

Unsupervised Alignment of Hypergraphs with Different Scales

Manh Tuan Do

Kijung Shin

Motivations: Group Interactions are Everywhere!

Email TitleFrom john@enron.comTodavid@enron.com,
micheal@enron.comCCengram@enron.comEmail addresses

Hypergraph Models Group Interactions

- A hypergraph G = (V, E) has a node set V and a hyperedge set E
 - Each hyperedge consists of a subset of nodes of any size
- Hypergraphs represent group interactions among people/objects

Authors (Nodes)		Publications (Hyperedges)	Hyperedge
Jure Leskovec (L)	Austin Benson (B)	<mark>e</mark> 1: (L, K, F) KDD'05	
Jon Kleinberg (K)	David Gleich (G)	<mark>e₂: (L, H, K) WWW'10</mark>	
Hao Yin (Y)	Timos Sellis (<mark>S</mark>)	e₃: (Y, B, G, L) KDD'17	
Christos Faloutsos (F) Nick Roussopoulos (R)		e₄: (S, R, F) VLDB'87	
Daniel Huttenlocher (H)			Node ^{C1}

Hypergraph Alignment: Definition

- The focus of this work is hypergraph alignment
 - Given: two (or more) hypergraphs
 - to Identify: the "same nodes" across the hypergraphs

Hypergraph Alignment: Applications

- User matching in social messaging platforms
 - Goal: to identify the same users in different platforms
 - Hypergraph: group chats (hyperedges) among users (nodes)
 - Applications: cross-platform marketing and cybersecurity

Hypergraph Alignment: Applications

- Object matching in images
 - Goal: to match pixels (or features) corresponding to the same objects
 - Hypergraph: groups of similar (e.g., w.r.t. colors) pixels (or features)
 - Applications: medical imaging, image reconstruction, & surveillance

The image is from Yan et al., "Discrete Hyper-Graph Matching", CVPR 2015.

M. T. Do and K. Shin

[KDD'24] Unsupervised Alignment of Hypergraphs with Different Scales

Roadmap

- 1. Introduction
- 2. Challenges <<
- 3. Proposed method
- 4. Experiments
- 5. Conclusion

Unsupervised Hypergraph Alignment: Definition

- We address the **unsupervised** hypergraph alignment
 - Given: two hypergraphs G_1 and G_2 , potentially with **different scales**
 - to Identify: correct node correspondences across G_1 and G_2
 - No ground-truth node correspondences or node attributes are given

Challenge 1: Absence of Node Attributes

- Node attributes may not be available in real-world hypergraphs
 - For example, for messaging platforms, privacy-protection regulations may prevent the disclosure of user information
- It can be desirable to avoid relying on attributes for alignment

M. T. Do and K. Shin

Challenge 2: Absence of Supervision

- Supervision may not be available in real-world hypergraphs
 - Ground-truth node correspondence may not be available
- It can be desirable to avoid relying on supervision for alignment

M. T. Do and K. Shin

Challenge 3: Scale Disparity of Hypergraphs

- Two hypergraphs may be substantially different in sizes
 - One may have (much) more nodes or hyperedges than the other

Roadmap

- 1. Introduction
- 2. Challenges
- 3. Proposed Method <<
- 4. Experiments
- 5. Conclusion

Our Contributions

- We propose **HyperAlign** for hypergraph alignment
- It directly addresses the aforementioned challenges
 - Challenge 1: Absence of node attribute
 - Challenge 2: Absence of supervision
 - Challenge 3: Scale disparity of two hypergraphs

Proposed Method: Overview

- HyperAlign learns node embeddings for both hypergraphs
- The embeddings are then used to infer node correspondences

Proposed Method: Overview

- Each step of HyperAlign specifically addresses a key challenge:
- Step 1. HyperFeat: node feature extraction from hypergraph topology
 - Addressing Challenge 1, absence of node attributes
- Step 2. HyperCL: contrastive learning as "pseudo" supervised alignment
 - Addressing Challenge 2, absence of supervision
- Step 3. HyperAug: adversarial learning with topological augmentation
 - Addressing Challenge 3, scale disparity of hypergraphs

Step 1. HyperFeat: Overview

- Step 1. HyperFeat: node feature extraction from hypergraph topology
 - Addressing Challenge 1, absence of node attributes

Step 1. HyperFeat: Overview (cont.)

