ELICIT: Effective and Lightweight Lossy Compression of Tensors

Jihoon Ko

Taehyung Kwon

Jinhong Jung

KAIST

Kijung Shin

Large-scale Tensors are Everywhere!

Traffic volumes

Time rime 3 p.m July 3 2 p.m July 1 p.m July Ο -ocation Source 0 O O 0 $\mathbf{\bullet}$ \bigcirc \bigcirc **Destination** Images Videos Neural-network parameters

Why Compression is Important?

- Handling large-scale tensors as they are...
 - requires heavy memory or network I/O usage (

Generic Tensor Compression

- Methods that do not rely on specific data property assumptions are important
 - ex) Video compression methods, which heavily rely on continuity, are not applicable to tensors in other contexts
- Decomposition-based Methods
 - CP [Caroll et al, 1970], Tucker [Tucker et al., 1966]
 - Breaks down tensors into smaller components
 - Has also been used for other applications
 - ex) tensor completion, neural-network compression

Generic Tensor Compression

- Methods that do not rely on specific data property assumptions are important
 - ex) Video compression methods, which heavily rely on continuity, are not applicable to tensors in other contexts
- Decomposition-based Methods
 - CP [Caroll et al, 1970], Tucker [Tucker et al., 1966]
 - Breaks down tensors into smaller components
 - Has also been used for other applications
 - ex) tensor completion, neural-network compression
- Deep-learning-based methods
 - Generalizes decomposition-based methods with neural networks
 - Extremely slower than decomposition-based methods due to heavy computational cost

ELiCiT: Our Proposed Method

- Question: Can we accelerate tensor compression while maintaining or even improving compression performance?
- Our solution: ELiCiT (Effective Lightweight Compression of Tensors)
 - Significantly reduces computational costs
 - (Partially) generalizes decomposition-based methods and deep-learning-based methods
 - Can be extended to various applications

Introduction

Proposed Method

Experiments Conclusion

Problem Definition

- Given: A tensor $\boldsymbol{\mathcal{X}} \in \mathbb{R}^{N_1 \times N_2 \times \cdots \times N_d}$
- Find: A fitting model Θ
- To minimize: (1) The total size of parameters of $\boldsymbol{\Theta}$ (2) The approximation error $\|\boldsymbol{X} - \boldsymbol{\widetilde{X}}_{\boldsymbol{\Theta}}\|_{F}^{2}$

Introduction Proposed Method Experiments Conclusion Existing Deep-learning-based Techniques

- NeuKron and TensorCodec [Kwon et al., 2023]
 - Generalizes the Kronecker model and tensor-train decomposition using LSTM
 - Proposes order optimization method for tensors to exploit meaningful patterns
 - Outperforms decomposition-based method

Proposed Method Experiments **Limitations of Deep-learning-based Methods**

• While these methods exhibit exceptional compression performance...

Conclusion

- Limitation 1: High Computational Cost of Neural networks
 - Introduces a significant computational burden during training
 - The sequential design imposes limitations on parallelism

Introduction

Introduction Proposed Method Experiments Conclusion Limitations of Deep-learning-based Methods

- Limitation 2: High Computational Cost of Order Optimization
 - The orders cannot be optimized concurrently with other parameters
 - Consumes a substantial portion of the total compression time

Introduction Proposed Method Experiments Conclusion Limitations of Deep-learning-based Methods

- Limitation 3: Limited Expressiveness of Order-based Models
 - Recursively dividing the mode indices into equal-sized groups can be limited

Introduction

Proposed Method

Experiments Conclusion

Key Idea of ELiCiT

Feature-based Index Model

- More expressive index model
- Eliminates the inefficient order optimization process

Lightweight Approximation Process

 Avoids the use of computationally expensive deep neural networks (spec. LSTM)

Clustering-based Quantization

 Reduces the size of features for more efficient compression

Key Idea (1) – Feature-based Index Model

 Feature-based Index Model: ELiCiT uses r-dimensional continuous learnable features to model each index as parameters

Key Idea (1) – Feature-based Index Model

- Feature-based Index Model: ELiCiT uses r-dimensional continuous learnable features to model each index as parameters
- The features of entries are determined based on the features of indices

Key Idea (1) – Feature-based Index Model

- Limitation: High Computational Cost of Order Optimization
- Advantage: End-to-end Training
 - Eliminates the order optimization process and supports gradient descent-based update
 - Significantly reduces the required training time

ELiCiT: Effective and Lightweight Lossy Compression of Tensors

Key Idea (1) – Feature-based Index Model

- Limitation: Limited Expressiveness of Order-Dependent Models
- Solution: Feature-based Index Model
 - Generalizes the order-based models
 - Naturally interprets groups of varying numbers and sizes

Introduction Proposed Method Experiments Conclusion Key Idea (2) – Approximation Process

- <u>Simple case (1)</u>: Each feature of index is <u>one-dimensional binary</u> feature
- 2^d binary reference states (d: order of tensor)
 - Each reference state s_i has its corresponding value v_i
- Finds the reference state identical to the feature vector
- Retrieves the corresponding value

ELiCiT: Effective and Lightweight Lossy Compression of Tensors

Key Idea (2) – Approximation Process

- <u>Simple case (2)</u>: Each feature of index is one-dimensional continuous feature
- 2^d reference states
 - Each reference state s_i has its corresponding value v_i
- Finds the reference state identical to the feature vector <- impossible!
- Use weighted sum instead of matching the feature vectors

