





# A Tutorial on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide Part 5. Applications



**Sunwoo Kim\*** 



Soo Yong Lee\*



Yue Gao



**Alessia Antelmi** 



**Mirko Polato** 



**Kijung Shin** 







## Part 5. Applications

Part 1. Part 2. Introduction Inputs

Part 3. Message **Passing** 

Part 4. **Training Strategies**  Part 5. **Applications**  Part 6. **Discussions** 





The slides are available at <a href="https://sites.google.com/view/hnn-tutorial">https://sites.google.com/view/hnn-tutorial</a>









Soo Yong Lee. Ph.D. Student @ **KAIST** 



## What are Some Issues in Applying HNNs?

- Two major issues include:
  - Q1) How to express the raw data as hypergraphs?
  - Q2) How to formulate the learning task for HNN?







## What are Notable Applications of HNNs?

In the following domains, we will cover how the issues have been addressed:



Recommender system



**Bioinformatics & Medical science** 



Time series analysis



Computer vision





# What are Notable Applications of HNNs? (cont.)

In the following domains, we will cover how the issues have been addressed:







**Bioinformatics &** Medical science



Time series analysis



Computer vision



### **Recommendation: Hypergraph Construction**

Raw data typically include users & items and their interactions.







# Recommendation: Hypergraph Construction (cont.)

- Wang et al. (2020) converted the interactions into a hypergraph
  - A node is an item; a hyperedge is a user.
  - A user hyperedge connects all item nodes that it interacted with.





#### **Recommendation: Task Formulation**

- Wang et al. (2020) used an HNN for next-item recommendation.
  - An HNN encodes nodes and hyperedges.
  - The embeddings are used to predict items that users will interact next.





# **Recommendation: Hypergraph Construction (cont.)**

- Ji et al. (2020) used association rules to construct two hypergraphs.
  - The pre-determined association rules aim to capture high-order information among users and among items, returning two hypergraphs.





## Recommendation: Task Formulation (cont.)

- Ji et al. (2020) used an HNN for collaborative filtering.
  - An HNN encodes nodes and hyperedges.
  - · The embeddings are used to recommend items for users.









# What are Notable Applications of HNNs? (cont.)

In the following domains, we will cover how the issues have been addressed:







**Bioinformatics & Medical science** 



Time series analysis



Computer vision



## **Bioinformatics: Hypergraph Construction**

Raw data typically include molecular-level structures and their relations.



**Molecular-level structures** 



Joint relations examples





# **Bioinformatics: Hypergraph Construction (cont.)**

- Chen et al. (2023) transforms a metabolic network into a hypergraph.
  - A node is metabolite; a hyperedge connects those with joint reaction.









#### **Bioinformatics: Task Formulation**

- Chen et al. (2023) used HNN to predict missing metabolic reaction.
  - An HNN learns to classify negative and positive hyperedges, where negative hyperedges represent false joint reactions.



\* Specifically, they used a GNN on clique-expanded hyperedges.



**Hyperedge scores** 



## fMRI Data: Hypergraph Construction

- Raw data typically is series of brain images with brain signals.
  - The images can be parcellated into signals from region-of-interests (ROIs).



3D brain images in time series





# fMRI Data: Hypergraph Construction (cont.)

- Wang et al. (2023) converted fMRI data into a hypergraph.
  - A node is a ROI; for each ROI, its hyperedge connects the most similar ROIs (estimated by a learning algorithm).







#### **fMRI Data: Task Formulation**

- Wang et al. (2023) used an HNN to predict ages & cognitive functions.
  - An HNN encodes brain hypergraphs for classification.







## **EHR: Hypergraph Construction**

Raw data typically include medical codes and records of each patient.







# **EHR: Hypergraph Construction (cont.)**

- Cai et al. (2022) converted patient records into a hypergraph.
  - A node is a medical code; a hyperedge is each patient visit.



**EHR: Patient records** 

**Hypergraph** 





#### **EHR: Task Formulation**

- Cai et al. (2022) used an HNN to predict mortality & readmission.
  - The HNN encodes hyperedges for their classification.









## **Hypergraph in Medicine Science**

Cell and tissue hypergraphs

**Organ hypergraphs** 

**Biological system hypergraphs** 

**Population-level hypergraphs** 







## **Pathology Analysis**

- Gigapixel WSIs contains multiple high-order correlations
  - Within a single WSI
  - Cross-WSIs for a single subject
  - **Cross-subjects**







#### **Brain Network**

- Functional and Structural Brain Network contains high-order correlations
  - Within individual functional network or structural network
  - Functional and structural network coupling
  - Brain network evolution









# What are Notable Applications of HNNs? (cont.)

In the following domains, we will cover how the issues have been addressed:







**Bioinformatics &** Medical science



Time series analysis



Computer vision





## **Time Series: Hypergraph Construction**

Raw data typically are periodically recorded data over time.



