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Abstract What kind of macroscopic structural and dynamical patterns can we observe in
real-world hypergraphs? What can be underlying local dynamics on individuals, which ulti-
mately lead to the observed patterns, beyond apparently random evolution?

Graphs, which provide effective ways to represent pairwise interactions among enti-
ties, fail to represent group interactions (e.g., collaborations of three or more researchers,
etc.). Regarded as a generalization of graphs, hypergraphs allowing for various sizes of
edges prove fruitful in addressing this limitation. However, the increased complexity makes
it challenging to understand hypergraphs as thoroughly as graphs.

In this work, we closely examine seven structural and dynamical properties of real hy-
pergraphs from six domains. To this end, we define new measures, extend notions of com-
mon graph properties to hypergraphs, and assess the significance of observed patterns by
comparison with a null model and statistical tests.

We also propose HYPERFF, a stochastic model for generating realistic hypergraphs. Its
merits are three-fold: (a) Realistic: it successfully reproduces all seven patterns, in addition
to five patterns established in previous studies, (b) Self-contained: unlike previously pro-
posed models, it does not rely on oracles (i.e., unexplainable external information) at all,
and it is parameterized by just two scalars, and (c) Emergent: it relies on simple and inter-
pretable mechanisms on individual entities, which do not trivially enforce but surprisingly
lead to macroscopic properties. While HYPERFF is mathematically intractable, we provide
theoretical justifications and mathematical analysis based on its simplified version.
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Fig. 1 An example hypergraph that represents co-authorships among five authors (A, B, C, D, and E), using
four hyperedges (e1, e2, e3, and e4). Note that different hyperedges may contain different numbers of nodes,
while edges in ordinary graphs contain exactly two nodes.

1 Introduction

Which structural patterns do real-world hypergraphs have, and how do they evolve over
time? Are there simple mechanisms on individual nodes that these patterns emerge from?

Group interactions among multiple objects, which are distinguished from pair-wise in-
teractions between two objects, naturally arise in various domains. Collaborations of re-
searchers, compositions of chemical compounds, interactions of proteins, group discussions
on online platforms are typical examples of group interactions among two or more objects.

Hypergraphs are one of the most popular data structures for representing such group in-
teractions in the real world. A hypergraph consists of a set of nodes and a set of hyperedges,
where each hyperedge is a non-empty subset of nodes of any size. Figure 1 shows how co-
authorships can naturally be modeled as a hypergraph. For each publication, the authors of
the publication form a hyperedge together in the hypergraph.

Mining structural and dynamical patterns in such real-world hypergraphs is crucial to
better understand and make a better use of them. For ordinary graphs, which are a special
case of hypergraphs where all hyperedges are of size two, tremendous efforts have been
made to discover patterns and they have been used for various purposes, including the fol-
lowing examples:

– Graph Generation and Sampling: Patterns in real-world graphs have been used to
evaluate the quality of graph generation and sampling. For example, Leskovec et al.
(2010) examined whether well-known structural and dynamical patterns (e.g., heavy-
tailed degree distributions (Barabási and Albert, 1999) and small diameters (Watts and
Strogatz, 1998)) also appear in synthetic graphs generated by different graph generative
models to evaluate how realistic they are. Similarly, Leskovec and Faloutsos (2006) used
such patterns to evaluate how representative subgraphs, which are obtained by different
sampling methods, are. Recently, similar approaches were employed to evaluate hyper-
graph generation (Do et al., 2020; Lee et al., 2021) and representative sampling from
hypergraphs (Choe et al., 2022).

– Efficient Algorithm Design: Tsourakakis (2008) designed scalable triangle counting
methods that exploit the skewed distributions of eigenvalues (Faloutsos et al., 1999) of
the adjacency matrices of real-world graphs. Kang et al. (2011) proposed a distributed al-
gorithm for finding connected components in massive graphs based on their small diam-
eters (Watts and Strogatz, 1998) of real-world graphs. Salihoglu and Widom (2013) de-
veloped optimization schemes motivated by heavy-tailed degree distributions (Barabási
and Albert, 1999) for their distributed graph processing system.

– Anomaly Detection: Finding structural patterns is a crucial step for identifying anoma-
lies, which often deviate from the patterns. For example, Shin et al. (2018) discovered
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Fig. 2 HYPERFF generates realistic hypergraphs. In the first row, we observe the heavy-tailed distribu-
tions of (S1) degrees, (S2) hyperedge sizes, (S3) intersection sizes, and (S4) singular values of incidence
matrices; and (T1) diminishing overlaps of hyperedges, (T2) increasing edge density (more clear in the other
datasets), and (T3) shrinking diameter in real-world hypergraphs. In the second row, HYPERFF successfully
reproduces all the seven patterns. See Sections 4 and 6 for details.

empirical patterns regarding the relation between degrees and core numbers of nodes
and demonstrated that nodes deviating from the patterns correspond to various types of
anomalies, including a ‘follower-boosting’ service on Twitter and ‘copy-and-paste’ bib-
liography. Moreover, Akoglu et al. (2010) detected anomalies in weighted graphs based
on various power-law patterns on ego networks.

Recently, several studies have been conducted to discover structural patterns in real-
world hypergraphs. Do et al. (2020) decomposed 13 real-world hypergraphs into multiple
ordinary graphs and examined whether the decomposed graph obey structural patterns that
that have appeared in the graph literature. Lee et al. (2021, 2020); Lee and Shin (2021)
explored overlapping patterns of hyperedges, and to this end, proposed several principled
measures, including hypergraph motifs. Benson et al. (2018a) extended the triadic closure
theory to hypergraphs and examined it in real-world hypergraphs. Benson et al. (2018b)
also investigated repetitive patterns of hyperedges. Despite these recent efforts, structural
patterns in real-world hypergraphs are largely unexplored compared to those in real-world
graphs.

Driven by the importance of hypergraphs, we scrutinize additional four structural and
three dynamical patterns inherent in real-world hypergraphs at the macroscopic level. To
this end, we come up with measures to capture new aspects, revisit well-known properties
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of ordinary graphs, and study their hypergraph analogs. Some of the patterns are natural ex-
tensions from well-known properties of graphs (Barabási and Albert, 1999; Faloutsos et al.,
1999; Leskovec et al., 2007), and we examine the others with a focus on hyperedges. Note
that hyperedges are the basic unit of hypergraphs that distinguishes hypergraphs from ordi-
nary graphs, and they represent group interactions, which we aim to understand ultimately
through hypergraph modeling. We also thoroughly validate the significance of each observed
pattern by relying on qualitative and quantitative analyses.

The established structural and dynamical patterns constitute a meaningful step toward
advancing the partial understanding of real-world hypergraphs (see Table 2). For structural
patterns, we suggest that distributions of (S1) degrees, (S2) hyperedge sizes, (S3) intersec-
tion sizes of hyperedges, and (S4) singular values of incidence matrices fall under the class
of heavy-tailed distributions, of which the first three and the last are close to a truncated
power-law and log-normal distribution, respectively, among probable candidates. For dy-
namical patterns, we observe that, over time, (T1) the overlapping of hyperedges becomes
less frequent, (T2) the number of hyperedges grows faster than that of nodes (i.e., densifica-
tion), and (T3) the distances between nodes decrease (i.e., shrinking diameter).

In addition to the aforementioned applications, patterns provide insights into developing
realistic generative models. For ordinary graphs, generative models have been extensively
studied, and many of them are inspired by empirical patterns (Barabási and Albert, 1999;
Leskovec et al., 2010, 2007). Reproducing empirical patterns by designing simple generative
model is useful to test and confirm our understanding of their underlying mechanisms. More-
over, by producing realistic synthetic graphs of any desired size, the generative models are
used for creating large-scale benchmark datasets (Murphy et al., 2010) and anonymization of
graphs with sensitive information (Zhang et al., 2020). Together with patterns in real-world
hypergraphs, several hypergraph generation models have been suggested for reproducing (a)
several structural patterns in decomposed graphs (Do et al., 2020), (b) repetitive patterns of
hyperedges (Benson et al., 2018b), and (c) overlapping patterns of hyperedges (Lee et al.,
2021). These hypergraph generative models, however, heavily rely on unrealistic oracles or
external information, including distributions of node degree and hyperedge size.

Using the seven discovered patterns as criteria, we also propose a stochastic model,
namely HYPERFF (Hypergraph Forest Fire), for realistic hypergraph generation. Motivated
by the forest fire model (Leskovec et al., 2007), which was successful in reproducing struc-
tural and dynamical patterns of real-world graphs, we also apply the ideal of simulating
‘forest fire’ to the generation of realistic hypergraphs. Specifically, we eliminate unneces-
sary complexity in the forest fire model and extend it to generate hyperedges, i.e., subsets
of any number of nodes. In addition, we develop its simplified version, namely CGAH
(Community Guided Attachment for Hypergraphs), to provide theoretical justifications and
mathematical analyses.

The main idea behind CGAH is to assume hierarchical communities, which are perva-
sive in real-world graphs (Girvan and Newman, 2002; Sales-Pardo et al., 2007) and have
been exploited by graph generation models (Leskovec et al., 2007, 2010). In order to make
the model tractable, we make two assumptions. First, nodes in the generated hypergraph
forms a hierarchy in the form of a perfect b-ary tree. Second, the closer the tree distance
between two nodes is, the higher the probability that they from hyperedges together is.
Specifically, in CGAH, each node in the generated hypergraph corresponds to a node in the
b-ary tree, and the nodes at depth t are added as leaf nodes at each time t. Then, each leaf
node forms a size-2 hyperedge with each of the other nodes, which we call an ambassador
node, independently with a probability decreasing exponentially with tree distance. Then,
each hyperedge is expanded by adding each of the other nodes independently with a prob-
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ability decreasing exponentially with tree distance from the ambassador node. For CGAH,
we theoretically analyze its properties related to densification and heavy-tailed distributions
of degrees. While CGAH is mathematically tractable, empirically, it shows limitations in
reproducing realistic degree distributions and shrinking diameter.

