

A Tutorial on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide Part 2. Input Features and Structures

Sunwoo Kim*

Soo Yong Lee*

Yue Gao

Alessia Antelmi

Mirko Polato

Kijung Shin

Part 2. Inputs

Part 1. Introduction Part 2. **Inputs**

Part 3. Message **Passing**

Part 4. **Training Strategies** Part 5. **Applications** Part 6. **Discussion**

Hypergraph Neural Network Inputs

- The input quality can be critical for effective application of HNNs.
 - The inputs typically include hypergraph structure and (node and/or hyperedge) feature vectors.

Hypergraph Neural Network Inputs (cont.)

- Key questions about the HNN inputs include:
 - Q1) How are hypergraph structures expressed?
 - Q2) What input features are typically used?

Hypergraph Neural Network Inputs (cont.)

- Key questions about the HNN inputs include:
 - Q1) How are hypergraph structures expressed?
 - Q2) What input features vector are typically used?

Q1) Expressing Hypergraph Structures

We introduce five different ways to express hypergraph structures:

 Clique-, adaptive-, star-, line-, and tensor-expansions. 12345 Clique Star **Tensor Original** hypergraph **Adaptive** Line

Q1) Expressing Hypergraph Structures: Clique

- Clique expansion of a hypergraph is a homogeneous, pair-wise graph.
 - It transforms a hyperedge into a clique of pairwise edges.
 - Feng et al. (2019) further weigh edges with learnable parameters.

Q1) Expressing Hypergraph Structures: Adaptive

- Adaptive expansion of a hypergraph is a homogeneous, pair-wise graph.
 - It transforms a hyperedge into pairwise edge(s) via learnable rules.
 - Qian et al. (2023) assign and weigh edges based on node features.

Q1) Expressing Hypergraph Structures: Star

- Star expansion of a hypergraph is a bipartite, pair-wise graph.
 - It transforms a hyperedge into a new node.
 - It joins a hyperedge (i.e., new node) and its nodes via pair-wise edges.

Q1) Expressing Hypergraph Structures: Line

- Line expansion of a hypergraph is a homogeneous, pair-wise graph.
 - It transforms a pair of a hyperedge and its node into a new node.
 - Pair-wise edges join new nodes sharing a hyperedge or node.

Q1) Expressing Hypergraph Structures: Line

- Note that line expansion is different from a (k-) line graph
- k-Line graph from a hypergraph is a homogeneous, pair-wise graph.
 - It transforms a hyperedge into a new node.
 - It joins hyperedge (i.e., new node) pairs with at least k common nodes

Q1) Expressing Hypergraph Structures: Tensor

- A hypergraph can be expressed with a binary tensor \mathcal{A} .
 - Tensor order expresses the maximum hyperedge size, and each tensor dimension corresponds to node index.

Q1) Expressing Hypergraph Structures (cont.)

- The discussed approaches are either reductive or non-reductive.
 - Reductive approaches yield simple and straight-forward graph structures.
 - However, it may incur information loss after transformation.

Q1) Expressing Hypergraph Structures (cont.)

- The discussed approaches are either reductive or non-reductive.
 - Non-reductive transformation incur no information loss.
 - However, they are often more complex and, thus, difficult to handle.

Hypergraph Neural Network Inputs (cont.)

- Key questions about the HNN inputs include:
 - Q1) How are hypergraph structures expressed?
 - Q2) What input features vector are typically used?

Q2) Node and Hyperedge Features

- Typically, input feature types for HNNs include:
 - external, structural, and identity features.

Q2) Node and Hyperedge Features: External

- External features are information about a hypergraph that is not directly obtained from its structure,
 - encouraging HNNs to capture info. beyond those reflected in structure.

Q2) Node and Hyperedge Features: External (cont.)

- External node features in popular benchmark datasets include:
 - 1) bag-of-words vectors of article nodes, 2) visual object embeddings of image nodes, 3) counts of atoms within molecule nodes, etc.

Q2) Node and Hyperedge Features: Structural

- Structural features are derived from the input hypergraph structure,
 - typically capturing structural proximity or similarity among nodes.
 - The structural features are either local or global.

Structural features

Identity features

Q2) Node and Hyperedge Features: Structural (cont.)

- For local structural features, Liu et al. (2024) leverage the incidence matrix as part of the input features,
 - capturing local neighborhood information for each node.

Q2) Node and Hyperedge Features: Structural (cont.)

- For **global structural features**, Zhang et al. (2020) leverage random-walk-based node features,
 - capturing proximity of each node to all other nodes.

Q2) Node and Hyperedge Features: Identity

- Identity features are indicator vectors uniquely assigned to each node and hyperedge,
 - encouraging HNNs to learn distinct embeddings for each node.

Q2) Node and Hyperedge Features: Identity (cont.)

- Ji et al. (2020) generated identity features via an embedding layer,
 - such that each node and hyperedge has a learnable random feature vector.

Q2) Node and Hyperedge Features (cont.)

- External, structural, and identity features have pros and cons.
 - External features can be highly informative, encouraging HNNs to be more effective. However, obtaining external features can be costly.

Q2) Node and Hyperedge Features (cont.)

- External, structural, and identity features have pros and cons.
 - Structural features are readily obtainable from hypergraph structure.
 However, they may not be scalable for large hypergraphs.

Q2) Node and Hyperedge Features (cont.)

- External, structural, and identity features have pros and cons.
 - Identity features are readily obtainable and scalable.
 However, they may not be applicable to inductive settings where test hypergraphs are different from training hypergraphs.

- The input quality can be critical for effective application of HNNs.
 - The inputs typically include hypergraph structure and (node and/or hyperedge) feature vectors.

Part 2 Summary (cont.)

- Key questions about the HNN inputs include:
 - Q1) How are hypergraph structures expressed?
 - Q2) What input features vector are typically used?

Part 2 Summary (cont.)

We introduce five different ways to express hypergraph structures:

 Clique-, adaptive-, star-, line-, and tensor-expansions. 12345 Clique Star **Tensor Original** hypergraph **Adaptive** Line

Part 2 Summary (cont.)

- Typically, input features for HNNs include:
 - external, structural, and identity features.

