

A Tutorial on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide Part 5. Applications

Soo Yong Lee*

Yue Gao

Alessia Antelmi

Mirko Polato

Kijung Shin

Part 5. Applications

Part 1.Part 2.IntroductionInputs

Part 3. Message Passing Part 4. Training Strategies

Part 5. Applications Part 6. Discussions

The slides are available at <u>https://sites.google.com/view/hnn-tutorial</u>

A Tutorial on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide

Presenter

KAIST

Soo Yong Lee.

Ph.D. Student @

KAIST

What are Some Issues in Applying HNNs?

- Two major issues include:
 - Q1) How to express the raw data as hypergraphs?
 - Q2) How to **formulate the learning task** for an HNN?

What are Notable Applications of HNNs?

• In the following domains, we will cover how the issues have been addressed:

What are Notable Applications of HNNs? (cont.)

• In the following domains, we will cover how the issues have been addressed:

Recommendation: Hypergraph Construction

• Raw data typically include users & items and their interactions.

A Tutorial on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide

Recommendation: Hypergraph Construction (cont.)

- Wang et al. (2020) converted the interactions into a hypergraph
 - A node is an item; a hyperedge is a user.
 - A user hyperedge connects all item nodes that it interacted with.

Wang et al., Next-item Recommendation with Sequential Hypergraphs, SIGIR 2020

Recommendation: Task Formulation

- Wang et al. (2020) used an HNN for **next-item recommendation**.
 - An HNN encodes nodes and hyperedges.
 - The embeddings are used to predict items that users will interact next.

Wang et al., Next-item Recommendation with Sequential Hypergraphs, SIGIR 2020

S. Kim*, S. Lee*, Y. Gao, A. Antelmi, M. Polato, K. Shin

Recommendation: Hypergraph Construction (cont.)

- Ji et al. (2020) used association rules to construct two hypergraphs.
 - The pre-determined association rules aim to capture high-order

information among users and among items, returning two hypergraphs.

Ji et al., Dual Channel Hypergraph Collaborative Filtering, KDD 2020

Recommendation: Task Formulation (cont.)

- Ji et al. (2020) used an HNN for collaborative filtering.
 - An HNN encodes user nodes and item nodes.
 - The embeddings are used to recommend items for users.

Ji et al., Dual Channel Hypergraph Collaborative Filtering, KDD 2020

What are Notable Applications of HNNs? (cont.)

• In the following domains, we will cover how the issues have been addressed:

Hypergraph in Bioinformatics and Medical Science

Dai and Gao, Hypergraph Computation, Engineering 2024

Pathology Analysis

- Gigapixel WSIs contains multiple high-order correlations
 - Within a single WSI
 - Cross-WSIs for a single subject
 - Cross-subjects

Brain Network

- Functional and Structural Brain Network contains high-order correlations
 - Within individual functional network or structural network
 - Functional and structural network coupling
 - Brain network evolution

Bioinformatics: Hypergraph Construction

• Raw data typically include molecular-level structures and their relations.

Molecular-level structures

Joint relations examples

S. Kim*, S. Lee*, Y. Gao, A. Antelmi, M. Polato, K. Shin

Bioinformatics: Hypergraph Construction (cont.)

- Chen et al. (2023) transforms a metabolic network into a hypergraph.
 - A node is metabolite; a hyperedge connects those with joint reaction.

Bioinformatics: Task Formulation

- Chen et al. (2023) used an HNN to predict missing metabolic reaction.
 - An HNN learns to classify negative and positive hyperedges, where negative hyperedges represent false joint reactions.

fMRI Data: Hypergraph Construction

- **Raw data** typically is series of brain images with brain signals.
 - The images can be parcellated into signals from region-of-interests (ROIs).

3D brain images in time series

A Tutorial on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide

S. Kim*, S. Lee*, Y. Gao, A. Antelmi, M. Polato, K. Shin

fMRI Data: Hypergraph Construction (cont.)

- Wang et al. (2023) converted **fMRI** data into a hypergraph.
 - A node is a ROI; for each ROI, its hyperedge connects the most similar ROIs (estimated by a learning algorithm).

fMRI Data: Task Formulation

- Wang et al. (2023) used an HNN to predict ages & cognitive functions.
 - An HNN encodes brain hypergraphs for classification.

* Specifically, they also estimated hyperedge weights with an additional loss term.

EHR: Hypergraph Construction

• Raw data typically include medical codes and records of each patient.

S. Kim*, S. Lee*, Y. Gao, A. Antelmi, M. Polato, K. Shin

EHR: Hypergraph Construction (cont.)

- Cai et al. (2022) converted **patient records** into a hypergraph.
 - A node is a medical code; a hyperedge is each patient visit.

EHR: Task Formulation

- Cai et al. (2022) used an HNN to predict mortality & readmission.
 - The HNN encodes hyperedges for their classification.

What are Notable Applications of HNNs? (cont.)