The aforementioned limitations of CGAH are addressed by HYPERFF. In HYPERFF,
where a hypergraph grows with new nodes, each new node goes through two stages, which
are similar to those in CGAH. In the first stage, an ambassador node is randomly chosen and
a ‘forest fire’ starts there. The forest fire is spread through existing hyperedges stochastically,
and the new node forms a hyperedge with each of the burned nodes. In the second stage,
each new hyperedge expands similarly through a forest fire. The benefits of HYPERFF are
three-fold. First, HYPERFF successfully reproduces all seven observed patterns, whereas
previously proposed models for the growth of hypergraphs (Benson et al., 2018b; Do et al.,
2020) focus only on a narrow scope of patterns. We also apply the decomposition technique
(Do et al., 2020) to generated hypergraphs and confirm the five known properties of decom-
posed graphs. Second, while the previous models rely on unexplainable external information
(e.g., the number of new hyperedges along with each new node (Do et al., 2020) and the size
of each new hyperedge (Benson et al., 2018b; Do et al., 2020) with the number of new nodes
in it (Benson et al., 2018b)), HYPERFF requires no such oracles, being parameterized sim-
ply by two scalars: burning and expanding probabilities. Lastly, HYPERFF leads to a deeper
understanding of complex systems, giving a simple underlying mechanism that imposes the
non-trivial macroscopic patterns.

As in the exploration of real hypergraphs, we validate HYPERFF through quantitative
and qualitative analyses. We also explore its parameter space and suggest values of param-
eters for generating realistic hypergraphs.

Our contributions are summarized as follows1:

– Establishment of structural and dynamical patterns in real-world hypergraphs.
1. Structural: Heavy-tailed distributions of degrees, hyperedge sizes, intersection sizes,

and singular values of incidence matrices.
2. Dynamical: Diminishing overlaps of hyperedges, densification, and shrinking di-

ameter.
– Stochastic model HYPERFF for hypergraph generation.

1. Realistic: It exhibits all seven observed patterns and the five structural patterns re-
ported in a previous study (Do et al., 2020).

2. Self-contained: It does not rely on oracles or external information, and it is param-
eterized by just two scalars.

3. Emergent: Its simple and interpretable mechanisms on individual nodes non-trivially
produce the examined patterns at the macroscopic level.

Reproducibility: We make the source code and datasets used in this work publicly available
at https://github.com/jihoonko/HyperFF.

1 This work is an extended version of (Kook et al., 2020), which was presented at the 20th IEEE Inter-
national Conference on Data Mining. In this extended version, we introduce a simple version of HYPERFF,
and based on it, we theoretically justify densification and heavy-tailed degree distributions. For additional
experiments, we test the stability of HYPERFF (Figure 9 in Section 6.2), examine the overlapping patterns of
hyperedges (Figure 11 in Section 6.2), and the occurrences of 26 hypergraph motifs in hypergraphs generated
by HYPERFF (Figures 12 and 13 in Section 6.2). Additionally, we analyze the effect of the parameters p and
q on the structures and dynamics of what HYPERFF generates (Figures 14 and 15 in Section 6.3). Lastly, we
perform an ablation study, where we take six variants of HYPERFF into consideration (Figures 16 and 17 in
Section 6.4).

https://github.com/jihoonko/HyperFF
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In Section 2, we survey a line of research on properties and generative models of real-
world (hyper)graphs. In Section 3, we introduce some notations and concepts. In Section 4,
we examine the structural and dynamical patterns in real-world hypergraphs. In Section 5,
we describe a simple tractable model, CGAH, and theoretically analyze its properties re-
lated to some empirical patterns in Section 4. In Section 6, we propose our ultimate model,
HYPERFF, and validate it through extensive experiments. We conclude our work in Sec-
tion 7.

2 Related Work

In this section, we review previous studies on structural and dynamical patterns in real-world
hypergraphs and hypergraph generation models based on the patterns.

Benson et al. (2018b) investigate dynamical patterns in sequences of hyperedges over
time, or equivalently sequences of sets. According to their observations, supersets or the
exactly same sets of previously appearing sets are likely to (re-)appear in the sequences, and
newly appearing sets are more likely to be similar with recently appearing sets. Based on
these observations, they propose Correlated Repeated Unions (CRU), which is a stochastic
model for generating a sequence of sets. The model, however, assumes an unrealistic oracle
that provides (a) the size of the next hyperedge and (b) the number of new nodes in it.
While they focus on patterns at the hyperedge level, our work examines also hypergraph-
level statistics (e.g., diameter and density) for macroscopic dynamical patterns. Moreover,
our generative model, HYPERFF, does not rely on such an oracle.

Lee et al. (2020) focus on local connectivity patterns of hyperedges. They propose 26
hypergraph motifs (h-motifs), which describe all possible connectivity patterns among three
connected hyperedges. Based on the occurrences of each of the 26 h-motifs, they define the
characteristic profile (CP) of a hypergraph as the normalized significance of each h-motif’s
occurrences, and they show that real-world hypergraphs from the same domain tend to have
simlar CPs, while CPs of hypergraphs from different domains are distinct. Lee and Shin
(2021) additionally consider the relative order of hyperedges that form each h-motif, and
based on the it, propose 96 temporal hypergraph motifs (tf-motifs) to describe connectivity
patterns among three connected temporal hyperedges. They also demonstrate that the fre-
quencies of the 96 tf-motifs associated with each (potential) hyperedge are useful features
for predicting future hyperedges. Our work also examines structural and dynamical patterns
related to the connectivity of hyperedges. While these studies focus on microscopic patterns
in the scope of three connected hyperedges, ours include macroscopic patterns related to the
density, diameter, and singular values of hypergraphs. Moreover, while (temporal) hyper-
graph motifs describe connectivity patterns based simply on whether hyperedges intersect
or not, some of our patterns are about the numbers of nodes in intersections, i.e., the sizes
of interactions.

Lee et al. (2021) examine overlapping patterns of hyperedges. They first show that the
number of hyperedges overlapping at each pair or triple follows heavy-tailed distributions.
They also demonstrate that the hyperedges at the ego network of each node tend to over-
lap substantially. Lastly, they show that hyperedges tend to consist of structurally similar
nodes. They verify the significance of these findings through a comparison with randomized
hypergraphs. Based on the observed patterns, they propose HYPERLAP, a generator for hy-
pergraphs that exhibit the patterns. HYPERLAP assumes hierarchical communities of nodes
and forms each hyperedge within a community with probability depending on the size of
the community. It should be noticed that CGAH, one of our generative models, also as-
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sumes explicit hierarchical communities, as HYPERLAP does. While HYPERLAP generates
static hypergraphs, requiring in advance extra information (spec., a node-degree distribu-
tion, a hyperedge-size distribution, and hyperedge-formation probabilities for communities
of different sizes), our models generate dynamic hypergraphs that grow over time, without
requiring such extra information.

Instead of dealing directly with the complexity of hypergraphs, Benson et al. (2018a) and
Do et al. (2020) reduce hypergraphs to a set of ordinary graphs, with or without information
loss, and then identify the properties of the graphs, using well-defined graph measures. The
most basic way is to convert a hypergraph into a graph is clique expansion. The clique-
expanded graph of a hypergraph is obtained by replacing each hyperedge with a clique of
the nodes in the hyperedge.

Benson et al. (2018a) examine open and closed triangles on clique-expanded graphs
and their extensions to larger simplices. An open triangle consists of three nodes where,
(a) for each pair of the nodes, there exists a hyperedge containing the pair but (b) there is
no hyperdge containing all the three nodes. On the other hand, a closed triangle consists of
three nodes that co-appear in one or more hyperedges. As a structural pattern, they show
that local ego networks can be grouped well according to their domains based on the the
fractions of open triangles and average degrees. As a dynamical pattern, they analyze the
how the probability of an open triangle to be closed depends on the edge density between the
nodes forming the triangle. They focus on local patterns at triangles or small-size simplices,
compared to our work, which pays more attention to global patterns at the hypergraph level.

Do et al. (2020) generalizes clique expansion to multi-level decomposition so that each
n-level decomposed graph captures the interactions between the subsets of n nodes. We pro-
vide the precise definition in Section 6.2. Using the notion, they show that the n-level decom-
posed graphs obtained from real hypergraphs retain five structural patterns: giant connected
components, heavy-tailed degree distributions, small diameters, high clustering coefficients,
and skewed singular-value distributions. Based on the patterns, they extend the preferential
attachment (Barabási and Albert, 1999) model to hypergraphs. In their model, called HY-
PERPA, for each new node, the group of nodes forming a hyperedge with the new node is
chosen randomly with probability proportional to the number of existing hyperedges that
contain the group. They demonstrate that HYPERPA successfully generates hypergraphs
whose n-decomposed graphs exhibit the five empirical structural patterns, However, as HY-
PERLAP does, HYPERPA also relies on external information (sepc., the distributions of
hyperedge sizes and the number of hyperedges containing each new node), which should
given as inputs. Our ultimate model, HYPERFF, is able to generate hypergraphs whose n-
decomposed graphs retain all the five patterns, without relying on such external information,
as shown in Section 6.2.

In summary, there has been recent attention in structural and dynamical patterns in real-
world hypergraphs, and together with the patterns, several hypergraph generative models
have been developed to reproduce them. However, the generative models heavily rely on
unrealistic oracles and/or external information. As described above, our structural and dy-
namical patterns, which are presented in Section 4, are complementary to these previously
reported patterns, and our generative models do not require any oracles or considerable ex-
ternal information to reproduce the patterns. In addition to our patterns, those previously
reported in Do et al. (2020); Lee et al. (2020, 2021) are used to verify our models in Sec-
tion 6.2.
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3 Preliminaries

In this section, we introduce some basic notations and important concepts used throughout
the paper.
Hypergraph. A hypergraph G = (V,E) consists of a set V of nodes and a set E ⊆ 2V of
hyperedges. Each hyperedge e is a subset of V , and we define the size of a hyperedge e as
the number |e| of nodes in the hyperedge. Note that conventional graphs are a special case of
hypergraphs where the sizes of all hyperedges are two. The degree of a node v, denoted by
deg(v), is defined as the number of hyperedges containing v. The neighborhood of a node
v, denoted by N(v), is defined as the set of neighbors, each of which is contained together
with v in one or more hyperedges.
Incidence Matrix. The incidence matrix I ∈ {0,1}|V |×|E| of a graph G = (V,E) indicates
the membership of the nodes V in the hyperedges E. Each (i, j)-th entry Ii j of I is 1 if and
only if the jth hyperedge in E contains the ith node in V .
Effective Diameter. A path in a hypergraph is a sequence of hyperedges in which any two
immediate hyperedges have a non-empty intersection and the length of the path is the length
of the sequence. The distance between two nodes is defined as the length of a shortest
path in which the first and the last hyperedges include one of the two nodes and the other,
respectively. The diameter of the hypergraph is a maximum distance between any pairs
of nodes. Since any disconnected nodes in a hypergraph makes the diameter infinite, we
consider the effective diameter Leskovec et al. (2007), which is defined as the smallest d
such that the paths of length at most d connect 90% of all reachable pairs of nodes.2

