs
 - Leveraging existing tools & measurements
 - No information loss: Original hypergraph is reconstructible

Multi-level Decomposition (cont.)

- At <u>every</u> decomposition level,
 - degree distributions are heavy-tailed
 - singular value distributions are heavy-tailed
 - a large proportion of nodes are connected
 - Most nodes are in a single component.
 - clustering coefficient is high
 - Real-world hypergraphs are clustered.
 - diameter is small
 - Most pairs of nodes are reachable in a few steps.

Roadmap

- Part 1. Static Structural Patterns
 - Basic Patterns
 - Advanced Patterns <
- Part 2. Dynamic Structural Patterns
 - Basic Patterns
 - Advanced Patterns
- Part 3. Generative Models
 - Static hypergraph Generator
 - Dynamic hypergraph Generator

Part 1-2. Advanced Static Structural Patterns

			Part 1. 🍪 Static Patterns	Part 2. 🔯 Dynamic Patterns
	Basic Patterns	Node- Level	DYHS20, KKS20, LCS21	BKT18, CS22
\Box		Hyperedge- Level	KKS20, LCS21	BKT18, LS21, GLLB23, CBLK21
		Hypergraph- Level	BASJK18, DYHS20, KKS20	KKS20
	Advanced Patterns	Sub-hypergraph- Level	KBCYS23, BASJK18, LMMB22, LKS20, LCS21, LL23, BLS23	BASJK18, CJ21, LS21

BASJK18: One Advanced Static Pattern

• P1. Open and closed triangles

Background

- A triangle is a clique (complete subgraph) of 3 nodes
- The **count** of triangles is an important primitive.
 - E.g., Community detection, spam detection, link prediction

Triangles in Hypergraphs

Question:

How can we define **triangles** in hypergraphs?

Answer:

Tri-wise relations (i.e., group interactions of three nodes) should be taken into account.

Open and Closed Triangles: Definition

- There are two types of triangles in hypergraphs.
 - Closed triangles cannot be captured by pairwise graphs.

Open Triangle

Closed Triangle

Triangles across Domains

• Fractions of open triangles are similar within domains.

Triangles across Domains (cont.)

• Fractions of open triangles are similar within domains.

LMMB20: One Advanced Static Pattern

• P1. Higher-order network motifs

Background

- Network motifs are fundamental building blocks of complex networks.
 - They appear in real-world graphs at a frequency that is **significantly higher** than randomized graphs.

13 different types of 3-node network motifs

Higher-order Network Motifs: Definition

- Higher-order network motifs are a generalization of network motifs.
- They additionally consider group interactions between the nodes.

Network motifs can only describe 2 patterns.

6 different types of 3-node higher-order motifs

Comparison across Domains

• Different higher-order motifs are highlighted in each domain.

Comparison across Domains (cont.)

 Distributions of higher-order motifs are similar within domains and different across domains.

LKS20: One Advanced Static Pattern

• P1. Hypergraph motifs (h-motifs)

Hypergraph Motifs: Definition

- Hypergraph motifs (h-motifs) describe connectivity patterns of three connected hyperedges.
- **H-motifs** describe the connectivity pattern of hyperedges e_i , e_j , and e_k by the emptiness of seven subsets (1) (7).

Hypergraph Motifs: Definition (cont.)

- While there can exist 2⁷ h-motifs, **26** h-motifs remain once we exclude:
 - 1. symmetric ones
 - 2. those cannot be obtained from distinct hyperedges
 - 3. those cannot be obtained from connected hyperedges

Hypergraph Motifs: Example

• Example: A hypergraph with 8 nodes and 4 hyperedges

Hypergraph Motifs: Properties (cont.)

Question:

Why are **non-pairwise relations** considered?

Answer:

Non-pairwise relations play a key role in capturing the local structural patterns of real-world hypergraphs.

For example, $\{e_2, e_3, e_4\}$ and $\{e_1, e_3, e_4\}$ have same pairwise relations, while their connectivity patterns are distinguished by h-motifs.

Comparison across Domains

CPs are similar within domains but different across domains.

Comparison across Domains (cont.)

 CPs based on h-motifs capture local structural patterns more accurately than CPs based on network motifs.