Time series data

**Examples** 



## Time Series: Hypergraph Construction (cont.)

- Yi et al. (2020) converted taxi demand data into a hypergraph.
  - A node is a region; a hyperedge connects regions with similar taxi demand patterns (found by an algorithm).







#### **Time Series: Task Formulation**

- Yi et al. (2020) used an HNN to predict future taxi demands in each region.
  - The HNN encodes each city to predict its future taxi demand.

\* Specifically, they further used an RNN to model the temporal aspects of the series.







# Time Series: Hypergraph Construction (cont.)

- Sawhney et al. (2021) converted stock price data into a hypergraph.
  - A node is a stock; a hyperedge connects stocks (i.e., companies) in the same industry or with 1st or 2nd order relations (heuristically determined).







# Time Series: Task Formulation (cont.)

- Sawhney et al. (2021) used an HNN to predict future stock price.
  - The HNN encodes each stock to predict its future price.

\* Specifically, they further used an RNN and attention to model the temporal aspects of the series.







# What are Notable Applications of HNNs? (cont.)

In the following domains, we will cover how the issues have been addressed:







**Bioinformatics &** Medical science



Time series analysis



Computer vision





## **Hypergraph in Computer Vision**

- Action Recognition
- Depth Estimation
- Registration
- 3D Recognition/Retrieval
- Scene Understanding
- Object Detection







# **Vision: Hypergraph Construction (cont.)**

- Feng et al. (2023) converted 3D objects into a hypergraph
  - A node is a 3D object; a hyperedge connects the similar 3D objects











#### **Vision: Task Formulation**

- Feng et al. (2023) used an HNN for 3D object open set retrieval
  - The hypergraph models relationships among multimodal data









#### **Vision: Task Formulation**

- Feng et al. (2023) used an HNN for 3D object open set retrieval
  - The HNN exploits the inherent connections in multimodal data







# Vision: Hypergraph Construction (cont.)

- Bai et al. (2021) joined multi-scale hyperedges to the hypergraph
  - A node is a 3D shape; a hyperedge connects the similar shapes







### **Vision: Hypergraph Construction (cont.)**

- Bai et al. (2021) joined multi-scale hyperedges to the hypergraph
  - A node is a 3D shape; a hyperedge connects the similar shapes







#### **Vision: Task Formulation**

- Bai et al. (2021) used an HNN for 3D shape retrieval and recognition.
  - The HNN captures relationships among 3D shapes in multi-scale







#### **Vision: Hypergraph Construction**

Raw data typically are images in pixels or voxels.



**Voxel images** 



### **Vision: Hypergraph Construction (cont.)**

- Han et al. (2023) converted pixel image data into a hypergraph.
  - A node is a image patch; a hyperedge connects similar patches (found by a clustering algorithm).



algorithm

hypergraph





#### **Vision: Task Formulation**

- Yi et al. (2020) used an HNN to classify images or detect objects.
  - The HNN encodes each city to predict its future taxi demand.







### Vision: Hypergraph Construction (cont.)

- Bai et al. (2021) converted 3D images into a hypergraph
  - A node is a 3D image; a hyperedge connects the similar 3D images

(found by a clustering algorithm).

\* Specifically, they used multi-view representation of 3D images.



**3D images** 



Clustering algorithm



Hypergraph of 3D images







- Bai et al. (2021) used an HNN to retrieve and classify 3D images.
  - The HNN encodes each image to retrieve and classify it.





#### **Part 5 Summary**

- Two key issues include:
  - Q1) How to express the raw data as hypergraphs?
  - Q2) How to formulate the learning task for HNN?







We covered how the issues have been addressed in:



Recommender system



**Bioinformatics & Medical science** 



Time series analysis



Computer vision





- After determining the nodes, hyperedges were constructed often by
  - 1) Domain knowledge or 2) similarity search







- After determining the nodes, hyperedges were constructed often by
  - 1) Domain knowledge or 2) similarity search







- After constructing the hypergraphs, HNNs often were used to predict
  - 1) nodes, 2) hyperedges, or 3) hypergraphs



Hypergraph of taxi demands

**Region embeddings** 

**Future taxi demands** 





- After constructing the hypergraphs, HNNs often were used to predict
  - 1) nodes, 2) hyperedges, or 3) hypergraphs









- After constructing the hypergraphs, HNNs often were used to predict
  - 1) nodes, 2) hyperedges, or 3) hypergraphs