Heavy-tailed Distribution. Tails of heavy-tailed distributions decay slower than exponen-
tial distributions (i.e., they are not exponentially bounded). Power-law distributions are
typical examples of the heavy-tailed distributions. For instance, a discrete power-law dis-
tribution P of a random variable X satisfies, possibly in a limited range, the relationship
P(X) ∝ 1/|X |α for some constant α > 0. Note that this relationship appears as a straight
line on the log-log plot of the probability distribution over the range of the random variable.
Goodness of Fit. It is difficult to argue that an empirical dataset genuinely follows a tar-
get probability distribution, since other statistical models unexamined yet may describe the
dataset with a better fit. Thus, it is more sound to rely on comparative tests which com-
pare the goodness of fit of candidate distributions Alstott and Bullmore (2014); Clauset
et al. (2009). We especially utilize the log likelihood-ratio test Woolf (1957); McLachlan
(1987) to this end. When a dataset D with two candidate distributions A and B is given, the
test computes log

(
LA(D)
LB(D)

)
, where LA(D) stands for the likelihood of the dataset D with

respect to the candidate distribution A. Positive ratios imply the distribution A is a better
description available for the dataset between the two distributions, and negative ratios imply
the opposite.
Hypergraph Sequence. Allowing for multiple hyperedges created at the same time, we use
es

t to denote the set of hyperedges created at time t and et to denote a hyperedge in es
t . Given a

sequence {es
t }T

t=1 of a set of time-stamped hyperedges for some T > 0, we define a sequence
{Gt = (Vt ,Et)}T

t=1 of hypergraphs evolving under the hyperedge sequence, where the nodes
Vt of Gt is

⋃t
i=1
⋃

es
i and the hyperedges Et of Gt is

⋃t
i=1 es

i . While the final snapshot GT of
the hypergraph sequence is of our interest in exploring structural patterns, subsequences of
the hypergraph sequence are examined for the understanding of dynamical patterns.

2 Linear interpolation is used to find such d.



Growth Patterns and Models of Real-world Hypergraphs 9

Table 1 The real-world hypergraphs used in our study.

Dataset # of Nodes # of Hyperedges Summary

contact 327 172,035 Social Interaction
email 1,005 235,263 Email
tags 3,029 271,233 Q&A
substances 5,556 112,919 Drug
threads 176,445 719,792 Q&A
coauth 1,930,378 3,700,681 Coauthorship

4 Structural and Dynamical Patterns

In this section, we examine characteristics of real-world hypergraphs from six distinct do-
mains and shed light on common four structural and three dynamical patterns at the macro-
scopic level. We summarize some basic statistics on the datasets (Benson et al., 2018a; Mas-
trandrea et al., 2015; Leskovec et al., 2007) in Table 1 and briefly describe the characteristics
of each dataset below.

– contact-high-school (contact): each node is a student, and each hyperedge is a set of
individuals interacting each other as a group during an unit interval.

– email-Eu (email): each node is an email address at an European research institution, and
each hyperedge consists of the sender and all recipients of an e-mail.

– tags-ask-ubuntu (tags): askubuntu.com is a question-and-answer website, where one
can ask a question with up to 5 tags attached. Each node and hyperedge correspond to a
tag and the set of tags attached to a question, respectively.

– NDC-substances (substances): each node is a substance, and each hyperedge indicates
the set of substances which a drug is made of.

– threads-math-sx (threads): math.stackexchange.com is a question-and-answer web-
site. Each node is a user on the website, and each hyperedge corresponds to the set of
users participating in a thread that lasts for at most 24 hours.

– coauth-DBLP (coauth): each node is an author, and each hyperedge corresponds to the
set of authors in a publication recorded on DBLP.

4.1 Motivations

In this subsection, we provide motivations behind the four structural properties (S1-S4) and
three dynamical properties (T1-T3) that we investigate in the six real-world hypergraphs.
The properties are complementary to previously found ones, as discussed in Section 2.

Some of our properties (spec., S1, S4, T2, and T3) are direct hypergraph analogs of
well-known and widely-utilized properties of real-world graphs. Specifically, S1 (i.e., heavy-
tailed distributions of the number of the hyperedges that each node belongs to) is directly
related to heavy-tailed distributions of the number of edges incident to each node in graphs
(Barabási and Albert, 1999), which were exploited for optimization of distributed graph
processing systems (Salihoglu and Widom, 2013). Similarly, we generalize skewed distri-
butions of eigenvalues of adjacency matrices (Faloutsos et al., 1999), which enable fast
approximation of the triangle count (Tsourakakis, 2008), to S4, (i.e., skewed distributions of
singular values of incidence matrices). Moreover, it was reported in many real-world graphs
that the count of edges increases faster than that of nodes over time, and the diameter shrinks

askubuntu.com
math.stackexchange.com
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Fig. 3 Structural properties shown in six real datasets: Heavy-tailed distributions of four quantities.
The first three properties mostly show well-suited straight lines on the log-log scale, implying the potential
for a stronger claim: they follow a power-law distribution. This tendency is more apparent in larger hyper-
graphs. See Section 4.2 for details.

over time (Leskovec et al., 2007). We extend these characteristics, which were used to evalu-
ate graph sampling and generation methods (Leskovec et al., 2010; Leskovec and Faloutsos,
2006), to T2 and T3 in real-world hypergraphs.

The other properties (i.e., S2, S3, and T1) are investigated with a focus on hyperedges.
Hyperedges are the most elementary unit of hypergraphs, and they distinguish hypergraphs
from ordinary graphs. Moreover, they model group interactions, understanding of which is
our ultimate goal of hypergraph analysis. We especially focus on the sizes of hyperedges
and their intersections since the flexibility in size is the unique property of hyperedges.
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Table 2 Log-likelihood ratio of two competing distributions: three heavy-tailed distributions versus
exponential distribution. We consider power-law (pw), truncated power-law (tpw), and log-normal (logn)
distributions as candidates for the heavy-tailed distributions. We report the log-likelihood ratio normalized by
its standard deviation and make the largest one among the three candidates boldfaced. We also provide the
p-value of the boldfaced one if it is larger than 0.05, where the p-value is the significance value for the accep-
tance of the heavy-tailed distribution involved in the ratio. As suggested in Figure 3, the first three patterns
generally have the best fit to (truncated) power-law distributions, while singular values are best described by
log-normal distributions. Remark that HYPERFF also shows the same trend.

Degrees Hyperedge Sizes∗

Heavy-tailed Dist. pw tpw logn pw tpw logn

contact −0.612 0.495† −0.011 - - -
E-mail: 0.013 2.01 1.72 28.6 34.0 32.8

tags 8.60 9.51 9.45 −713 −111 103
substances 3.69 3.90 3.83 29.5 31.8 30.2

threads 38.0 38.5 38.4 0.786 1.04‡ 1.02
coauth 187 206 204 4.14 4.14 4.15

HYPERFF (Proposed) 19.6 27.0 25.9 −0.737 1.36¶ 1.29

Intersection Sizes Singular Values

Heavy-tailed Dist. pw tpw logn pw tpw logn

contact - - - −290 −205 116
E-mail: 454 463 461 −219 −157 75.7

tags - - - −407 −285 145
substances 39.1 39.9 40.0 −361 −249 121

threads - - - −1171 −832 445
coauth 2.28 2.36 2.36 −661 −471 268

HYPERFF (Proposed) - - - −525 −364 210
∗ Contact, tags, threads, and HYPERFF have a small range of hyperedge sizes and intersection
sizes, which make some ratio not available.
† The p-value is 0.62. ‡ The p-value is 0.30. ¶ The p-value is 0.17.

4.2 Structural Patterns

In this subsection, we study four tendencies in the final snapshots of the 6 real hypergraph
sequences and present all the results in Figure 3. We demonstrate that (S1) degrees, (S2)
hyperedge sizes, (S3) intersection sizes, and (S4) singular values of incidence matrices obey
heavy-tailed distributions. In order to numerically support these findings, we measure the
normalized log-likelihood ratio of three heavy-tailed distribution (the power-law, truncated
power-law, and log-normal distributions) against the exponential distribution to find the best
fit. Moreover, we use randomized hypergraphs where each hyperedge is filled with randomly
chosen nodes to demonstrate that the observed patterns are significant and non-trivial.

4.2.1 Description of the patterns

S1. Heavy-tailed degree distribution. It has been discovered repeatedly that real-world
graphs, where the degree of a node is defined as the number of edges incident to each
node, tend to have a heavy-tailed degree distribution (Barabási and Albert, 1999; Faloutsos
et al., 1999). In all the considered real-world hypergraphs, the distribution of degree (i.e.,
the number of hyperedges that contain each node) generally fall under the class of heavy-
tailed distributions. Note that our investigation of the degree distributions differs from the
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Fig. 4 Comparison with the null model generated from substance. Its bell-shaped degree distribution and
the significantly dominant singular value, which appear across all the datasets, are main differences from real
hypergraphs. Note that the range of hyperedge sizes is significantly reduced compared to that of substances.

previous approaches (Do et al., 2020) where the degrees of nodes in clique-expanded graphs
are investigated. As reported in Table 2, the comparative test implies that for each dataset,
the three representative heavy-tailed distributions have a better fit than an exponential distri-
bution. Moreover, the likelihood ratio and the well-fitted straight lines on the log-log scale
in Figure 3 suggest that for the degree distributions, the (truncated) power-law distribution
is the best candidate among the heavy-tailed distributions.
S2. Heavy-tailed hyperedge size distribution. In all the considered real-world hypergraphs,
hyperedge sizes are also found to follow heavy-tailed distributions. That is, there exist a con-
siderable number of hyperedges of large cardinality. For example in the threads and coauth
datasets, some hyperedges consist of more than one hundred nodes. Note that we use all
hyperedges, regardless of their sizes, while only small hyperedges are taken into considera-
tion in (Benson et al., 2018b; Do et al., 2020). The distribution of hyperedge sizes generally
shows a better fit to the heavy-tailed distributions than to the exponential distribution, and
the similar reasoning based on Figure 3 and Table 2 implies that the (truncated) power-law
distribution is the best description available.
S3. Heavy-tailed intersection size distribution. For each intersecting pair of hyperedges,
we measure the size of their intersection (i.e., the number of nodes commonly contained
in both hyperedges), and it is observed that the intersection sizes also follow heavy-tailed
distributions. As shown in Table 2, the heavy-tailed distributions are probable descriptions
for this pattern, and the reported likelihood ratios in Table 2 together with the straight lines
in Figure 3 back up the goodness of fit to the (truncated) power-law distribution.
S4. Skewed singular values. Inspired by skewed eigenvalues of the adjacency matrices of
real-world graphs (Faloutsos et al., 1999), we investigate the singular values of the incidence
matrices of the considered real-world hypegraphs, and it is observed that they are generally
skewed. Note that we examine singular values instead of eigenvalues since eigenvalues may
not be defined for incidence matrices, which are not necessary square matrices. As certi-
fied in Table 2, the singular-value distribution is best described by the log-normal distribu-
tion, which is one of the heavy-tailed distributions. Apparently in Figure 3, the tails of the
singular-value distributions decay faster than those of the three distributions in (S1-S3).