LCS21: One Advanced Static Pattern

• P1. Density & overlapness of ego-network

Hypergraph Ego-network

• An ego-network \mathcal{E} of node u is the set of hyperedges that contains u.

$$\mathcal{E}(u) \coloneqq \{e \in E : u \in e\}$$

Density of Ego-networks

• Density measures how densely hyperedges overlap.

$$\rho(\mathcal{E}) \coloneqq \frac{|\mathcal{E}|}{|\mathsf{U}_{e\in\mathcal{E}}\,e|} \longleftarrow \text{\# of hyperedges}$$

Density of egonet $\mathcal{E}(u)$ is $\frac{4}{7}$.

Hypergraph

Example

Density of Ego-networks (cont.)

• Ego-networks in real-world hypergraphs tend to have **higher density** than those in randomized ones.

Density of Ego-networks (cont.)

 Does density fully capture the degree of overlaps of a set of hyperedges?

$$\mathcal{E}_2 = \{e_4, e_5, e_6\}$$

Our intuition

 \mathcal{E}_1 is more overlapped than \mathcal{E}_2 .

Density

$$\rho(\mathcal{E}_1) = \rho(\mathcal{E}_2) = \frac{3}{5}$$

Degree of Hyperedge Overlaps

Question:

What is the principled measure for the degree of overlaps of a set of hyperedges?

Answer:

- We present three axioms that any reasonable measure of the hyperedge overlaps should satisfy.
- Then, we propose overlapness, a new measure that satisfies all the axioms.

Overlapness of Ego-networks

• Overlapness measures how densely hyperedges overlap.

$$o(\mathcal{E}) \coloneqq \frac{\sum_{e \in \mathcal{E}} |e|}{\left| \bigcup_{e \in \mathcal{E}} e \right|} \longleftarrow \text{sum of the hyperedge sizes}$$

Overlapness of egonet $\mathcal{E}(u)$ is $\frac{12}{7}$.

Hypergraph

Example

Overlapness of Ego-networks (cont.)

Does overlapness capture the degree of overlaps of a set of

hyperedges?

$$\mathcal{E}_1 = \{e_1, e_2, e_3\}$$

$$\mathcal{E}_2 = \{e_4, e_5, e_6\}$$

Our intuition

 \mathcal{E}_1 is more overlapped than \mathcal{E}_2 .

Density

$$\rho(\mathcal{E}_1) = \rho(\mathcal{E}_2) = \frac{3}{5}$$

Overlapness

$$o(\mathcal{E}_1) = \frac{12}{5} > o(\mathcal{E}_2) = \frac{7}{5}$$

Overlapness of Ego-networks (cont.)

• Overlapness satisfies all the axioms while others do not.

Metric	Axiom 1	Axiom 2	Axiom 3
Intersection	X	×	×
Union Inverse	X	✓	X
Jaccard Index	X	×	X
Overlap Coefficient	X	×	X
Density	\checkmark	✓	×
Overlapness (Proposed)	✓	√	

Overlapness of Ego-networks (cont.)

 Ego-networks in real-world hypergraphs tend to have higher overlapness than those in randomized ones.

slope ≈ average egonet overlapnesss

Real-world hypergraph

Randomized hypergraph

KBCYS23: Five Advanced Static Patterns

- P1. Transitivity of hypergraphs
- P2. Transitivity of hyperwedges
- P3. Transitivity of nodes
- P4. Transitivity of hyperedges

Background

- Transitivity (a.k.a., clustering coefficient) measures the likelihood of two neighbors of a node in a graph being adjacent.
- It has been used in diverse fields, e.g., neuroscience and finance.

Transitivity of node **u** =

of pairs of neighbors of **u** that are connected # of pairs of neighbors of **u**

Background

Question:

How can we define **transitivity** of group interactions?

Answer:

Higher-order interactions between the two groups of neighbors should be taken into account.

Hypergraph Transitivity: Definition

- HyperTrans is a principled hypergraph transitivity measure.
 - It quantifies the group interactions between left and right wings.

Consider hyperedges that include each pair of nodes from L(w) and R(w)

Hypergraph Transitivity: Definition (cont.)

 HyperTrans satisfies all axioms that a proper hypergraph transitivity measure should satisfy.

