

# **Evolution of Real-world Hypergraphs: Patterns and Models without Oracles**



Yunbum Kook



Jihoon Ko



**Kijung Shin** 

#### **Graphs are Everywhere!**



#### Examples of well-known properties of graphs

- Power-law distributions of spectra and degrees [TM77]
- Densification [LKF07]
- Shrinking diameter over time [LKF07]
- Triadic closure [HTWLF14]
- Temporal Locality [S17]
- → These properties are useful in design and analysis of graph algorithms [CRS12, GS12, KKS20]

#### Models proposed for the patterns

- Preferential Attachment [BA99]
- Forest Fire [LKF07]



• Kronecker graphs [LCKFG10]



| 0.64 | 0.48 | 0.48 | 0.36 |
|------|------|------|------|
| 0.48 | 0.16 | 0.36 | 0.12 |
| 0.48 | 0.36 | 0.16 | 0.12 |
| 0.36 | 0.12 | 0.12 | 0.04 |

#### Not all datasets are through "Graph"

• Example: Co-authorship



#### Q. How to represent it by using a graph?

#### Not all datasets are through "Graph" (cont.)

Simple reduction to pairwise interaction



#### Not all datasets are through "Graph" (cont.)

Simple reduction to pairwise interaction



# Not all datasets are through "Graph" (cont.)

Simple reduction to pairwise interaction



#### Hypergraph: natural extension of graph

- Hypergraphs consist of nodes and hyperedges.
- Each hyperedge is a subset of any number of nodes.





#### Co-purchases of Items

**Collaborations of Researchers** 

# Using high-order information is helpful

- The harder tasks are, the more useful utilizing information on highorder interactions is. [YSSY20]
- Hypergraphs are considered in many domains.
  - Computer Vision [HLM09]
  - Recommendation [LL13]
  - Graph Learning [FYZJG19]

#### **Previous study**

- Our understanding of real-world hypergraphs is not as thorough as that of graphs.
- Hard to investigate them.
  - Daunting complexity arises from various edge size.
- As an alternative, these are reduced to pairwise interactions and then are investigated.

#### **Our Questions**

• Q1. What kind of macroscopic structural and dynamical patterns can we observe in real-world hypergraphs?



#### **Our Questions**

• Q2. What can be underlying local dynamics on individuals, which ultimately lead to the observed patterns, beyond apparently random evolution?



#### Outline

#### Preliminaries

- Macroscopic patterns
  - Static patterns
  - Temporal patterns
- HyperFF: random hypergraph model
- Summary

#### Preliminaries

- Hypergraph G = (V, E)
  - a set V of <u>nodes</u>
  - a set  $E \subseteq 2^V$  of <u>hyperedges</u>



- Incidence Matrix  $I \in \{0,1\}^{|V| \times |E|}$ 
  - Indicates the membership of the nodes V in the hyperedge E
  - Each (*i*, *j*)-th entry *I*<sub>*ij*</sub> of *I* is 1 iff j-th hyperedge in E contains the i-th node in V.

|       | $e_1$ | $e_2$ | $e_3$ | $e_4$ |
|-------|-------|-------|-------|-------|
| $v_1$ | 1     | 1     | 0     | 0     |
| $v_2$ | 1     | 0     | 1     | 0     |
| $v_3$ | 1     | 0     | 1     | 0     |
| $v_4$ | 0     | 1     | 0     | 0     |
| $v_5$ | 0     | 0     | 0     | 1     |

## Preliminaries

- Heavy-tailed distribution
  - Tails of <u>heavy-tailed distributions</u> decay slower than exponential distributions
  - Typical example: Power-law distribution
    - $P(X) \propto 1/|X|^{\alpha}$  for some constant  $\alpha > 0$
    - Straight line on the log-log plot of the probability distribution



#### Goodness of Fit

- It is difficult to argue that an empirical dataset genuinely follows a target distribution
- Utilize the log likelihood-ratio test to compare two or more candidate distributions