- HyperFeat aims to preserve structural similarities within each hypergraph
- Structural similarity reflects the count of incident hyperedges of each size

Step 1. HyperFeat: Details

- Node-similarity graph to connect structurally similar nodes
- Random walk with restart (RWR) to obtain a corpus
- Skip-Gram with negative sampling to learn node embeddings from corpus

Step 1. HyperFeat: Theoretical Properties

- HyperFeat has **desirable properties** with a sufficiently large corpus:
 - Equivalence to implicit matrix factorization
 - Invariance to node permutation
 - Distinguishability of non-isomorphic hypergraphs

Step 1. HyperFeat: Summary

- HyperFeat is applied to **each hypergraph** to obtain node features
 - Addressing Challenge 1, absence of node attributes

Step 2. HyperCL: Overview

- Step 2. HyperCL: contrastive learning as "pseudo" supervised alignment
 - Addressing Challenge 2, absence of supervision

Step 2. HyperCL: Procedures

- HyperCL creates two views from each hyperedge through "corruption"
- For the two views, we know the ground-truth node correspondences
- HyperCL pretrains the encoder to learn the correspondence

Step 2. HyperCL: Summary

- Contrastive learning serves as a "pseudo" supervised alignment task
- Note HyperCL is applied to each hypergraph to pretrain the same encoder

Step 3. HyperAug: Overview

- Step 3. HyperAug: adversarial learning with topological augmentation
 - Addressing Challenge 3, scale disparity of hypergraphs

Step 3. HyperAug: (1) GAN Framework

 HyperAug employs generative adversarial networks (GAN) to align two node embedding spaces

Step 3. HyperAug: (2) Hyperedge Augmentation

- Given: node embeddings in the current iteration of GAN training,
- Augment: hyperedges in both hypergraphs
- to Resolve: scale disparity

M. T. Do and K. Shin

[KDD'24] Unsupervised Alignment of Hypergraphs with Different Scales

Step 3. HyperAug: Details

- For each hyperedge in one input, create a virtual hyperedge in the other
 - For each member, find the most similar node in the other hypergraph
 - We use the **node embeddings** in the current iteration
 - Construct virtual hyperedges containing the counter-part nodes

Last Step: Inferring Alignment based on Embeddings

- First, we measure node similarity based on embeddings
- Then, we greedily match most similar nodes

Roadmap

- 1. Introduction
- 2. Challenges
- 3. Proposed Method
- 4. Experiments <<
- 5. Conclusion

Experimental Settings

- Datasets: 12 real-worlds hypergraphs 🗧
- Preprocessing of each dataset:

- Two hypergraphs are from non-overlapping intervals of timestamps
- One interval can be (much) longer than the other

• Performance: % of correctly estimated pairs among the ground-truth ones

Baselines & Competitors

- Bipartite graph based methods:
 - Big-Align [Koutra et al. 2013]
- Unipartite graph based methods:

- Node embedding based: REGAL [Heimann et al. 2018]
- Learning based: SANA [Peng et al. 2023] & Grad-Align+ [Park et al. 2022]
- GAN based: UUIL [Li et al. 2018], DANA [Derr et al. 2021], WAlign [Gao et al. 2021]

Q1. Alignment Performance

- Q1. How accurate is HyperAlign?
- A1. HYPERALIGN consistently outperforms all competitors in all datasets

[KDD'24] Unsupervised Alignment of Hypergraphs with Different Scales

Q2. Scale Disparity Ratio of Two Input Hypergraphs

- Q2. How does the scale disparity ratio affect HYPERALIGN's superiority?
- A2. HYPERALIGN is consistently superior across all disparity ratios

Q3. Ablation Studies

• Q3. Does each component of HYPERALIGN contribute to its performance?

[KDD'24] Unsupervised Alignment of Hypergraphs with Different Scales

Roadmap

- 1. Introduction
- 2. Challenges
- 3. Proposed Method
- 4. Results
- 5. Conclusion <<

M. T. Do and K. Shin

Conclusions: Our Contributions

- New Problem: unsupervised alignment of hypergraphs with scale disparity
- Novel Method: HyperAlign, addressing three challenges:
 - Challenge 1: Absence of node attribute
 - Challenge 2: Absence of supervision
 - Challenge 3: Scale disparity of two hypergraphs
- Extensive Experiments: we demonstrate the superiority HyperAlign

Acknowledgements

- HYPERALIGN stands on "the shoulders of giants"
- Feature Extraction in Graph:
 - Struc2Vec [Ribeiro et al. 2017]
- GAN-Based Alignment of Graphs
 - DANA [Derr et al. 2021], WAlign [Gao et al. 2021]
- Contrastive Learning on Graphs
 - GraphCL [You et al. 2020]