4.2.2 Comparison with the random null model

A null model is a type of random object (e.g., graph) that is taken to be an unbiasedly ran-
dom structure while being restricted to satisfy some specific characteristics of the original
object. Null models are used to verify whether some features of an object are trivially ob-
tained or not. Several null models (e.g., the Erdős–Rényi model (Erdős et al., 1960) and
the configuration model (Girvan and Newman, 2002)) have been employed for verifying
characteristics of real-world graphs (Drobyshevskiy and Turdakov, 2019; Leskovec et al.,
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2010; Sala et al., 2010), and many widely-used concepts for graph analysis (e.g., modularity
(Girvan and Newman, 2002) and network motifs (Milo et al., 2004)) are defined based on
null models.

In this work, we employ a null model to emphasize the significance of the examined
patterns in real-world hypergraphs and especially to demonstrate that they are not trivial.
The null model is constructed from a sequence of a set of hyperedges {(e′t)s}T

t=1 such that
there is a one-to-one correspondence between es

t and (e′t)
s. Specifically, e′t in (e′t)

s has the
same size with its corresponding hyperedge et in es

t , while e′t consists of randomly selected
|e′t | nodes from Vt . Note that this null model has the same distribution of hyperedge sizes
with its corresponding dataset.

We investigate whether the structural patterns are also observed in the random null
model, except for heavy-tailed hyperedge size distributions, which are simply borrowed
from real-world hypergraphs as constraints. As shown in Figure 4(a), the degree distribution
of the generated hypergraph is skewed bell-shaped, instead of being heavy-tailed. While
the intersection size distribution in Figure 4(b) might seem realistic, the range of intersec-
tion sizes and the frequency of each intersection size are significantly different from those
in the corresponding real-world hypergraph. Moreover, we observe in Figure 4(c) that the
null model has a highly dominant singular value. Overall, the null model fails to reproduce
realistic distributions. Thus, advanced models are required for reproducing these peculiar
patterns, as discussed in Sections 5 and 6.

4.3 Dynamical Patterns

Now we move on to the investigation of three dynamical patterns in the six real hypergraphs
sequences. We devise a quantity to measure how much the hyperedges are overlapped in
overall and show that (T1) overall overlaps of the hyperedges decrease over time. Just as
phenomena of densification and shrinking diameters are well known to take place in real
graphs, the two dynamical patterns are still prevalent in real hypergraphs; (T2) average
degrees increase over time and (T3) effective diameters decrease over time.
T1. Diminishing overlaps. We first define the density of interactions as follows to capture
the overall overlaps of hyperedges: for a hypergraph Gt = (Vt ,Et) at time t,

DoI(Gt) :=
|{{ei,e j}|ei∩ e j ̸= /0 for ei,e j ∈ Et}|

|{{ei,e j}|ei,e j ∈ Et}|
(1)

In words, it is simply the ratio of the number of intersecting pairs of hyperedges to the
number of all possible pairs of hyperedges, which amounts to

(|Et |
2

)
. Note that this quantity

can range from 0 to 1. Using y(t) and x(t) to indicate the numerator and the denominator,
respectively, in Equation 1, we take a closer look at the log-log plot of y(t) over x(t). As
shown in the first column of Figure 5, the slopes s of fitted lines on the plots implies the
formula DoI(Gt) = y(t)/x(t) = O(x(t)−(1−s)). As the slopes s are usually smaller than 1, the
density of interactions decreases over time. Decreasing DoI(Gt) indicates that the ratio of
overlapping pairs of hyperedges decreases and that the intersections of hyperedges become
less frequent in overall.
T2. Densification. In the following two subsections, we confirm that dynamical phenom-
ena in real graphs - densification and shrinking diameters established in a seminal work
(Leskovec et al., 2007) - still take place in real hypergraphs. We proceed with the same
manner as in Section 4.3. For a hypergraph Gt = (Vt ,Et) at time t, we plot |Et | over |Vt | on
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Fig. 5 Dynamical patterns shown in six real datasets: diminishing overlaps, densification, and
shrinking diameters. The slopes smaller than 1 in the first column indicate decreasing ratios of in-
tersecting pairs. The slopes larger than 1 for the edge density imply increasing average degrees of the
hypergraphs. The effective diameters eventually decrease. For the threads dataset, the effective diameter
starts to shrink almost in the end. See Section 4.3 for details.

the log-log scale in the second column of Figure 5 and compute the slopes s of the fitted
lines, which lead to the formula |Et |∝ |Vt |s. The slopes larger than 1 in general indicate that
the average degrees of hypergraphs, formulated as 2|Et |/|Vt |, increase over time, and thus
the densification is also valid for real hypergraphs.
T3. shrinking diameters. In the third column of Figure 5, we show how the effective di-
ameters of hypergraphs change over time. We observe that the effective diameters of all
real hypergraphs eventually decrease over time. In the threads dataset, while the decrease
is marginal, the effective diameter starts to decrease almost in the end. It is worthy to note
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that although shrinking diameters and densification seem intuitively compatible with one an-
other, one can construct counterexamples that have only one of the two dynamical patterns,
which are illustrated in the first and second column in Figure 14.

5 Community Guided Attachment Model for Hypergraphs

In parallel with the establishment of underlying patterns in real hypergraphs, our goal is to
develop a realistic growth model of hypergraphs that reproduces the observed patterns.

As the first step towards this goal, in this section, we consider a simple recursive model
with self-similarity, as such models (e.g., the forest-fire model (Leskovec et al., 2007) and
the Kronecker graph model (Leskovec et al., 2010)) successfully reproduce heavy-tailed
degree distributions and shrinking diameters of ordinary graphs. In more detail, we extend
the community guided attachment model (Leskovec et al., 2007) to hypergraphs. The model
is mathematically tractable, and especially, it proved to reproduce heavy tailed in-degree
distributions and densification of ordinary graphs.

In this section, we describe the extended model, namely CGAH (Community Guided
Attachment for Hypergraphs), and analyze its theoretical properties related to (T2) den-
sification and (S1) heavy-tailed distributions of degrees, which are observed in real hyper-
graphs. Specifically, we first present static CGAH for static hypergraph generation, and then
we extend it to dynamic CGAH for dynamic hypergraph generation.

Throughout this section, we use the big-Θ notation for asymptotic analysis. In the no-
tation, f (n) =Θ(g(n)) holds if and only if there exist positive constants c1, c2 and n0 such
that 0≤ c1 ·g(n)≤ f (n)≤ c2 ·g(n) for all n≥ n0. Roughly speaking, f (n) =Θ(g(n)) when
f (n) and g(n) increase at a speed of the same order.

5.1 Static CGAH

5.1.1 Model description

It is well known that hierarchical communities are pervasive in real graphs (Girvan and New-
man, 2002; Sales-Pardo et al., 2007; Lee et al., 2022), and they often exhibit self-similarity
(i.e., a recursive structure). Hierarchical community structures have proved useful for real-
istic (hyper)graph generation (Leskovec et al., 2007, 2010; Lee et al., 2021) (see Section 2
for details). In static CGAH, we assume recursive hierarchical communities. Specifically,
we assume all nodes correspond to the leaf nodes of a perfect b-ary tree Γ of height h that
represents how the nodes form hierarchical communities. Thus, the total number of nodes
in the generated hypergraph is assumed to be n = bh, i.e., |V |= n = bh.

Each node u, which we call a source, goes through two stages to generate hyperedges.
First, for each v ∈ V \{u}, u and v form a hyperedge {u,v} independently with probability
c−d(u,v)

1 , where c1 ∈ R+ is a parameter and d(u,v) is the tree distance between u and v (i.e.,
the height of their least common ancestor in Γ ). Each node v that forms a size-2 hyperedge
with u is called an ambassador. After creating the hyperedges, we use a similar process
for expanding them. Specifically, for each size-2 hyperedge {u,v} with a source u and an
ambassador v, we add each node w ∈V \{u,v} to it independently with probability c−d(u,v)

2 ,
where c2 ∈ R+ is another parameter. Regarding the computation of probability, we provide
examples in Figure 7. Consider we compute the tree distance d(E,F) between nodes E and
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Fig. 6 Examples of probabilities used in static and dynamic CGAH. For Static CGAH, we define the tree
distance d(u,v) between two nodes u and v as the height of the least common ancestor (LSA) of u and v. For
dynamic CGAH, the tree distance d(u,v) between two nodes u and v is defined as the length of the shortest
path from u to v. Since a tree distance in dynamic CGAH is the double of that in static CGAH, we divide the
exponent of the probabilities in dynamic CGAH by 2.

F in the figure. Since the least common ancestor of E and F is node D, d(E,F) is 2, which
is equivalent to the height of node D.

5.1.2 Theoretical properties

We analyze the node degrees, hyperedge sizes, and hyperedge count in hypergraphs gener-
ated by static CGAH, and the results, which are dependent on the parameters b, c1, and c2,
are formalized in Theorem 1.

Theorem 1 The static CGAH model leads to the following properties regarding node de-
grees, hyperedge sizes, and the number of hyperedges.

