HashNWalk: Hash and Random Walk Based Anomaly Detection in Hyperedge Streams

Geon Lee Minyoung Choe Kijung Shin
Overview

1. Introduction
2. Backgrounds
3. Algorithms
4. Experiments
5. Conclusion
Hypergraphs are Everywhere

- **Hypergraphs** consist of nodes and hyperedges.
- Each **hyperedge** is a subset of any number of nodes.
Hypergraphs Evolve Over Time

- In many real-world scenarios, hypergraphs evolve over time.
- A hyperedge stream \(\{(e_i, t_i)\}_{i=1}^{\infty} \) is a sequence of hyperedges.

\[
\begin{align*}
e_1 &= (\tilde{e}_1, t_1=7) \\
e_2 &= (\tilde{e}_2, t_2=10) \\
e_3 &= (\tilde{e}_3, t_3=11) \\
e_4 &= (\tilde{e}_4, t_4=12)
\end{align*}
\]

Set of nodes

Timestamp
Anomalies in Hypergraphs

- We focus on two intuitive aspects: **unexpectedness** and **burstiness**.
- **Unexpected hyperedges** consist of unnatural combinations of nodes.
- **Bursty hyperedges** repeat in a short period of time.

$$e_1 = (\tilde{e}_1, t_1=7)$$
$$e_2 = (\tilde{e}_2, t_2=10)$$
$$e_3 = (\tilde{e}_3, t_3=11)$$
$$e_4 = (\tilde{e}_4, t_4=12)$$
Problem Definition

• We formalize the **hyperedge anomaly detection** problem as follow:

Given a stream $\mathcal{E} = \{(e_i, t_i)\}_{i=1}^{\infty}$ of hyperedges, detect anomalous hyperedges, whose **structural** or **temporal** properties deviate from general patterns, in **near real-time** using **constant space**.
Hypergraph Random Walk

- Typically, a random walk on a hypergraph G is formulated as:

 If the current node is u,
 1. Select a hyperedge e that contains node u (i.e., $u \in e$) with probability proportional to the weight $\omega(e)$.
 2. Select a node $v \in e$ with probability uniformly at random.
 3. Walk to node v.

$$u$$

Sample a hyperedge e s.t. $u \in e$.

$$e$$

Sample a node $v \in e$ uniformly at random.

$$v$$
Hypergraph Random Walk (cont.)

- However, this is **equivalent** to the random walks on **clique expansion**.
- Clique expansion suffers from the **loss of information** on high-order interactions.

Random walk on a **hypergraph** \[\equiv \] Random walk on a **clique expansion**
Hypergraph Random Walk (cont.)

- **Edge-dependent vertex weight**-based random walk is designed as:

 If the current node is u,

 1. Select a hyperedge e that contains node u (i.e., $u \in e$) with probability proportional to the weight $\omega(e)$.
 2. Select a node $v \in e$ with probability uniformly at random.
 3. Walk to node v.

 Proportional to the edge-dependent vertex weight $\gamma_e(v)$.
HashNWalk

• We propose HashNWalk, a fast and space-efficient algorithm for detecting anomalies in a hyperedge stream.

• We maintain a hypergraph summary matrix \tilde{P} where $\tilde{P}_{A,B}$ is the random walk transition probability from supernode A to supernode B.
HashNWalk (cont.)

- Once the hypergraph summary $\tilde{\mathcal{P}}$ is updated at time t, it is compared with the previous summary ($< t$).
- We define scoring functions score_{U} and score_{B} to detect unexpected and bursty hyperedges, respectively.
Experimental Settings

- We use various real-world and semi-real hypergraphs to evaluate HashNWalk.
Experimental Results

- **HashNWalk** is **accurate** and **fast**.
 - 3 datasets: Transaction (real-world), SemiU (semi-real), and SemiB (semi-real)
 - 4 competitors: SedanSpot, MIDAS, F-FADE, and LSH
Experimental Results (cont.)

- Case study in DBLP hypergraph
 - **HashNWalk** captures different co-working styles of researchers.

Some authors deviate from the general pattern.

Dr. Fu and Dr. Sakamoto differ in their co-working patterns.
Experimental Results (cont.)

- Case study in **cite-patent hypergraph**
 - **HashNWalk** captures anomalous patents.

![Graph showing unexpected and bursty hyperedges](image)

Unexpected & bursty hyperedges have different properties.

Patent 1 cited multiple patents that have not been cited together before.
Patents 5 – 7 cited almost the same set of patents.
Conclusion

• We propose **HashNWalk** an online anomaly detector for hyperedge streams.

HashNWalk is:

- **Fast**: It takes near real-time to process each new hyperedge.
- **Space Efficient**: The size of the hypergraph summary is a predefined constant.
- **Accurate**: It successfully detects anomalous hyperedges in real-world hypergraphs.

Code & datasets: https://github.com/geonlee0325/HashNWalk
HashNWalk: Hash and Random Walk Based Anomaly Detection in Hyperedge Streams

Geon Lee

Minyoung Choe

Kijung Shin