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Evolution of Real -world Hypergraphs:
Patterns and Models without Oracles
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Graphs are Everywhere !
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Examples of well -known properties of graphs

APower -law distributions of spectra and degrees [TM77]
ADensification [LKFO07]

AShrinking diameter over time [LKFO07]

ATriadic closure [HTWLF14]

ATemporal Locality [S17]

e Rf cqgc npmuosefplinglesmn ang analysis of graph algorithms
[CRS12,GS12, KKS20]




Models proposed for the patterns

APreferential Attachment [BA99]
AForest Fire [LKFO7]
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AKronecker graphs [LCKFG10]
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AExample: Co-authorship

Co authors of Paper 1
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Q. How to represent it by using a graph?
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ASimple reduction to pairwise interaction
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ASimple reduction to pairwise interaction

Co authors of Paper 1
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ASimple reduction to pairwise interaction
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May lead to performance
degradation [YSSY20]
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Hypergraph:

natural extension of graph

AHypergraphs consist of nodes and hyperedges.
AEach hyperedge is a subset of any number of nodes.
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Co-purchases of Items

Collaborations of Researchers




Using high -order information is helpful

AThe harder tasks are, the more useful utilizing information on high
order interactions is. [YSSY20]

AHypergraphs are considered in many domains.
AComputer Vision [HLMO09]
ARecommendation [LL13]
AGraph Learning [FYZJG19]



Previous study

AOur understanding of real -world hypergraphs is not as thorough as
that of graphs.

AHard to investigate them.
ADaunting complexity arises from various edge size.

AAs an alternative, these are reduced to pairwise interactions and
then are investigated.



Our Questions

AQ1. What kind of macroscopic structural and dynamical  patterns
can we observe In real -world hypergraphs?
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Our Questions

AQ2. What can be underlying local dynamics on individuals , which
ultimately lead to the observed patterns, beyond apparently
random evolution?

(new node)
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AHyperFF: random hypergraph model
ASummary



Preliminaries

AHypergraph "0 (chO) Alncidence Matrix "0 {rdp}! | ||
Aa set wof nodes Alndicates the membership of the
Aaset 'O P ¢ of hyperedges nodes win the hyperedge O

AEach "QQ-th entry “O of Os 1 iff
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N the 1-th node In V.
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Preliminaries

AHeavy-tailed distribution

ATails of heavy-tailed distributions _decay slower than 10°1°
exponential distributions £ 10°-
ATypical example: Power -law distribution S 10°]
A0 (D) ® prl®| for some constant | T 1075
A Straight line on the log -log plot of the probability
distribution

AGoodness of Fit

Alt is difficult to argue that an empirical dataset genuinely
follows a target distribution

AUtilize the log likelihood -ratio test to compare two or more
candidate distributions




Datasets

Number of nodes Number of hyperedges Brief Summary

contact 172,035 Social Interaction
emalil 1,005 235,263 Email
tags 3,029 271,233 Q&A
substances 5,556 112,919 Drug
threads 176,445 719,792 Q&A

coauth 1,924,991 3,700,067 Co-authorship
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Static patterns

APattern 1. Heavy -tailed degree distribution

coauth threads substances
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| Degree of a node U is the number of hyperedges containing 0




Static patterns

APattern 2. Heavy -tailed hyperedge size distribution
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| Size of a hyperedge Qis the number of nodes in the hyperedge Q




Static patterns

APattern 3. Heavy -tailed intersection size

substances tags email
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The intersection size of two hyperedges is the number of
nodes commonly contained in two hyperedges




Static patterns

APattern 4. Skewed singular values of incidence matrix
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Comparison with Null model

A real sequence of a set of hyperedges
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A sequence generated by null model



Comparison with Null model

ANull model generated

from substance dataset
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Temporal Patterns

APattern 1. Diminishing overlaps

contact email tags
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For a hypergraph 'O  @hO attime 0, the number of intersecting pairs
attime tis computed as  |{{QRQ}|QRQ~ ORQ, 'Q %4/, and density of
iInteractions (Dol) is the ratio of the number of intersecting pairs to the
number of all possible pairs




Temporal Patterns

APattern 1. Diminishing overlaps

contact email tags
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U = # of intersecting pairs at time 0 o R
A = # of all possible pairs at time 6 :> $I O ° 4O
i = the slope of fitted lines on

the log -log plot of W(Q over A0




