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Hypergraphs are Everywhere

• Hypergraphs consist of nodes and hyperedges.

• Each hyperedge is a subset of any number of nodes.

Backgrounds Algorithms Experiments

Collaborations of Researchers Co-purchases of Items Joint Interactions of Proteins

ConclusionIntroduction
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Hypergraphs Evolve Over Time

• In many real-world scenarios, hypergraphs  evolve over time.

• A hyperedge stream 𝒆𝒊, 𝒕𝒊 𝒊=𝟏
∞ is a sequence of hyperedges.
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Anomalies in Hypergraphs

• We focus on two intuitive aspects: unexpectedness and burstiness. 

• Unexpected hyperedges consist of unnatural combinations of nodes.

• Bursty hyperedges repeat in a short period of time. 

Backgrounds Algorithms Experiments ConclusionIntroduction
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Problem Definition 

• We formalize the hyperedge anomaly detection problem as follow:

Given a stream ℰ = 𝑒𝑖 , 𝑡𝑖 𝑖=1
∞ of hyperedges, detect anomalous hyperedges, 

whose structural or temporal properties deviate from general patterns, in 

near real-time using constant space. 

Backgrounds Algorithms Experiments ConclusionIntroduction
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𝑣

Hypergraph Random Walk

• Typically, a random walk on a hypergraph 𝑮 is formulated as:

If the current node is 𝑢,

① Select a hyperedge 𝑒 that contains node 𝑢 (i.e., 𝑢 ∈ 𝑒) with probability 

proportional to the weight 𝜔 𝑒 .

② Select a node 𝑣 ∈ 𝑒 with probability uniformly at random.

③ Walk to node 𝑣.

Backgrounds Algorithms Experiments ConclusionIntroduction

𝑢
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hyperedge 𝑒
s.t. 𝑢 ∈ 𝑒.

𝑒
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𝑣 𝑣

Hypergraph Random Walk (cont.)

• However, this is equivalent to the random walks on clique expansion.

• Clique expansion suffers from the loss of information on high-order interactions.

Backgrounds Algorithms Experiments ConclusionIntroduction

𝑢 𝑢=

Random walk on a hypergraph Random walk on a clique expansion
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𝑣

Hypergraph Random Walk (cont.)

• Edge-dependent vertex weight-based random walk is designed as:

If the current node is 𝑢,

① Select a hyperedge 𝑒 that contains node 𝑢 (i.e., 𝑢 ∈ 𝑒) with probability 

proportional to the weight 𝜔 𝑒 .

② Select a node 𝑣 ∈ 𝑒 with probability uniformly at random.

③ Walk to node 𝑣.

Backgrounds Algorithms Experiments ConclusionIntroduction

𝑢
Sample a 

hyperedge 𝑒
s.t. 𝑢 ∈ 𝑒.

𝑒

Sample a 
node 𝑣 ∈ 𝑒 with

probability ∝ 𝜸𝒆 𝒗 .

Proportional to the edge-dependent vertex weight 𝜸𝒆 𝒗



Simple Epidemic Models with Segmentation Can Be Better than Complex OnesI 2021 10IJCAI 2022 HashNWalk: Hash and Random Walk Based Anomaly Detection in Hyperedge Streams

HashNWalk

• We propose HashNWalk, a fast and space-efficient algorithm for detecting 

anomalies in a hyperedge stream. 

• We maintain a hypergraph summary matrix ෨P where ෨PA,B is the random walk 

transition probability from supernode A to supernode B.

Backgrounds Algorithms Experiments ConclusionIntroduction

A

B A

C

B

B
C
A C

e1

e2 e3

e4

a

b d

e

c

g
h

f

i
k

j l
e1

e2 e3

New hyperedge e4

B

C
Summarize e4
via hashing

B

A

B

C

A B C

Update the 
summary matrix

Hypergraph summary matrix ෨P



Simple Epidemic Models with Segmentation Can Be Better than Complex OnesI 2021 11IJCAI 2022 HashNWalk: Hash and Random Walk Based Anomaly Detection in Hyperedge Streams

HashNWalk (cont.)

• Once the hypergraph summary ෨P is updated at time 𝑡, it is compared with the 

previous summary (< 𝑡).

• We define scoring functions scoreU and scoreB to detect unexpected and 

bursty hyperedges, respectively. 

Backgrounds Algorithms Experiments ConclusionIntroduction
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Experimental Settings

• We use various real-world and semi-real hypergraphs to evaluate HashNWalk.
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Experimental Results

• HashNWalk is accurate and fast. 

• 3 datasets: Transaction (real-world), SemiU (semi-real), and SemiB (semi-real)

• 4 competitors:  SedanSpot, MIDAS, F-FADE, and LSH

Backgrounds Algorithms Experiments ConclusionIntroduction
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Experimental Results (cont.)

• Case study in DBLP hypergraph

• HashNWalk captures different co-working styles of researchers.
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Some authors deviate from 
the general pattern.

Dr. Fu and Dr. Sakamoto differ in 
their co-working patterns. 
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Experimental Results (cont.)

• Case study in cite-patent hypergraph

• HashNWalk captures anomalous patents.
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Patent 1 cited multiple patents that have not been cited together before.
Patents 5 – 7 cited almost the same set of patents. 

Unexpected & bursty hyperedges 
have different properties.
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Conclusion

Backgrounds Algorithms Experiments ConclusionIntroduction

• We propose HashNWalk an online anomaly detector for hyperedge streams.

Code & datasets: https://github.com/geonlee0325/HashNWalk

HashNWalk is:

✓ Fast: It takes near real-time to process each new hyperedge.

✓ Space Efficient: The size of the hypergraph summary is a predefined constant. 

✓ Accurate: It successfully detects anomalous hyperedges in real-world hypergraphs.

https://github.com/geonlee0325/HashNWalk
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