

A Tutorial on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide Part 1. Introduction

Sunwoo Kim*

Soo Yong Lee*

Yue Gao

Alessia Antelmi

Mirko Polato

Kijung Shin

Part 1. Introduction

Part 1. Introduction Part 2. Inputs

Part 3. Message **Passing**

Part 4. **Training Strategies** Part 5. **Applications**

Part 6. **Discussions**

The slides are available at https://sites.google.com/view/hnn-tutorial

Presenter

Kijung Shin. Associate Professor @ **KAIST**

Higher-Order Interactions are Everywhere

• [Example 1] Social media group chatting

Higher-Order Interactions are Everywhere (cont.)

• [Example 2] Co-authorship of researchers

Google Scholar

ResearchGate

A Survey on Hypergraph Neural Networks: An In-Depth and Step-by-Step Guide

Sunwoo Kim* KAIST Seoul, Republic of Korea kswoo97@kaist.ac.kr

Alessia Antelmi University of Turin Turin, Italy alessia.antelmi@unito.it Soo Yong Lee* KAIST Seoul, Republic of Korea syleetolow@kaist.ac.kr

Mirko Polato
University of Turin
Turin, Italy
mirko.polato@unito.it

Yue Gao Tsinghua University Beijing, China gaoyue@tsinghua.edu.cn

Kijung Shin[†] KAIST Seoul, Republic of Korea kijungs@kaist.ac.kr

HYPEBOY: GENERATIVE SELF-SUPERVISED REPRESENTATION LEARNING ON HYPERGRAPHS

Sunwoo Kim[†] Shinhwan Kang[†] Fanchen Bu[‡] Soo Yong Lee[†] Jaemin Yoo[‡] Kijung Shin[†] [‡] Kim Jaechul Graduate School of AI, [‡] School of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) {kswoo97, shinhwan.kang, boqvezen97, syleetolow, jaemin, kijungs}@kaist.ac.kr

Higher-Order Interactions are Everywhere (cont.)

• [Example 3] Co-purchasing of items

Higher-Order Interactions are Everywhere (cont.)

• [Example 4] Interactions of proteins

Johnson&Johnson

Hypergraphs Model Higher-Order Interactions (cont.)

- Higher-order interactions are widely modeled using hypergraphs.
 - A hypergraph consists of a node set and a hyperedge set.

Co-Authorship

Hypergraphs Model Higher-Order Interactions (cont.)

- Higher-order interactions are widely modeled using hypergraphs.
 - A hypergraph consists of a node set and a hyperedge set.

Hypergraphs Model Higher-Order Interactions (cont.)

- Higher-order interactions are widely modeled using hypergraphs.
 - A hypergraph consists of a node set and a hyperedge set.

- There are various machine learning tasks on hypergraphs.
 - The first example is a node classification task.

Social media hypergraph

- There are various machine learning tasks on hypergraphs.
 - The first example is a node classification task.

Which club does each user support?

- There are various machine learning tasks on hypergraphs.
 - The first example is a **node classification** task.

The node classification task formalizes this user profiling.

- There are various machine learning tasks on hypergraphs.
 - The second example is a hyperedge prediction task.

- There are various machine learning tasks on hypergraphs.
 - The second example is a hyperedge prediction task.

Would these three metabolites react together?

Metabolic reaction hypergraph

- There are various machine learning tasks on hypergraphs.
 - The second example is a hyperedge prediction task.

The hyperedge prediction task formalizes this reaction prediction.

- There are various machine learning tasks on hypergraphs.
 - More examples include anomaly detection, ranking, and alignment.

Hypergraph Neural Network (HNN)

 Hypergraph neural networks (HNNs) are family of neural networks for learning hypergraphs to solve diverse downstream tasks.

Node (and hyperedge) embeddings

18

^{*} Note: Hyperedge features can also given as the input.

Hypergraph Neural Network (cont.)

 Hypergraph neural networks (HNNs) are state-of-the-art models for many hypergraph downstream tasks.

Hypergraph Node Classification Leader Board

Dataset: DBLP

1. HNN

2. GNN

Dataset: Trivago

1. HNN

2. **SVM**

Dataset: House

1. HNN 🧡

2. GNN

•••

Why Hypergraph Neural Networks?

- For hypergraph learning, we can also use graph neural networks:
 - [Step 1] Express higher-order interactions with a pairwise graph.
 - [Step 2] Utilize graph neural networks (GNN) on the pairwise graph.

Hypergraph

Why Hypergraph Neural Networks? (cont.)

- For hypergraph learning, we can also use graph neural networks:
 - [Step 1] Express higher-order interactions with a pairwise graph.
 - [Step 2] Utilize graph neural networks (GNN) on the pairwise graph.

Why Hypergraph Neural Networks? (cont.)

- For hypergraph learning, we can also use graph neural networks:
 - [Step 1] Express higher-order interactions with a pairwise graph.
 - [Step 2] Utilize graph neural networks (GNN) on the pairwise graph.

Why Hypergraph Neural Networks? (cont.)

 However, expressing higher-order interactions with a pairwise graph may cause an information loss [Zhou et al., 2006].

• This information loss can result in a significant performance degradation.

Node classification performance on hypergraph benchmark datasets

* Results are from [Chien et al., 2022].

24

Tutorial Overview

• In this tutorial, we provide an overview of how hypergraph neural networks are designed, trained, and practically utilized.

Design choice

Training strategy

Application

• The remaining part of our tutorial is divided into the five parts.

- [Part 2] We cover inputs of hypergraph neural networks.
 - 2.1. How are hypergraph structures expressed?
 - 2.2. What input node and hyperedge features are typically used?

- [Part 3] We cover message passing of hypergraph neural networks.
 - 3.1. Whose messages to aggregate
 - 3.2. What messages to aggregate
 - 3.3. How to aggregate messages

- [Part 4] We cover training strategies of hypergraph neural networks.
 - 4.1. Task-agnostic training
 - 4.2. Task-targeted training

- [Part 5] We cover practical applications of hypergraph neural networks.
 - **5.1.** Recommender system
 - 5.2. Bioinformatics and medical science
 - 5.3. Time series analysis
 - 5.4. Computer vision

- [Part 6] We cover discussions regarding hypergraph neural networks.
 - 6.1. Hypergraph neural network theory
 - 6.2. Advantages of hypergraph neural networks
 - 6.3. Hypergraph neural networks for complex hypergraphs

