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Hypergraph Models Group Interactions

• A hypergraph 𝐺 = (𝑉, 𝐸) has a node set 𝑉 and a hyperedge set 𝐸

• Each hyperedge consists of a subset of nodes of any size

• Hypergraphs represent group interactions among people/objects
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Hypergraph Alignment: Definition

• The focus of this work is hypergraph alignment

• Given: two (or more) hypergraphs

• to Identify: the “same nodes” across the hypergraphs
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Hypergraph Alignment: Applications

• User matching in social messaging platforms

• Goal: to identify the same users in different platforms

• Hypergraph: group chats (hyperedges) among users (nodes)

• Applications: cross-platform marketing and cybersecurity
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Hypergraph Alignment: Applications

• Object matching in images

• Goal: to match pixels (or features) corresponding to the same objects

• Hypergraph: groups of similar (e.g., w.r.t. colors) pixels (or features)

• Applications: medical imaging, image reconstruction, & surveillance
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The image is from Yan et al., “Discrete Hyper-Graph Matching”, CVPR 2015.
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Roadmap

1. Introduction

2. Challenges <<

3. Proposed method

4. Experiments

5. Conclusion
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Unsupervised Hypergraph Alignment: Definition

• We address the unsupervised hypergraph alignment

• Given: two hypergraphs 𝐺1 and 𝐺2, potentially with different scales

• to Identify: correct node correspondences across 𝐺1 and 𝐺2

• No ground-truth node correspondences or node attributes are given
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Challenge 1: Absence of Node Attributes

• Node attributes may not be available in real-world hypergraphs

• For example, for messaging platforms, privacy-protection regulations 

may prevent the disclosure of user information

• It can be desirable to avoid relying on attributes for alignment
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Challenge 2: Absence of Supervision

• Supervision may not be available in real-world hypergraphs

• Ground-truth node correspondence may not be available

• It can be desirable to avoid relying on supervision for alignment
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Challenge 3: Scale Disparity of Hypergraphs

• Two hypergraphs may be substantially different in sizes

• One may have (much) more nodes or hyperedges than the other
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Roadmap

1. Introduction

2. Challenges

3. Proposed Method <<

4. Experiments

5. Conclusion
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Our Contributions

• We propose HYPERALIGN for hypergraph alignment

• It directly addresses the aforementioned challenges

• Challenge 1: Absence of node attribute

• Challenge 2: Absence of supervision

• Challenge 3: Scale disparity of two hypergraphs
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Proposed Method: Overview
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• HYPERALIGN learns node embeddings for both hypergraphs

• The embeddings are then used to infer node correspondences
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Proposed Method: Overview
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• Each step of HYPERALIGN specifically addresses a key challenge:

• Step 1. HyperFeat: node feature extraction from hypergraph topology

• Addressing Challenge 1, absence of node attributes

• Step 2. HyperCL: contrastive learning as “pseudo” supervised alignment

• Addressing Challenge 2, absence of supervision

• Step 3. HyperAug: adversarial learning with topological augmentation

• Addressing Challenge 3, scale disparity of hypergraphs
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Step 1. HyperFeat: Overview
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• Step 1. HyperFeat: node feature extraction from hypergraph topology

• Addressing Challenge 1, absence of node attributes
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Step 1. HyperFeat: Overview (cont.)
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• HyperFeat aims to preserve structural similarities within each hypergraph

• Structural similarity reflects the count of incident hyperedges of each size 
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Step 1. HyperFeat: Details
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• Node-similarity graph to connect structurally similar nodes

• Random walk with restart (RWR) to obtain a corpus

• Skip-Gram with negative sampling to learn node embeddings from corpus
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Step 1. HyperFeat: Theoretical Properties
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• HyperFeat has desirable properties with a sufficiently large corpus: 

• Equivalence to implicit matrix factorization

• Invariance to node permutation

• Distinguishability of non-isomorphic hypergraphs
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Step 1. HyperFeat: Summary
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• HyperFeat is applied to each hypergraph to obtain node features