(a) (Hyperedge sizes) The expected hyperedge size is Θ(n1−logb c2) when c2 < b, Θ(logb n)
when c2 = b, and Θ(1) otherwise.

(b) (Hyperedge count) The expected number of generated hyperedges is Θ(n2−logb c1) when
c1 < b, Θ(n logb n) when c1 = b, and Θ(n) otherwise.

(c) (Node degrees) The expected node degree is proportional to the product of the expected
hyperedge size and the expected number of the generated hyperedges divided by the
number of the nodes.

Proof Let T (c) be ∑v∈V\{u} c−d(u,v) for an arbitrary node u ∈ V . Then, the expected hy-
peredge size is proportional to Θ(T (c2)). Similarly, the expected number of hyperedges is
proportional to Θ(nT (c1)). Since there are bi− bi−1 nodes whose tree distance from u is
exactly i, T (c) is computed as

T (c) = ∑
v∈V\{u}

c−d(u,v) =
logb n

∑
i=1

(bi−bi−1)c−i =
b−1

b

logb n

∑
i=1

(
b
c

)i

.

if b > c, T (c) is Θ

(( b
c

)logb n
)
= Θ(n1−logb c). If b = c, T (c) is Θ(logb n), and it is Θ(1)

otherwise.
In order to compute the expected degree of node u, we need to consider the expected

numbers of hyperedges of three types: (1) where u is a source, (2) where u is an ambassador,
and (3) where u is neither of them. The expected count of the first type is T (c1), and the
expected count of the second type is also ∑v∈V\{u} c−d(u,v)

1 = T (c1).
To compute the expected count of the last type, consider a source node w and an am-

bassador v. Since the probability that node w forms a hyperedge with v in the first stage is
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c−d(v,w)
1 and the probability that node u is added to the hyperedge by node v in the second

stage is c−d(u,v)
2 , the expected count of the last type is

∑
v∈V\{u}

∑
w∈V\{u,v}

c−d(v,w)
1 c−d(u,v)

2 = ∑
v∈V\{u}

c−d(u,v)
2 Θ(T (c1))

=Θ(T (c1)T (c2)).

Therefore, the expected node degree is Θ(2T (c1)+T (c1)T (c2)) =Θ(T (c1)T (c2)). ⊓⊔

It should be noted from Theorem 1 that, if c1 > b, then |E|=Θ(ns)=Θ(|V |s), where s= 2−
logb(c1)> 1, holds. This property is generalized to |Et |=Θ(|Vt |s) (i.e., (T2) densification)
in dynamic CGAH, which is described in the following subsection.

5.2 Dynamic CGAH

5.2.1 Model description

Dynamic CGAH (see Algorithm 1 for pseudocode) extends static CGAH for dynamic hy-
pergraph generation by allowing new nodes to be added over time with new hyperedges.
The model assumes all nodes of a generated hypergraph corresponds not only to leaf nodes
but also to internal nodes of a perfect b-ary tree Γ . The model considers only the root node
at time t = 0, and at each time t > 0, the nodes at depth t are added to Γ . As a result, at time
t, the total number n of nodes becomes 1+b+ · · ·+bt .

Once new nodes are added, each of them goes through two stages as in static CGAH. In
the creation stage, for each new node u and every v∈V \{u}, u and v form a hyperedge {u,v}
independently with probability c−d(u,v)/2

1 . Here, we extend the definition of tree distance
d(u,v) between two nodes u and v to the length of the shortest path from u to v in Γ for
considering the distance between an internal node and a leaf node and the distance between
two internal nodes.3 As in static CGAH, we call u a source and call v an ambassador. In the
expansion stage, for each new hyperedge e = {u,v} with a source u and an ambassador v,
we add each node w ∈ V≥v \{u,v}, where V≥v denotes the set of the nodes whose height is
at least that of the ambassador v, to the hyperedge independently with probability c−d(v,w)/2

2 .
We also provide an example regarding the computation of probability in dynamic CGAH
in Figure 7. In the example, since the length of the shortest path between nodes C and D is
3+ 1 = 4, the probabilities between C and D in the creation stage and the expansion stage
are computed as c−2

1 and c−2
2 , respectively.

5.2.2 Theoretical properties

We analyze node-degree distributions and density over time of hypergraphs generated by
CGAH, and the results are formalized in Theorem 2. Specifically, we prove that (T2) den-
sification and (S1) heavy-tailed distributions of node degrees (see Section 4 for details) hold
under some conditions on c1, c2 and b. Specifically, we show that node degrees follow a zeta
distribution, which is a heavy-tailed distribution, in expectation.

3 Note that, compared to that in static CGAH the tree distance between leaf nodes has doubled in dynamic
CGAH. Thus, we divide the exponent by 2 when computing the probability.
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Algorithm 1: Dynamic CGAH: a mathematically tractable model for realistic hy-
pergraph generation.

Input: the number of children of each node in Γ : b, parameter for hyperedge creation: c1,
parameter for hyperedge expansion: c2, timespan (the maximum time): T

Output: evolving hypergraph: {Gt}T
t=1

1 Algorithm Generator(b,c1,c2,T)
2 V0

set←− {v0} & E0
set←− /0

3 Γ
set←− (V0, /0)

4 foreach time t in [1, . . . ,T ] do
5 Vt

set←−Vt−1
6 foreach v in Vt−1 \Vt−2 do
7 generate b new nodes w1, w2, · · · , wb

8 Vt
set←−Vt ∪{w1,w2, · · · ,wb}

9 V (Γ )
set←−V (Γ )∪{w1,w2, · · · ,wb}

10 E(Γ )
set←− E(Γ )∪{{v,w} : w ∈ {w1,w2, · · · ,wb}}

11 foreach u in Vt \Vt−1 do
12 Sampledu

set←− Sampling(u,c1, t)
13 foreach v in Sampledu do
14 Et

set←− Et ∪{{u,v}∪Sampling(v,c2, t−hv)}
15 return {Gt}T

t=1

Subroutine Sampling(source, c, t’)
1 Sampled = {}
2 foreach v in Vt′ \{source} do
3 p∼ Uniform(0,1)
4 if p < c−d(source,v) then
5 Sampled set←− Sampled∪{v}
6 return Sampled

Theorem 2 The dynamic CGAH model has the following properties regarding densifica-
tion and node degrees.

(a) (Densification) The expected number of generated hyperedges is Θ(n2−logb c1) if c1 < b,
and it is Θ(n) if b < c1 < b2.

(b) (Heavy-tailed node degree distribution) If b > c1 and b > c2, then the node degree
distribution follows a zeta distribution with exponent 2/ logb c2 in expectation. If b <
c1 < b2 and b < c2 < b2, then it follows a zeta distribution with exponent 1/(1−
1
2 logb min(c1,c2)) in expectation.

Proof (a) Consider an arbitrary node u ∈ V of height hu. Then, the number of nodes of
height hv ≥ hu where the height of the least common ancestor (LCA) with u is (hu + i) is
Θ(bhu−hv+i), where hv−hu ≤ i ≤ h−hu. Similarly, the number of nodes of height hv ≤ hu
where the height of the LCA with u is (hu + i) is Θ(bhu−hv+i), where 0 ≤ i ≤ h− hu. For
example, if v is a leaf node at time t = t0, then there are Θ(b j−i) nodes of height i where
the height of the LCA with v is j, and the distances between v and each of such nodes
is j + ( j− i) = 2 j− i. From these observations, it follows that the expected number of
hyperedges at time t = t0 is

t0

∑
t=0

t

∑
i=0

t

∑
j=i

bt
Θ(b j−i)c−(2 j−i)/2

1 =
t0

∑
t=0

t

∑
i=0

t

∑
j=i

Θ

(
bt
(

b
c1

) j ( c1

b2

)i/2
)
,
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If b > c1, then the expectation becomes

t0

∑
t=0

t

∑
i=0

t

∑
j=i

Θ

(
bt
(

b
c1

) j ( c1

b2

)i/2
)

=
t0

∑
t=0

t

∑
i=0

Θ

((
b2

c1

)t ( c1

b2

)i/2
)

=
t0

∑
t=0

Θ

((
b2

c1

)t
)

=Θ

((
b2

c1

)t0
)

=Θ(n2−logb c1).

If b < c1 < b2, then the expectation becomes

t0

∑
t=0

t

∑
i=0

t

∑
j=i

Θ

(
bt
(

b
c1

) j ( c1

b2

)i/2
)

=
t0

∑
t=0

t

∑
i=0

Θ

(
bt
(

b
c1

)i( c1

b2

)i/2
)

=
t0

∑
t=0

t

∑
i=0

Θ

(
btc−i/2

1

)
=

t0

∑
t=0

Θ
(
bt)=Θ

(
bt0
)
=Θ(n).

(b) For the expected degree of node u at time t = t0, as in the proof of Theorem 1, we
consider hyperedges of three types: (1) where u is a source, (2) where u is an ambassador,
and (3) where u is neither of them. The expected count of hyperedges of the first type is
equivalent to the expected number of hyperedges whose source node is u.

The expected number of the hyperedges whose ambassador is u is equivalent to the
expected number of times of choosing u as an ambassador, and thus it is

hu

∑
i=0

t0

∑
j=hu

Θ(b j−ic(i+hu)/2− j
1 ) = chu/2

1

hu

∑
i=0

t0

∑
j=hu

Θ

((
b
c1

) j ( c1

b2

)i/2
)
.

If b > c1, the expectation becomes

chu/2
1

hu

∑
i=0

t0

∑
j=hu

Θ

((
b
c1

) j ( c1

b2

)i/2
)

= chu/2
1

hu

∑
i=0

Θ

((
b
c1

)t0 ( c1

b2

)i/2
)
=Θ

(
chu/2

1

(
b
c1

)t0)
.

If b < c1 < b2, the expectation becomes

chu/2
1

hu

∑
i=0

t0

∑
j=hu

Θ

((
b
c1

) j ( c1

b2

)i/2
)

=
hu

∑
i=0

Θ

((
b2

c1

)hu/2( c1

b2

)i/2
)

=Θ

((
b2

c1

)hu/2
)
.