#### Datasets

| Dataset name | Number of nodes | Number of hyperedges | Brief Summary      |
|--------------|-----------------|----------------------|--------------------|
| contact      | 327             | 172,035              | Social Interaction |
| email        | 1,005           | 235,263              | Email              |
| tags         | 3,029           | 271,233              | Q&A                |
| substances   | 5,556           | 112,919              | Drug               |
| threads      | 176,445         | 719,792              | Q&A                |
| coauth       | 1,924,991       | 3,700,067            | Co-authorship      |

## Outline

- Preliminary
- Macroscopic patterns
  - Static patterns
  - Temporal patterns
- HyperFF: random hypergraph model
- Summary

• Pattern 1. Heavy-tailed degree distribution



• Pattern 2. Heavy-tailed hyperedge size distribution



• Pattern 3. Heavy-tailed intersection size



#### Notation

The intersection size of two hyperedges is the number of nodes commonly contained in two hyperedges

• Pattern 4. Skewed singular values of incidence matrix



#### **Comparison with Null model**



A sequence generated by null model

## **Comparison with Null model**

• Null model generated from *substance* dataset



## Outline

- Preliminary
- Macroscopic patterns
  - Static patterns
  - Temporal patterns
- HyperFF: random hypergraph model
- Summary

• Pattern 1. Diminishing overlaps



For a hypergraph  $G_t = (V_t, E_t)$  at time t, the number of intersecting pairs at time t is computed as  $|\{\{e_i, e_j\} | e_i, e_j \in E_t, e_i \cap e_j \neq \phi\}|$ , and density of interactions (Dol) is the ratio of the number of intersecting pairs to the number of all possible pairs

Pattern 1. Diminishing overlaps



• Pattern 2. Densification



• Pattern 3. Shrinking diameter



#### Notation

Effective diameter is the smallest *d* such that the paths of length at most *d* connect 90% of all reachable pairs of nodes

## Outline

- Preliminary
- Macroscopic patterns
  - Static patterns
  - Temporal patterns
- HyperFF: random hypergraph model
- Summary

- How do we meet friends at a party?
- How do we identify references when writing papers?





 The new node u chooses a random ambassador w from the hypergraph so far and burns the ambassador



 The new node u chooses a random ambassador w from the hypergraph so far and burns the ambassador

2) Burn n neighbors of the ambassador w in descending order of 'tie strength', where n is sampled from the geometric distribution with mean p/(1-p).
(p: burning probability)



3) Recursively apply (2) to each burned neighbor by viewing a burned neighbor as a new ambassador of the new node  $u_{\perp}$ 

?

4) For each burned node v, form a hyperedge {u, v} and increase 'tie strength' of {u, v} by 1.

What is a reasonable way to expand each size-2 hyperedge?





Research group looking for a new researcher to work with...

Bring the new!



5) For each hyperedge created in (4), reset the burning history and start the burning process at the burned node v in which we use the geometric distribution with mean  $\frac{q}{1-q}$ , expand the hyperedge until the process ends.

(q: expanding probability)

#### Generated hypergraph using HyperFF

• Empirical Static Patterns with (p,q) = (0.51, 0.2)



#### Generated hypergraph using HyperFF

• Empirical Dynamical Patterns with (p,q) = (0.51, 0.2)



- HyperFF reproduces all examined patterns without relying on exter nal information!
- The mechanisms on individual nodes are simple and intuitive!
  - It has only two scalars as parameter
  - It does not directly impose but eventually lead to the examined patterns

## Outline

- Preliminary
- Macroscopic patterns
  - Static patterns
  - Temporal patterns
- HyperFF: random hypergraph model
- Summary

# Summary

- Structural and dynamical patterns of real-world hypergraphs
- Propose a generative model HyperFF



The code and datasets used in the paper are available at https://github.com/yunbum-kook/icdm20-hyperff



# **Evolution of Real-world Hypergraphs: Patterns and Models without Oracles**



Yunbum Kook



Jihoon Ko



**Kijung Shin**