Мосолио	Axioms						
Measure		2	3	4	5	6	7
B1 (Jaccard index)	X	X	Х	X	/	~	/
B2 (Ratio of covered interacations)	/		X	X	/	/	
B3 (Klamt et al. [29])	/	X	X	X	/		
B4 (Torres et al. [47])	/	/	X	X	/	/	
B5 (Gallager et al. [20] A)	X	X	X	X	/	/	
B6 (Gallager et al. [20] B)	X	X	X	X		X	
B7 (HyperTrans-mean)	/	X	/	/	/	/	
B8 (HyperTrans-non- $P(w)$)	/	X					
B9 (HyperTrans-unnormalized)	/				X		X
Proposed: HyperTrans	/	~	/	/	/	/	/

Transitivity of Hypergraphs

- Real-world hypergraphs are more transitive than randomized ones.
- Transitivity of a hypergraph is the average transitivity of hyperwedges.

Data	Real	HyperCL	Z-stat	P-value
email-enron	0.195	0.078	378.3	0.00**
email-eu	0.125	0.053	240.1	0.00**
ndc-classes	0.052	0.008	146.7	0.00**
ndc-substances	0.019	0.005	47.3	0.00**
contact-high	0.345	0.119	764.7	0.00**
contact-primary	0.336	0.223	380.7	0.00**
coauth-dblp	0.007	0.000*	23.2	0.00**
coauth-geology	0.005	0.000*	16.6	0.00**
coauth-history	0.002	0.000*	6.6	0.00**
qna-ubuntu	0.005	0.014	32.0	0.00**
qna-server	0.005	0.017	38.3	0.00**
qna-math	0.025	0.040	46.6	0.00**

Real-world Hypergraph

Randomized Hypergraph

Transitivity of Hyperwedges

• The **larger** the body-group size of hyperwedges, the more likely they are to exhibit **high** transitivity.

Data	Real	HyperCL
email-enron email-eu	0.09	-0.09 -0.14
ndc-classes	0.12	-0.14
ndc-substances	0.14	-0.10
contact-high contact-primary	0.13 0.13	0.00* 0.00*
coauth-dblp	0.13	0.00*
coauth-geology	0.14	0.00*
coauth-history qna-ubuntu	0.12	0.05
qna-server	0.04	0.00*
qna-math	0.04	0.01

Correlations between body-group size and transitivity

More Transitive

Transitivity of Nodes

High-degree nodes are likely to have low transitivity.

Transitivity of Hyperedges

 Hyperedges in real-world hypergraphs have wider ranges of transitivity compared to those in randomized hypergraphs.

Data	Real	HyperCL
email-enron	0.725	0.279
email-eu	0.809	0.248
ndc-classes	0.600	0.075
ndc-substances	1.0	0.032
contact-high	0.794	0.316
contact-primary	0.693	0.395
coauth-dblp	1.0	0.105
coauth-geology	1.0	0.069
coauth-history	1.0	0.333
qna-ubuntu	0.667	0.5
qna-server	0.667	0.333
qna-math	0.667	1.00

LL23: One Advanced Static Pattern

• P1. Degree of hyperedge encapsulation

Encapsulation of Hyperedges

- Hyperedges can contain smaller hyperedges.
- However, they do not contain all possible sub-hyperedges.

Difference from Simplicial Complexes

- A simplicial complex includes all subsets of the complex.
- A hyperedge can include various subsets in different ways.

Degree of Encapsulation

Larger hyperedges encapsulate smaller hyperedges.

Degree of Encapsulation (cont.)

Hyperedges exhibit different encapsulation patterns across domains.

BLS23: Three Advanced Static Patterns

- P1. Hypercore sizes of hypergraphs
- P2. Distributions of hypercoreness
- P3. Heterogeneity of hypercoreness

Background

- A k-core is a maximal subgraph of nodes with degree at least k.
- It is useful in community detection, anomaly detection, etc.

Hypercores

Question:

How can we define k-cores in hypergraphs?

Answer:

We can easily generalize them to hypergraphs:

- Nodes with hypercoreness 1
- Nodes with hypercoreness 2

Hypercores (cont.)