If b > c1 and b > c2, suppose the height of the ambassador v is i ≤ hu. Then the ex-

pected number of the hyperedges whose ambassador is v becomes Θ

(
ci/2

1

(
b
c1

)t0
)

. Thus,
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the expected count of hyperedges of the second or third type is

hu

∑
i=0

t0

∑
j=hu

Θ

(
b j−ic(i+hu)/2− j

2 · ci/2
1

(
b
c1

)t0)
=

hu

∑
i=0

t0

∑
j=hu

Θ

(
chu/2

2

(
b
c1

)t0( b
c2

) j (c1c2

b2

)i/2
)

=
hu

∑
i=0

Θ

(
chu/2

2

(
b2

c1c2

)t0 (c1c2

b2

)i/2
)

=Θ

(
chu/2

2

(
b2

c1c2

)t0
)

=Θ

(
c(hu−t0)/2

2

(
b2

c1c1/2
2

)t0)

=Θ

((
bt0−hu

)− 1
2 logb c2

(
b2

c1c1/2
2

)t0)
.

Since the expectation dominates that of the first type and there are bt0−hu nodes of height
hu, the node degree distribution follows a zeta distribution with exponent 1/

( 1
2 logb c2

)
=

2/ logb c2 in expectation. If b < c1 < b2 and b < c2 < b2, then the expected count of hyper-
edges of the second or third type becomes

hu

∑
i=0

t0

∑
j=hu

Θ

(
b j−ic(i+hu)/2− j

2 ·
(

b2

c1

)i/2
)

=
hu

∑
i=0

t0

∑
j=hu

Θ

(
chu/2

2

(
b
c2

) j(c2

c1

)i/2
)

=
hu

∑
i=0

Θ

((
b2

c2

)hu/2(c2

c1

)i/2
)

=Θ

((
b2

min(c1,c2)

)hu/2
)

=Θ

((
b2

min(c1,c2)

)t0/2(
bt0−hu

)−(1− 1
2 logb min(c1,c2))

)
Again, the expectation also dominates that of the first type, and thus the node degree distri-
bution follows a zeta distribution with exponent 1/(1− 1

2 logb min(c1,c2)) in expectation.
⊓⊔

5.2.3 Observations

In addition to the theoretical analyses, we performed simulations using CGAH. We set b
to 3 or 6 and set c1 so that both cases where b < c1 and where b > c1 are considered. We
also set c2 to be greater than c1, since average hyperedge sizes are smaller than average
degrees in real hypergraphs. The distributions related to the aforementioned structural and
dynamical patterns are shown in Figure 7.

As expected from its theoretical properties, dynamic CGAH reproduced (T2) densi-
fication and (S1) heavy-tailed node-degree distributions. Surprisingly, it also successfully
reproduced (S2) heavy-tailed hyperedge size distributions, (S3) realistic heavy-tailed inter-
section size distributions, (S4) skewed singular values without a highly dominant singular
value, and (T1) diminishing overlaps of the hyperedges.
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Fig. 7 Empirical properties of hypergraphs generated by dynamic CGAH. It successfully reproduced
the patterns regarding node degrees, hyperedge sizes, intersection sizes, singular values, densification, and
diminishing overlaps (see Section 4 for details). However, it failed to reproduce shrinking diameters for all
parameter settings, and when b > c1, the generated degree distributions had multiple modes, which were not
observed in real hypergraphs.

The results also revealed some limitations of dynamic CGAH. First, when b > c1, the
generated degree distributions had multiple modes, which were not observed in real hyper-
graphs. The modes correspond to the heights of Γ , which node degrees heavily depend on
as stated in Theorem 2. Specifically, the distribution of degrees of the nodes at each height,
which changes discretely, approximately followed a normal distribution by the central limit
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theorem. Moreover, as seen in the last row of the figure, the model failed to reproduce (T3)
shrinking diameters. Additionally, it is impossible to finely control the number of nodes in
hypergraphs generated by dynamic CGAH, and the possible counts of nodes are the ge-
ometric series with common ratio b. We describe in the next section how these issues are
resolved by HYPERFF, our ultimate proposed model.

6 Proposed Model: Hypergraph Forest Fire

In this section, we propose a growth model HYPERFF (Hypergraph Forest Fire) for realistic
hypergraph generation. We aim to generate hypergraphs that are more realistic than those
generated by CGAH, which we describe in the previous section. In a nutshell, for each new
node, HYPERFF simulates a ‘forest fire’, which is spread stochastically through existing
hyperedges, to decide the nodes each of which forms a size-2 hyperedge with the new node.
Then, HYPERFF simulates a forest fire again for each created hyperedge to expand it.

HYPERFF extends dynamic CGAH by eliminating the unrealistic assumption of per-
fectly balanced hierarchy structure and the exponentially decaying probabilities depending
on tree distance. As a result, HYPERFF resolves the aforementioned limitations of dynamic
CGAH. HYPERFF is also inspired by the forest fire model (Leskovec et al., 2007) for gen-
eration of ordinary graphs. Specifically, we eliminate unnecessary complexity in the model
and extend it to generate hyperedges rather than pairwise edges. Detailed comparisons be-
tween HYPERFF, dynamic CGAH, and the forest model are provided in the following sub-
section.

As shown below, HYPERFF reproduces all seven examined patterns and additionally re-
produces all five structural patterns found in previous work (Do et al., 2020) without relying
on oracles, i.e., unexplainable outside information. Notably in HYPERFF, the mechanisms
on individual nodes are simple and intuitive, while they do not directly impose but eventually
lead to the examined patterns.

In Section 6.1, we describe HYPERFF and compare it in detail with two most relevant
generation models. In Section 6.2, we confirm that it successfully reproduces all the seven
patterns, and then we further investigate the decomposed graphs (Do et al., 2020), hyper-
edge overlapping patterns (Lee et al., 2021), and hypergraph motifs (Lee et al., 2020) of
hypergraphs generated by HYPERFF. After that, in Section 6.3, we explore the parameter
space of HYPERFF. Finally, in Section 6.4, we perform an ablation study to highlight the
benefit of our design choices.

6.1 Model description

In this subsection, we first present the procedure of HYPERFF. Then, we provide an ex-
ample scenario for the formation of co-authorships to provide a rationale for each step of
HYPERFF. After that, we compare HYPERFF in detail with dynamic CGAH and the forest
fire model.

6.1.1 Procedure

A pictorial description of HYPERFF is given in Figure 8. HYPERFF starts with a hypergraph
with one node and no hyperedge. Then, it repeats the following steps for each new node u.
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Step 1 Step 2 Step 3 Step 4 Step 5

The new node 𝑢
chooses a random 

ambassador 𝑤

Burn 𝑛 − 1
neighbors of 𝑤, 
𝑛 ~ 𝐺𝑒𝑜𝑚(1 − 𝑝)

Recursively apply 
step 2 to each 

burned neighbor

For each burned 
node 𝑣, form a 

hyperedge {𝑢, 𝑣}

For each burned node, start the burning 
process with distribution 𝐺𝑒𝑜𝑚(1 − 𝑞)

and expand the hyperedge

𝑤

𝑢 𝑢
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Fig. 8 Example procedure of HYPERFF. For every new node u, HYPERFF repeats the above steps to
generate the hyperedges that contain u.

(1) The new node u chooses a random ambassador w from the hypergraph so far and burns
the ambassador.

(2) Select n− 1 neighbors of the ambassador w uniformly at random, where n is sampled
from the geometric distribution with mean p/(1− p), and burn the n−1 neighbors.

(3) Recursively apply (2) to each burned neighbor by viewing a burned neighbor as a new
ambassador of the new node u. Nodes cannot be burned twice until the recursion ends.

(4) For each burned node v, form a hyperedge {u,v}.
(5) For each hyperedge created in (4), reset the burning history and start the burning process

at the burned node v in which we use the geometric distribution with mean q/(1− q),
expand the hyperedge until the process ends.

We provide the pseudocode of HYPERFF in Algorithm 2. Note that, except the target
number of nodes (i.e., T ), it needs only two parameters: burning probability p and expanding
probability q.

6.1.2 Example scenario for the formation of co-authorships.

Each step has a straightforward rationale, and it may be well understood through an example
of a coauthorship network. Suppose a student joins a research community, advised by a
supervisor (ambassador). When introducing colleagues to the student for coworking, the
supervisor is more likely to introduce intimate peers. Those who cowork with the student
recursively introduce their close peers for follow-up research (recursive burning). When
a group of researchers looks for a new researcher to work with (hyperedge expansion), a
referrer in the group is likely to introduce those who the referrer has worked with many
times before than a totally new researcher.

6.1.3 Comparison with the forest fire model for ordinary graphs (Leskovec et al., 2007).

Among graph generative models, the model most relevant to HYPERFF is the forest fire
model (Leskovec et al., 2007). When a new node comes, a ‘forest fire’ starts from a randomly
chosen ambassador node. Since the size of each edge is restricted to two, there is no need to
expand the edges. Instead, when forming edges, in-links and out-links are recursively created
at the same time but with different probabilities. Generated graphs successfully reproduce
heavy-tailed in-degree and out-degree distributions, densification, and shrinking diameters.
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Algorithm 2: HYPERFF: the proposed model for realistic hypergraph generation.
Input: burning probability: p, expanding probability: q,

timespan (i.e., the target number of nodes): T
Output: evolving hypergraph: {Gt}T

t=1
1 Algorithm Generator(p,q,T)
2 G0

set←− hypergraph with 1 node and 0 hyperedges
3 foreach time t in [1, . . . ,T ] do
4 Vt

set←−Vt−1∪ {new node u} & es
t

set←− {}
5 w set←− random ambassador from Vt−1

6 Burnedp
set←− Burning (w, p)

7 foreach v in Burnedp do
8 N(u) set←− N(u)∪{v}
9 N(v) set←− N(v)∪{u}

10 Burnedq
set←− Burning (v, q)

11 es
t

add←−− hyperedge Burnedq ∪{u}
12 Et

set←− Et−1 ∪ es
t

13 return {Gt}T
t=1

Subroutine Burning(source, prob)
1 Burned = {} & Queue set←− empty queue

2 Queue add←−− source
3 while Queue ̸= /0 do
4 s set←− node popped from Queue

5 Burned add←−− s
6 n∼ geometric dist. with mean prob

1−prob

7 Candidates set←− N(s)\Burned \Queue

8 Queue add←−− n−1 nodes chosen uniformly at random in Candidates
9 return Burned

HYPERFF, however, has several differences from the forest fire model. Most impor-
tantly, the forest fire model generates conventional graphs instead of hypergraphs. Moreover,
it relies on the ‘orientation’ of burning, requiring two parameters: forward and backward
burning probabilities. Without relying on the orientation, it fails to achieve both shrinking
diameters and power-law distributions of degrees. On the other hand, HYPERFF achieves
both properties without relying on the orientation or any additional parameters. As a re-
sult, HYPERFF successfully copes with the complexity due to hyperedges of any size, while
maintaining the number of parameters to two (i.e., one probability for neighbor selection
and the other for expansion).

