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• The input quality can be critical for effective application of HNNs.

• The inputs typically include hypergraph structure and (node and/or 

hyperedge) feature vectors.

Hypergraph Neural Network Inputs
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• Key questions about the HNN inputs include:

• Q1) How are hypergraph structures expressed?

• Q2) What input features are typically used?

Hypergraph Neural Network Inputs (cont.)
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• Key questions about the HNN inputs include:

• Q1) How are hypergraph structures expressed?

• Q2) What input features vector are typically used?

Hypergraph Neural Network Inputs (cont.)
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• We introduce five different ways to express hypergraph structures:

• Clique-, adaptive-, star-, line-, and tensor-expansions.

Q1) Expressing Hypergraph Structures
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• Clique expansion of a hypergraph is a homogeneous, pair-wise graph.

• It transforms a hyperedge into a clique of pairwise edges.

• Feng et al. (2019) further weigh edges with learnable parameters. 

Q1) Expressing Hypergraph Structures: Clique

Feng et al., Hypergraph Neural Networks, AAAI 2019
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• Adaptive expansion of a hypergraph is a homogeneous, pair-wise graph.

• It transforms a hyperedge into pairwise edge(s) via learnable rules.

• Qian et al. (2023) assign and weigh edges based on node features.

Q1) Expressing Hypergraph Structures: Adaptive

Qian et al., Adaptive Expansion for Hypergraph Learning, 2023
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• Star expansion of a hypergraph is a bipartite, pair-wise graph.

• It transforms a hyperedge into a new node.

• It joins a hyperedge (i.e., new node) and its nodes via pair-wise edges.

Q1) Expressing Hypergraph Structures: Star

Chien et al., You Are Allset: A Multiset Function Framework for Hypergraph Neural Networks, ICLR 2022
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• Line expansion of a hypergraph is a homogeneous, pair-wise graph.

• It transforms a pair of a hyperedge and its node into a new node.

• Pair-wise edges join new nodes sharing a hyperedge or node.

Q1) Expressing Hypergraph Structures: Line

Yang et al. Semi-supervised Hypergraph Node Classification on Hypergraph Line Expansion. CIKM 2022
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• Note that line expansion is different from a (𝑘-)line graph

• 𝒌-Line graph from a hypergraph is a homogeneous, pair-wise graph.

• It transforms a hyperedge into a new node.

• It joins hyperedge (i.e., new node) pairs with at least 𝑘 common nodes

Q1) Expressing Hypergraph Structures: Line

Bermond et al. Line Graphs of Hypergraphs I. Discrete Mathematics 1977
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• A hypergraph can be expressed with a binary tensor 𝓐.

• Tensor order expresses the maximum hyperedge size, and each 

tensor dimension corresponds to node index.

Q1) Expressing Hypergraph Structures: Tensor

Wang et al. T-HyperGNNs: Hypergraph Neural Networks via Tensor Representations. IEEE TNNLS 2024.
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• The discussed approaches are either reductive or non-reductive.

• Reductive approaches yield simple and straight-forward graph structures. 

• However, it may incur information loss after transformation. 

Q1) Expressing Hypergraph Structures (cont.)
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• The discussed approaches are either reductive or non-reductive.

• Non-reductive transformation incur no information loss. 

• However, they are often more complex and, thus, difficult to handle.

Q1) Expressing Hypergraph Structures (cont.)
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• Key questions about the HNN inputs include:

• Q1) How are hypergraph structures expressed?

• Q2) What input features vector are typically used?

Hypergraph Neural Network Inputs (cont.)
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• Typically, input feature types for HNNs include:

• external, structural, and identity features.

Q2) Node and Hyperedge Features
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• External features are information about a hypergraph that is not directly 

obtained from its structure,

• encouraging HNNs to capture info. beyond those reflected in structure.

Q2) Node and Hyperedge Features: External
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• External node features in popular benchmark datasets include:

• 1) bag-of-words vectors of article nodes, 2) visual object embeddings 

of image nodes, 3) counts of atoms within molecule nodes, etc.

Q2) Node and Hyperedge Features: External (cont.)
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• Structural features are derived from the input hypergraph structure,

• typically capturing structural proximity or similarity among nodes.

• The structural features are either local or global.

Q2) Node and Hyperedge Features: Structural
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• For local structural features, Liu et al. (2024) leverage the incidence 

matrix as part of the input features,

• capturing local neighborhood information for each node.

Q2) Node and Hyperedge Features: Structural (cont.)

Liu et al., Hypergraph Transformer for Semi-supervised Classification, ICASSP 2024
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• For global structural features, Zhang et al. (2020) leverage random-

walk-based node features,

• capturing proximity of each node to all other nodes.

Q2) Node and Hyperedge Features: Structural (cont.)

Zhang et al., Hyper-SAGNN: A Self-attention Based Graph Neural Network for Hypergraphs, ICLR 2020
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• Identity features are indicator vectors uniquely assigned to each node 

and hyperedge,

• encouraging HNNs to learn distinct embeddings for each node.

Q2) Node and Hyperedge Features: Identity
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• Ji et al. (2020) generated identity features via an embedding layer,

• such that each node and hyperedge has a learnable random 

feature vector.

Q2) Node and Hyperedge Features: Identity (cont.)

Ji et al. Dual Channel Hypergraph Collaborative Filtering. KDD 2020.
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• External, structural, and identity features have pros and cons.

• External features can be highly informative, encouraging HNNs to be 

more effective. However, obtaining external features can be costly.

Q2) Node and Hyperedge Features (cont.)
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• External, structural, and identity features have pros and cons.

• Structural features are readily obtainable from hypergraph structure. 

However, they may not be scalable for large hypergraphs.

Q2) Node and Hyperedge Features (cont.)
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• External, structural, and identity features have pros and cons.

• Identity features are readily obtainable and scalable. 

However, they may not be applicable to inductive settings where test 

hypergraphs are different from training hypergraphs.

Q2) Node and Hyperedge Features (cont.)
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• The input quality can be critical for effective application of HNNs.

• The inputs typically include hypergraph structure and (node and/or 

hyperedge) feature vectors.

Part 2 Summary
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• Key questions about the HNN inputs include:

• Q1) How are hypergraph structures expressed?

• Q2) What input features vector are typically used?

Part 2 Summary (cont.)
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• We introduce five different ways to express hypergraph structures:

• Clique-, adaptive-, star-, line-, and tensor-expansions.

Part 2 Summary (cont.)
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• Typically, input features for HNNs include:

• external, structural, and identity features.

Part 2 Summary (cont.)
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