Question:

How can we define k-cores in hypergraphs?

Answer (cont.):

Consider the **fragility** of hyperedges.

Removing a single node breaks all of its edges.

Does a single node break the entire group interaction?

Hypercores (cont.)

Question:

How can we define k-cores in hypergraphs?

Answer (cont.):

In many cases, group interactions are non-fragile.

Non-Fragile Hyperedges

- Non-fragile hyperedges break if at least t fraction of the nodes remain.
 - The larger the value of *t* is, the more fragile the hyperedges are.
- Example: t = 0.5

60% of the nodes remain Degrees of nodes 1, 2, 4 are **unchanged**.

40% of the nodes remain Degrees of nodes 1 and 4 are **decreased by 1**.

Hypercores for Non-Fragile Hyperedges

- (k, t)-hypercore is the maximal sub-hypergraph of:
 - Nodes with degree at least k
 - Hyperedges with at least t proportion of its nodes remaining

- Nodes with hypercoreness 1
- Nodes with hypercoreness 2
- Nodes with hypercoreness 3

Hypercores for Non-Fragile Hyperedges

Different t values give us different insights into cohesive structures.

hypercoreness 1

hypercoreness 2

hypercoreness 3

$$t \le \frac{2}{5}$$

$$\frac{2}{5} < t \le \frac{4}{7}$$

$$\frac{4}{7} < t \le \frac{5}{7}$$

$$t > \frac{5}{7}$$

Hypercore Sizes of Hypergraphs

 Hypergraphs from the same domain tend to have similar hypercore size distribution, while they vary across domains.

Distributions of Hypercoreness

• *t*-hypercoreness of nodes in real-world hypergraphs follows heavy-tailed distributions regardless of *t*.

Heterogeneity of Hypercoreness

• t-hypercoreness of nodes gives distinct information depending on t.

Other Definition of Hypercores

• **Neighborhood-based hypercore** is the maximal sub-hypergraph of every node having <u>at least a certain number of neighbors</u>.

- Nodes with hypercoreness 3
- Nodes with hypercoreness 4
- Nodes with hypercoreness 5
- Nodes with hypercoreness 6
- Nodes with hypercoreness 7
- Nodes with hypercoreness 8
- Nodes with hypercoreness 9

References

- 1. [KKS20] Kook, Yunbum, Jihoon Ko, and Kijung Shin. "Evolution of Real-world Hypergraphs: Patterns and Models without Oracles." ICDM 2020.
- 2. [LCK21] Lee, Geon, Minyoung Choe, and Kijung Shin. "How Do Hyperedges Overlap in Real-world Hypergraphs? Patterns, Measures, and Generators." WWW 2021.
- 3. [DYHS20] Do, Manh Tuan, et al. "Structural Patterns and Generative Models of Real-world Hypergraphs." KDD 2020.
- 4. [KBCYS23] Kim, Sunwoo, Fanchen Bu, Minyoung Choe, Jaemin Yoo, and Kijung Shin. "How Transitive Are Real-World Group Interactions? Measurement and Reproduction." KDD 2023.
- 5. [BASJK18] Benson, Austin R., et al. "Simplicial Closure and Higher-order Link Prediction." PNAS 115(48):E11221–E11230, 2018.

References (cont.)

- 6. [LMMB20] Lotito, Quintino Francesco, et al. "Higher-order Motif Analysis in Hypergraphs." Communication Physics 5(1):1–8, 2022
- 7. [LKS20] Lee, Geon, Jihoon Ko, and Kijung Shin. "Hypergraph Motifs: Concepts, Algorithms, and Discoveries." PVLDB 13(12):2256-2269, 2020.
- 8. [LL23] LaRock, Timothy, and Renaud Lambiotte. "Encapsulation Structure and Dynamics in Hypergraphs." arXiv (2023).
- 9. [BLS23] Bu, Fanchen, Geon Lee, and Kijung Shin. "Hypercore Decomposition for Non-Fragile Hyperedges: Concepts, Algorithms, Observations, and Applications." Data Mining and Knowledge Discovery (2023).
- 10. [AKRG23] Arafat, Naheed, et al. "Neighborhood-Based Hypergraph Core Decomposition." VLDB 2023.