6.1.4 Comparison with dynamic CGAH.

HYPERFF and dynamic CGAH have many similarities. Both models generate hyperedges
through two steps (i.e., creation and then expansion). Specifically, whenever a new node
arrives, the node first forms size-2 hyperedges with ambassadors, and each size-2 hyperedge
is expanded with additional nodes, which are chosen probabilistically depending on the
distance from the ambassadors. Moreover, both models do not rely on oracles or external
information except for few parameters.

Recall that dynamic CGAH assumes a perfectly balanced hierarchy structure, which is
represented as a perfect b-ary tree Γ . As discussed in Section 5.2.3, this unrealistic structure
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Fig. 9 Observed patterns of five hypergraphs generated by HYPERFF. We generate five hypergraphs by
with different random seeds while fixing p and q to 0.51 and 0.2, respectively. Each column in the figure
shows the structural patterns and the dynamic patterns of the hypergraph generated with each random seed.
Although HYPERFF has randomness in its generation process, hypergraphs generated by HYPERFF with the
same p and q values share similar structures and dynamics.

leads to undesirable outcomes, specifically increasing diameter and multiple modes in node-
degree distributions. Additionally, dynamic CGAH requires all nodes at each height of Γ to
be added all at once, and thus the count of nodes in generated hypergraphs cannot be tuned
finely.

Unlike dynamic CGAH, HYPERFF simulates forest fires without assuming any specific
hierarchy structure. As a result, the aforementioned limitations of CGAH are resolved by
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HYPERFF (see Section 6.2 for detailed simulation results). Specifically, in hypergraphs gen-
erated by HYPERFF, multiple modes do not appear in the node-degree distribution, and for
properly tuned parameters, the diameter shrinks over time. In addition, as nodes are added
one by one, the number of nodes in generated hypergraphs can be controlled without any
restriction. While it is obvious why multiple modes, which correspond to discrete heights of
the tree Γ , disappear, it is unclear why HYPERFF reproduces shrinking diameters. We leave
further investigation to future work.

Remarks. HYPERFF suggests possible local dynamics on individual nodes of hypergraphs
that give rise to the macroscopic patterns examined in this paper. Thus, predicting an order
of hyperedges at the microscopic level goes out of scope. Also, for simplicity, it does not
have a particular parameter for repetition of hyperedges. Constructing a model tackling these
sides is left for future work.

6.2 Observations

Are hypergraphs generated by HYPERFF realistic? Specifically, do they exhibit all the seven
empirical patterns? Can HYPERFF also reproduce patterns reported in previous studies?
To answer these questions, we verify the proposed model, HYPERFF, thoroughly, based on
the established patterns, as in Section 4. Then, we examine HYPERFF in terms of the several
previously-reported structural patterns (Do et al., 2020; Lee et al., 2021, 2020), which are
also described in Section 2. Specifically, for a hypergraph by HYPERFF, we examine its n-
level decomposed graphs (Do et al., 2020), the overlaps of its hyperedges (Lee et al., 2021),
and the characteristic profile determined by the occurrences of hypergraph motifs in it (Lee
et al., 2020).

6.2.1 Observed patterns.

We demonstrate that HYPERFF with suitable parameter values reproduces the four structural
patterns and the three dynamical patterns investigated in Section 4.

In Figure 9, we provide overall patterns of five hypergraphs generated by HYPERFF
with different random seeds while fixing p and q to 0.51 and 0.2, respectively. The hyper-
graph in each column apparently exhibits all the patterns consistent with the representative
results of one representative real dataset. Especially for the four structural patterns, includ-
ing the distribution of degrees, hyperedge sizes, intersection sizes, and singular values, we
confirm in Table 2 that all the distributions of the model have the same tendency with real
hypergraphs. The four distributions are best suited to heavy-tailed distributions, and among
probable heavy-tailed distributions, the best description for each pattern is also consistent
with that of real hypergraphs; the first three and the last are close to the (truncated) power-
law distributions and log-normal distribution, respectively.

We also check that the model achieves the three dynamical patterns - diminishing over-
lap, densifying graph, and decreasing diameter - in Figure 9. Note that hypergraphs gener-
ated by HYPERFF with the same p and q values share similar structures and dynamics, as
seen in Figure 9. Despite the randomness in its generation process, HYPERFF with suitable
parameter values stably reproduces all considered structural and dynamic patterns.
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Fig. 10 Structural patterns in decomposed graphs (Do et al., 2020). HYPERFF and a real dataset have
similar heavy-tailed degree distributions at each decomposition level, and they even have the same tendency
of deviating from the fitted lines at higher decomposition levels. Singular values of HYPERFF and the dataset
basically lie on their fitted lines, regardless of decomposition levels. See Section 6.2 for details.

Table 3 Size of the largest connected component at each decomposition level, and effective diameter and
clustering coefficient at the node level.

Largest Connected Component Diameter Clus. Coeff.
Node Edge Triangle 4clique

contact 1.00 0.46 0.02 0.02 2.63 0.50
email 0.98 0.70 0.80 0.41 2.80 0.49
tags 0.997 0.94 0.71 0.22 2.41 0.61

substances 0.58 0.78 0.35 0.02 3.56 0.42
threads 0.87 0.45 0.03 0.0004 3.68 0.37
coauth 0.86 0.53 0.05 0.0006 6.84 0.60

HYPERFF 1.00 0.52 0.0003 0.0005 3.00 0.69

6.2.2 Structural patterns in decomposed graphs.

The multi-level decomposition method (Do et al., 2020) provides a way of reducing hyper-
graphs to m ordinary graphs for the largest size m of hyperedges. Each reduced graph is
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referred to as an n-level decomposed graph,4 which focuses on the interplays between pairs
of size-n subsets of nodes. In Do et al. (2020), it is shown that the decomposed graphs of
real hypergraphs generally retain five structural patterns of real networks - giant connected
components, heavy-tailed degree distributions, small diameters, high clustering coefficients,
and approximately heavy-tailed singular values of adjacency matrices - unlike the random
null model that we adopt in Section 3. Then, the structural patterns are suggested as judging
criteria for real hypergraphs.

To make the setting consistent with Do et al. (2020), we delete all hyperedges of size
larger than 25 and consider the decomposition level up to 4, where each level is named as the
node level, the edge level, the triangle level, and the 4clique level, respectively. Moreover,
we focus on the node level especially for effective diameter and clustering coefficient as
highlighted in Do et al. (2020), and up to the triangle level for the distributions of degree
and singular values.

We compare in Figure 10 the overall tendency of the degree and singular-value distri-
butions of the decomposed graphs of HYPERFF with that of real hypergraphs. The degree
distributions of decomposed graphs, regardless of whether they are real or synthetic, seem
to follow a power law, while the plotted points tend to deviate from a fitted line as the de-
composition level increases. The singular-value distributions also reveal similar trends in
both synthetic and real datasets. In Table 3, we report the effective diameter and clustering
coefficient at the node level, and the ratio of the size of the largest connected component to
the total size of each decomposed graph. Similar to the real datasets, at the node level, the
decomposed graph from HYPERFF also attains a small effective diameter and high cluster-
ing coefficient. The level at which the largest connected component becomes small varies
across the datasets, and our model maintains a giant connected component up to the edge
level.

6.2.3 Overlapping patterns in hypergraphs.

Lee et al. (2021) propose a way of analyzing overlapping patterns of hyperedges. They
observe the overlapping patterns at four different levels: egonets5, node pairs, node triples,
and hyperedges. Specifically, they randomize hypergraphs by randomly forming hyperedges
while preserving the distribution of hyperedge sizes exactly and the distribution of node de-
grees in expectation; and then they show that the distributions of the following five measures
in real-world hypergraphs are clearly distinguished from those in randomized ones:

1. The density of egonets. The density of a set S of hyperedge is defined as |S|
|
⋃

e∈S e| .

2. The overlapness of egonets. The overlapness of a set S of hyperedge is defined as ∑e∈S |e|
|
⋃

e∈S e| .
3. The number of hyperedges overlapping at pairs of nodes.
4. The number of hyperedges overlapping at triples of nodes.

4 Formally, the n-level decomposed graph of a hypergraph G = (V,E) is defined as G(n) = (V(n),E(n))
where

V(n) := {v(n) ∈ 2V : |v(n)|= n and ∃e ∈ E s.t. v(n) ⊆ e},

E(n) := {{u(n),v(n)} ∈
(

V(n)

2

)
: ∃e ∈ E s.t. u(n) ∪ v(n) ⊆ e}.

5 The egonet of a node v is defined as {e ∈ E | v ∈ e}, the set of hyperedges containing v.



Growth Patterns and Models of Real-world Hypergraphs 29

Density Overlapness Degree of pairs Degree of triples Homogeneity

H
Y

P
E

R
F

F

0

1000

2000

0 1000 2000

Average # of nodes

# 
of

 e
dg

es

0

2000

4000

6000

0 1000 2000

Average # of nodes
S 

 e
dg

e 
si

ze
s

101

103

105

100 101

# of overlapping edges

# 
of

 n
od

e 
pa

irs

101

103

105

100 101

# of overlapping edges

# 
of

 n
od

e 
tr

ip
le

s

101

103

105

100 101

Homogeneity

# 
of

 e
dg

es

em
ai

l(
re

al
)

0

400

800

0 200 400 600

Average # of nodes

# 
of

 e
dg

es

0

2000

4000

6000

0 200 400 600

Average # of nodes

S 
 e

dg
e 

si
ze

s

102

104

101 102

# of overlapping edges

# 
of

 n
od

e 
pa

irs

101

103

105

101 102

# of overlapping edges

# 
of

 n
od

e 
tr

ip
le

s

101

102

103

101 102

Homogeneity

# 
of

 e
dg

es

Fig. 11 Overlapping patterns of hyperedges. We show the distributions of the five measures proposed in
Lee et al. (2021), all of which are related to the overlaps of hyperedges. The distributions in the email dataset
and a hypergraph generated by HYPERFF (blue circles) are compared with those in randomized hypergraphs
(red ‘x’ marks) in the first row and the second row, respectively. The difference between the distributions in
the first row is less clear, compared to the difference in the second row. These results reveal a limitation of
HYPERFF. The overlaps of hyperedges generated by HYPERFF are not realistic but close to random.