• Addressing Challenge 1, absence of node attributes
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Step 2. HyperCL: Overview
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• Step 2. HyperCL: contrastive learning as “pseudo” supervised alignment

• Addressing Challenge 2, absence of supervision
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Step 2. HyperCL: Procedures
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• HyperCL creates two views from each hyperedge through “corruption”

• For the two views, we know the ground-truth node correspondences

• HyperCL pretrains the encoder to learn the correspondence
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Step 2. HyperCL: Summary
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• Contrastive learning serves as a “pseudo” supervised alignment task

• Note HyperCL is applied to each hypergraph to pretrain the same encoder
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Step 3. HyperAug: Overview
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• Step 3. HyperAug: adversarial learning with topological augmentation

• Addressing Challenge 3, scale disparity of hypergraphs
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Step 3. HyperAug: (1) GAN Framework

25

• HyperAug employs generative adversarial networks (GAN) to

align two node embedding spaces
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Step 3. HyperAug: (2) Hyperedge Augmentation
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• Given: node embeddings in the current iteration of GAN training,

• Augment: hyperedges in both hypergraphs

• to Resolve: scale disparity
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Step 3. HyperAug: Details
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• For each hyperedge in one input, create a virtual hyperedge in the other

• For each member, find the most similar node in the other hypergraph

• We use the node embeddings in the current iteration

• Construct virtual hyperedges containing the counter-part nodes

𝑮𝟏 𝑮𝟐
Node 
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Last Step: Inferring Alignment based on Embeddings
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• First, we measure node similarity based on embeddings

• Then, we greedily match most similar nodes

Node Similarity Based on Embeddings Greedy Matching
Based on Similarity
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1. Introduction

2. Challenges

3. Proposed Method 

4. Experiments <<

5. Conclusion
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Experimental Settings

• Datasets: 12 real-worlds hypergraphs

• Preprocessing of each dataset:

• Two hypergraphs are from non-overlapping intervals of timestamps

• One interval can be (much) longer than the other

• Performance: % of correctly estimated pairs among the ground-truth ones
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Baselines & Competitors

• Bipartite graph based methods:

• Big-Align [Koutra et al. 2013]

• Unipartite graph based methods:

• Node embedding based: REGAL [Heimann et al. 2018]

• Learning based: SANA [Peng et al. 2023] & Grad-Align+ [Park et al. 2022]

• GAN based: UUIL [Li et al. 2018], DANA [Derr et al. 2021],

WAlign [Gao et al. 2021]
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Q1. Alignment Performance
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• Q1. How accurate is HYPERALIGN?

• A1. HYPERALIGN consistently outperforms all competitors in all datasets

Y-axis: Alignment Accuracy (the higher the better; scale disparity ratio = 0.5)
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Q2. Scale Disparity Ratio of Two Input Hypergraphs
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• Q2. How does the scale disparity ratio affect HYPERALIGN’s superiority?

• A2. HYPERALIGN is consistently superior across all disparity ratios

X-axis: Size Disparity Ratio & Y-axis: Alignment Accuracy
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Q3. Ablation Studies
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• Q3. Does each component of HYPERALIGN contribute to its performance?

• A3. Yes!

(no HyperCL) (no HyperAug) (no HyperCL or HyperAug)

X-axis: Size Disparity Ratio & Y-axis: Alignment Accuracy

(none)
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Roadmap

1. Introduction

2. Challenges

3. Proposed Method 

4. Results 

5. Conclusion <<

35



[KDD’24] Unsupervised Alignment of Hypergraphs with Different ScalesM. T. Do and K. Shin

Conclusions: Our Contributions

• New Problem: unsupervised alignment of hypergraphs with scale disparity

• Novel Method: HYPERALIGN, addressing three challenges:

• Challenge 1: Absence of node attribute

• Challenge 2: Absence of supervision

• Challenge 3: Scale disparity of two hypergraphs

• Extensive Experiments: we demonstrate the superiority HYPERALIGN
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Code & Dataset: https://github.com/manhtuando97/HyperAlign
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