• In the following domains, we will cover how the issues have been addressed:

A Tutorial on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide

Time Series: Hypergraph Construction

• Raw data typically are periodically recorded data over time.

A Tutorial on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide

S. Kim*, S. Lee*, Y. Gao, A. Antelmi, M. Polato, K. Shin

Time Series: Hypergraph Construction (cont.)

- Yi et al. (2020) converted taxi demand data into a hypergraph.
 - A node is a region; a hyperedge connects regions with similar taxi demand patterns (found by an algorithm).

Yi et al., Hypergraph Convolutional Recurrent Neural Network, KDD 2020

Time Series: Task Formulation

- Yi et al. (2020) used an HNN to predict **future taxi demands** in each region.
 - The HNN encodes each city to predict its future taxi demand.

* Specifically, they further used an RNN to model the temporal aspects of the series.

S. Kim*, S. Lee*, Y. Gao, A. Antelmi, M. Polato, K. Shin

Time Series: Hypergraph Construction (cont.)

- Sawhney et al. (2021) converted **stock price** data into a hypergraph.
 - A node is a stock; a hyperedge connects stocks (i.e., companies) in the same industry or with 1st or 2nd order relations (heuristically determined).

Time Series: Task Formulation (cont.)

- Sawhney et al. (2021) used an HNN to predict future stock price.
 - The HNN encodes each stock to predict its future price.

* Specifically, they further used an RNN and attention to model the temporal aspects of the series.

What are Notable Applications of HNNs? (cont.)

• In the following domains, we will cover how the issues have been addressed:

Hypergraph in Computer Vision

- Action Recognition
- Depth Estimation
- Registration
- 3D Recognition/Retrieval
- Scene Understanding
- Object Detection

A Tutorial on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide

Vision: Hypergraph Construction

• Raw data typically are images in pixels or voxels.

Pixel images

Voxel images

Vision: Hypergraph Construction (cont.)

- Han et al. (2023) converted **pixel image** data into a hypergraph.
 - A node is a image patch; a hyperedge connects similar patches (found by a clustering algorithm).

Han et al., Vision HGNN: An Image is More than a Graph of Nodes, ICCV 2023

Vision: Task Formulation (cont.)

- Han et al. (2023) used an HNN to classify or detect images.
 - The HNN encodes each patch and pools them to make predictions.

Han et al., Vision HGNN: An Image is More than a Graph of Nodes, ICCV 2023

Vision: Hypergraph Construction (cont.)

- Bai et al. (2021) converted multi-modal 3D object into a hypergraph.
 - A node is a 3D object; a hyperedge connects the similar objects.

Bai et al., Multi-Scale Representation Learning on Hypergraph for 3D Shape Retrieval and Recognition, TIP 2021

S. Kim*, S. Lee*, Y. Gao, A. Antelmi, M. Polato, K. Shin

Vision: Hypergraph Construction (cont.)

- Bai et al. (2021) joined multi-scale hyperedges to the hypergraph
 - A node is a 3D shape; a hyperedge connects the similar shapes

Vision: Task Formulation

- Bai et al. (2021) used an HNN for **3D object retrieval and recognition**.
 - The HNN captures relationships among 3D objects in multi-scale.

S. Kim*, S. Lee*, Y. Gao, A. Antelmi, M. Polato, K. Shin

Vision: Hypergraph Construction (cont.)

- Feng et al. (2023) converted **3D objects** into a hypergraph.
 - A node is a 3D object; a hyperedge represents a category.

S. Kim*, S. Lee*, Y. Gao, A. Antelmi, M. Polato, K. Shin

Vision: Hypergraph Construction (cont.)

• To find object categories (i.e., hyperedges), Feng et al. (2023) used **autoencoder**-based embedding and **kNN**-based similarity search.

Vision: Task Formulation (cont.)

- Feng et al. (2023) used an HNN for **3D object retrieval**.
 - The HNN exploits the connections in multimodal data.

Part 5 Summary

- Two key issues include:
 - Q1) How to express the raw data as hypergraphs?
 - Q2) How to **formulate the learning task** for an HNN?

• We covered how the issues have been addressed in:

- After determining the nodes, hyperedges were constructed often by
 - 1) Domain knowledge or 2) similarity search

- After determining the nodes, hyperedges were constructed often by
 - 1) Domain knowledge or 2) similarity search

Ji et al., Dual Channel Hypergraph Collaborative Filtering, KDD 2020

- After constructing the hypergraphs, HNNs often were used to predict
 - 1) nodes, 2) hyperedges, or 3) hypergraphs

Yi et al., Hypergraph Convolutional Recurrent Neural Network, KDD 2020

- After constructing the hypergraphs, HNNs often were used to predict
 - 1) nodes, 2) hyperedges, or 3) hypergraphs

- After constructing the hypergraphs, HNNs often were used to predict
 - 1) nodes, 2) hyperedges, or 3) hypergraphs

