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Graphs are  Everywhere !

4B+ web pages 5M papers 6K+ proteins

Icon made by Freepik from www.flaticon.com



Examples of well -known properties of graphs

ÅPower-law distributions of spectra and degrees [TM77]

ÅDensification [LKF07]

ÅShrinking diameter over time [LKF07]

ÅTriadic closure [HTWLF14]

ÅTemporal Locality [S17]

è Rfcqc npmncprgcq _pcuseful in design and analysis of graph algorithms
[CRS12, GS12, KKS20]



Models proposed for the patterns

ÅPreferential Attachment [BA99]

ÅForest Fire [LKF07]

ÅKronecker graphs [LCKFG10]
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Lmr _jj b_r_qcrq _pc rfpmsef ²Ep_nf³

ÅExample: Co-authorship

Co-authors of Paper 1

Q. How to represent it by using a graph?
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ÅSimple reduction to pairwise interaction

Co-authors of Paper 1
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ÅSimple reduction to pairwise interaction

Co-authors of Paper 1
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ÅSimple reduction to pairwise interaction
Co-authors of Paper 1

Co-authors of Paper 2

Co-authors of Paper 3

May lead to performance 
degradation [YSSY20]



Hypergraph: natural extension of graph

ÅHypergraphs consist of nodes and hyperedges.

ÅEach hyperedge is a subset of any number of nodes.

Collaborations of ResearchersCo-purchases of Items



Using high -order information is helpful

ÅThe harder tasks are, the more useful utilizing information on high -
order interactions is. [YSSY20]

ÅHypergraphs are considered in many domains.
ÅComputer Vision [HLM09]
ÅRecommendation [LL13]
ÅGraph Learning [FYZJG19]



Previous study

ÅOur understanding of real -world hypergraphs is not as thorough as 
that of graphs.

ÅHard to investigate them.
ÅDaunting complexity arises from various edge size.

ÅAs an alternative, these are reduced to pairwise interactions and 
then are investigated.



Our Questions

ÅQ1. What kind of macroscopic structural and dynamical patterns
can we observe in real -world hypergraphs?
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Our Questions

ÅQ2. What can be underlying local dynamics on individuals , which 
ultimately lead to the observed patterns, beyond apparently 
random evolution?

ὺὺ ὺ ὺὺ

▄

▄▄ ▄

ὺ
(new node)
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Preliminaries

ÅHypergraph Ὃ ὠȟὉ
Åa set ὠof nodes
Åa set ὉṖς of hyperedges

ὺὺ ὺ ὺὺ

▄

▄▄ ▄

Size of Ὡ: 3
Degree of ὺ: 2

Neighborhood of ὺ:
ὺȟὺȟὺ

Example

Ὡ Ὡ Ὡ Ὡ

ὺ 1 1 0 0

ὺ 1 0 1 0

ὺ 1 0 1 0

ὺ 0 1 0 0

ὺ 0 0 0 1

ÅIncidence Matrix Ὅɴ πȟρ
ÅIndicates the membership of the 

nodes ὠin the hyperedge Ὁ
ÅEach ὭȟὮ-th entry Ὅ of Ὅis 1 iff          

j- th hyperedge in E contains             
the i -th node in V. 



Preliminaries

ÅHeavy-tailed distribution
ÅTails of heavy-tailed distributions decay slower than 

exponential distributions
ÅTypical example: Power -law distribution
Åὖὢ ᶿρȾὢ for some constant ‌ π

ÅStraight line on the log -log plot of the probability 
distribution

ÅGoodness of Fit
ÅIt is difficult to argue that an empirical dataset genuinely 

follows a target distribution
ÅUtilize the log likelihood -ratio test to compare two or more 

candidate distributions
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Datasets

Dataset name Number of nodes Number of hyperedges Brief Summary

contact 327 172,035 Social Interaction

email 1,005 235,263 Email

tags 3,029 271,233 Q&A

substances 5,556 112,919 Drug

threads 176,445 719,792 Q&A

coauth 1,924,991 3,700,067 Co-authorship
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Static patterns

ÅPattern 1. Heavy -tailed degree distribution
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Degree of a node ὺis the number of hyperedges containing ὺ

Notation



Static patterns

ÅPattern 2. Heavy -tailed hyperedge size distribution
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Size of a hyperedge Ὡis the number of nodes in the hyperedge Ὡ

Notation



Static patterns

ÅPattern 3. Heavy -tailed intersection size
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The intersection size of two hyperedges is the number of 
nodes commonly contained in two hyperedges

Notation



Static patterns

ÅPattern 4. Skewed singular values of incidence matrix
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Comparison with Null model

Ὡ Ὡ Ὡ
A real sequence of a set of hyperedges

Ὡ Ὡ Ὡ

A sequence generated by null model



Degree Intersection size Singular value

Comparison with Null model
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ÅNull model generated from substance dataset
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Temporal Patterns

ÅPattern 1. Diminishing overlaps
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ý x
0.96

10
2

10
4

10
6

10
8

10
4
10
6
10
8
10
10

# of all pairs

#
 o
f 
in
te
r-

s
e
c
ti
n
g
 p
a
ir
s
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For a hypergraph Ὃ ὠȟὉ at time ὸ, the number of intersecting pairs
at time t is computed as ὩȟὩ ὩȟὩᶰὉȟὩ᷊Ὡ ‰ , and density of 
interactions (DoI) is the ratio of the number of intersecting pairs to the 
number of all possible pairs

Notation



Temporal Patterns

ÅPattern 1. Diminishing overlaps
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$Ï)ÔᶿØÔ
ÙÔ= # of intersecting pairs at time ὸ
ØÔ= # of all possible pairs at time ὸ
ί= the slope of fitted lines on
the log -log plot of ÙÔover ØÔ

Notation