5. The homogeneity of hyperedges. The homogeneity of a hyperedge e is defined as

∑
{u,v}∈(e

2)

|{e′ ∈ E | {u,v} ∈ e′}|/
(
|e|
2

)
if |e|> 1 and 0 otherwise.

Such a comparison in the email dataset is given in the second row in 11. We observe the clear
difference between the distributions in the email dataset and the corresponding distributions
in the randomized hypergraph.

We investigate the distributions of the above five measures in a hypergraph generated by
HYPERFF with p= 0.51 and q= 0.2. As in Lee et al. (2021), we remove the duplicate edges
in the generated hypergraph, and we compare the distributions in the generated graph with
those in a randomized hypergraph. The distributions are plotted in the first row in Figure
11. The difference between the distributions in the hypergraph generated by HYPERFF and
the corresponding distributions in the randomized hypergraph was not clear. The results
reveal a limitation of HYPERFF. The overlaps of hyperedges generated by HYPERFF are
not realistic but close to random.

6.2.4 Hypergraph motifs and characteristic profile of hypergraphs.

Lee et al. (2020) propose 26 hypergraph motifs (h-motifs), which categorize all connectivity
patterns among three connected hyperedges. After counting the instances of each h-motif
in the input hypergraph, they compute the significance of each h-motif by comparing the
counts in the hypergraph against those in randomized hypergraphs. Then, they form a 26-
dimensional vector corresponding to the significances of all h-motifs. After that, they com-
pute the characteristic profile (CP) of the input hypergraph, by normalizing the significance
vector so that its L2-norm becomes 1. They authors demonstrate that real-world hypergraphs
from the same domain tend to have similar CPs, while CPs of hypergraphs from different
domains are distinct.

Do hypergraphs generated by HYPERFF have local connectivity patterns distinguished
from those in randomized hypergraphs? Are the patterns close to those in real-world hyper-
graphs? Among the six considered real-world hypergraphs, whose patterns are most similar
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Fig. 12 Occurrences of hypergraph motifs (Lee et al., 2020). We count the instances of each hypergraph
motif in the hypergraph generated by HYPERFF and a randomized one. There is a clear difference between
the distributions of the counts in the two hypergraphs. For instance, there are 5 orders of magnitude less h-
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Fig. 13 Characteristic profiles (CPs) (Lee et al., 2020) of hypergraphs. Among the six considered real-
world hypergraphs, the contact dataset and the email dataset are most similar (with the highest correlation
coefficients) to a hypergraph generated by HYPERFF in terms of local connectivity patterns.

to what HYPERFF produces? To answer these questions, we first count the instances of
each h-motif in (1) all six considered real-world hypergrphs, (2) a hypergraph generated
by HYPERFF with p = 0.51 and q = 0.2, (3) and hypergraphs randomized from each of
the hypergraphs, after removing all duplicate hyperedges as in Lee et al. (2020). Since the
hypergraphs contain a very large number of h-motif instances, we have to rely on MOCHY-
A+, which approximately count the instances of each h-motif, instead of exact counting
algorithms. Then, we investigate the CPs of them. After that, we measure the correlation
coefficients between the CPs of the hypergraph generated by HYPERFF and each of the
real-world hypergraphs.

As seen in Figure 12, the counts of each h-motif in the hypergraph generated by HY-
PERFF are quite different from those in the randomized one. For instance, the generated
hypergraph has 5 orders of magnitude less h-motif 1’s instances but 16 times more h-motif
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23’s instances than the randomized hypergraph. That is, the generated hypergraph has local
connectivity patterns distinguished from those in the randomized one.

In terms of the correlation coefficients, the hypergraph generated by HYPERFF is most
similar to the contact dataset and the email dataset. The correlation coefficients were around
0.72 and 0.64 with the contact dataset and the email dataset, respectively. Note that both
datasets capture the group social interactions among people. As seen in Figure 13, the hy-
pergraph generated by HYPERFF share similar significances of h-motifs 1-4 and h-motifs
17-26 with several real-world hypergraphs, while the significances of h-motifs 5-16 in it are
distinct from those in all real-world hypergraphs.

6.3 Effects of parameters

We study how each parameter of HYPERFF (i.e., the burning probability p and the ex-
panding probability q) affect the structures and dynamics of hypergraphs that HYPERFF
produces. Especially, we examine whether the 7 empirical patterns discussed in Section 4
emerge as we change each parameter while fixing the other.

We first observe that the burning probability p mainly affects how rapidly the generated
hypergraphs become dense and whether their effective diameter decreases or not. As seen in
Figure 14, when p is small, the effective diameter increases over time. when p is large, the
effective diameter decreases over time. As p grows, generated hypergraphs become dense
faster. We also note that the expanding probability q affects the singular value distribution, as
seen in Figure 15. Specifically, when q is large, a singular value becomes highly dominant.

6.4 Ablation study

To highlight the benefits of our design choices, we perform an ablation study. Specifi-
cally, we focus on verifying the importance of the recursive application of each step of
HYPERFF for reproducing realistic structural and dynamical properties. To this end, we
examine whether the following variants of HYPERFF successfully generate the 7 patterns
discussed in Section 4:

(1) HYPERFF-p: variant of HYPERFF without recursive application of the burning step,
(2) HYPERFF-q: variant of HYPERFF without recursive application of the expanding step,
(3) HYPERFF-a: variant of HYPERFF without recursive application of the burning and ex-

panding steps,
(4) HYPERFF-pz: variant of HYPERFF-p where n is sampled from the zeta distribution with

parameter p during the burning step,
(5) HYPERFF-qz: variant of HYPERFF-q where n is sampled from the zeta distribution with

parameter q during the expanding step,
(6) HYPERFF-az: variant of HYPERFF-a where n is sampled from the zeta distributions

with parameter p and q during the burning and expanding steps, respectively.

We use zeta distributions for some of the variants since they follow a power-law relation.
For a fair comparison, we control the parameters of the variants so that the average degree
and the average hyperedge size of the hypergraph generated by the variants approximately
match those of the hypergraph generated by HYPERFF with p = 0.51 and q = 0.2.
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Fig. 14 Effect of the burning parameter p. We investigate the structures and dynamics of what HYPERFF
generates as we change the burning parameter p while fixing the expanding parameter q to 0.2. When p is
small, the effective diameter increases over time. The effective diameter decreases over time when p is large.
As p grows, the generated hypergraphs become dense faster.

We compare the structures and dynamics of hypergraphs generated by HYPERFF and
its variants in Figures 16 and 17. We first observe that HYPERFF-p and HYPERFF-a pro-
duce fewer low degree nodes, compared to HYPERFF. Moreover, they failed to reproduce
shrinking diameters. HYPERFF and HYPERFF-q lead to similar results only except that
HYPERFF-q leads to fewer large hyperedges and fewer intersections of large size between
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Fig. 15 Effect of the expanding parameter q. We investigate the structures and dynamics of what HY-
PERFF generates as we change the expanding parameter q while fixing the burning parameter p to 0.51.
When q is large, a singular value becomes highly dominant.

hyperedges than HYPERFF. One reason behind this similarity is that the depth of recursion
during the expanding step is usually shallower than that of the burning step, since q is smaller
than p. Regarding the variants with zeta distributions, HYPERFF-pz and HYPERFF-az still
fail to reprodce shrinking diameters, while they reproduce heavy-tailed degree distributions
better than HYPERFF-p and HYPERFF-a. HYPERFF-qz and HYPERFF-az produces a dom-
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HYPERFF HYPERFF-p HYPERFF-q HYPERFF-a
avg. degree: 97.53 avg. degree: 98.37 avg. degree: 97.42 avg. degree: 102.14

avg. edge size: 2.332 avg. edge size: 2.333 avg. edge size: 2.333 avg. edge size: 2.334
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Fig. 16 Ablation study (1). HYPERFF-p and HYPERFF-a fail to reproduce shrinking diameters. Moreover,
they produce fewer low-degree nodes than HYPERFF. HYPERFF-q leads to fewer large hyperedges and fewer
intersections of large size between hyperedges, compared to HYPERFF.

inant singular value, and the maximum sizes of hyperedges and intersections in hypergraphs
generated by them are much larger than those in the hypergraph generated by HYPERFF.
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HYPERFF HYPERFF-pz HYPERFF-qz HYPERFF-az
avg. degree: 97.53 avg. degree: 96.56 avg. degree: 102.01 avg. degree: 101.34

avg. edge size: 2.332 avg. edge size: 2.331 avg. edge size: 2.344 avg. edge size: 2.349
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Fig. 17 Ablation study (2). Although HYPERFF-pz and HYPERFF-az reproduce heavy-tailed degree distri-
butions better than HYPERFF-p and HYPERFF-a, they still fail to reproduce shrinking diameters. HYPERFF-
qz and HYPERFF-az cause a highly dominant singular value.

7 Conclusions

Despite the omnipresence of hypergraphs, relatively little attention has been paid to struc-
tural and dynamical patterns of real-world hypergraphs. Toward more extensive and thor-
ough understanding of the real-world hypergraphs, we closely examine four structural and



36 Ko et al.

three dynamical patterns prevalent in them. The former includes the heavy-tailed distribu-
tions of (S1) degrees, (S2) hyperedge sizes, (S3) intersection sizes, and (S4) singular values
of incidence matrices. The latter includes (T1) diminishing overlaps, (T2) densification, and
(T3) shrinking diameters. We validate the significance of these patterns by comparison with
a null model and statistical tests.

We also propose a generative model HYPERFF, which captures all seven observed pat-
terns and also shows results compatible with previous findings. Especially, it has only two
scalars (e.g., burning and expanding probabilities) as parameters, and it does not rely on
any external information for imitating realistic patterns. Surprisingly, HYPERFF is made
up of simple and intuitive mechanisms on individual nodes, which non-trivially lead to all
the examined macroscopic patterns. In addition, we provide theoretical justifications and
mathematical analysis using a simplified version of HYPERFF.

For reproducibility, we make the source code and datasets used in this work publicly
available at https://github.com/jihoonko/HyperFF.
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