ELiCiT: Effective and Lightweight Lossy Compression of Tensors

Introduction Proposed Method Experiments Conclusion Key Idea (2) – Approximation Process

- Each feature of index is multi-dimensional continuous feature
- For each k-th feature, each reference state s_i has its corresponding value $v_{k,i}$
- Uses differentiable reduce function g to determine the final output

Introduction **Proposed Method** Experiments

Key Idea (3) – Clustering-based Quantization

Compressed output size of ELiCiT

(size of features) >> (size of the corresponding values of the reference states)

 \propto #mode indices

 $\propto 2^d$ (*d*: order of tensor)

Conclusion

Key Idea (3) – Clustering-based Quantization

- Compressed output size of ELiCiT
 - = (size of features) + (size of the corresponding values of the reference states)
- Solution qELiCiT: Utilizes clustering-based quantization to reduce the size of features -> q + o(1) bit for each feature, where q << 64

Introduction Proposed Method Experiments Conclusion
Details Comparison with K-means Clustering

• Prepares 2^{*q*} candidates $c_{k,l}^{(j)}$ for each mode index *j* and feature index *k* and finds the closest $c_{k,l}^{(j)}$

Introduction Proposed Method Experiments Conclusion
Details Comparison with K-means Clustering

• Prepares 2^{*q*} candidates $c_{k,l}^{(j)}$ for each mode index *j* and feature index *k* and finds the closest $c_{k,l}^{(j)}$

- Commonalities: Similar to 1D K-means clustering
 - There are multiple candidate values, and the closest one is selected
 - Candidates and features are corresponded to centroids and samples
- Differences
 - The features also should be updated
 - Our quantization method is trained in an end-to-end manner with an objective designed to optimize compression performance

ELiCiT: Effective and Lightweight Lossy Compression of Tensors

Details Extension to Other Real-world Applications

Matrix Completion

- Goal: To predict the missing entries in the input matrix accurately
- Proposed Method: qELiCiT++
 - Modifies SVD++ [Koren, 2008] by replacing low-rank decomposition with qELiCiT

Neural-network Compression

- Goal: To minimize the number of parameters of a neural-network model while minimizing the degradation in the performance of the compressed model
- Proposed Method: TFW-qELiCiT
 - Modifies TFWSVD [Hua et al., 2022] by replacing SVD with qELiCiT

Introduction Proposed Method

Experiments

Conclusion

Experimental Setting

• Datasets: 8 real-world tensors (up to 200M entries)

- Baseline Methods:
 - Decomposition-based : CPD, TKD, TTD, TRD
 - Deep-learning-based: NeuKron, TensorCodec

Introduction Proposed Method Experiments
ELICIT is Compact and Accurate

- qELiCiT provides compact and accurate compression of tensors
 - Up to 5.05 × smaller compression size and 48% higher accuracy

Conclusion

ELiCiT is Fast

- qELiCiT is significantly faster than the existing deep-learning-based methods
 - The compression speed of qELiCiT is up to 96× faster than that of TensorCodec with a similar compression size

Introduction Proposed Method

Experiments

Conclusion

ELiCiT is Applicable (1)

- Matrix Completion
 - In all settings, except for the largest budget on the ML-10M dataset, qELiCiT++ outperforms its competitors

Introduction Proposed Method

Conclusion

ELiCiT is Applicable (2)

- Neural-network Compression
 - Achieved a compression size of 116MiB, which is 54.7% smaller than 256MiB of TFWSVD, while showing competitive accuracy

	<u> </u>						<u> </u>		
Model (Size)	CoLA	MNLI	MRPC	QNLI	QQP	SST-2	STSB	Avg.	(Higher is better)
BERT _{base}	59.1	84.7 +0.2	90.5 +0.7	91.7 +0.1	88.1	92.8 +0.4	89.4	85.2	
(410/01D)	1 1.7	10.2	10.7	10.1	10.5	10.4	10.5		
SVD (256MiB)	44.4	82.9 +0.3	86.8 +0.6	89.7 +0.2	87.5 +0.3	$\frac{91.3}{+0.6}$	86.9	81.3	
FWSVD	50.2	83.3	88.1	90.3	87.6	91.0	88.1		
(256MiB)	±1.1	± 0.4	±0.9	± 0.2	± 0.3	±0.5	±0.3	82.7	
TFWSVD	4.7	79.0	83.7	86.1	85.7	87.4	84.7	73.0	
(134MiB)	±7.4	±0.4	±0.6	±0.5	±0.3	±0.9	±0.5	75.0	
TFWSVD	42.2	81.5	86.9	88.8	86.9	89.4	87.0	80.4	
(175MiB)	±2.4	±0.2	±0.9	±0.2	±0.2	±0.5	±0.4		•
TFWSVD (256MiB)	53.8 ±1.6	83.5 ±0.2	$\frac{89.9}{\pm 0.9}$	$\frac{90.4}{\pm 0.2}$	87.4 ±0.3	90.7 ±0.4	$\frac{88.6}{\pm 0.5}$	83.5	
TFW-qELICIT	55.3	83.3	89.8	90.4	87.4	91.1	88.6	02 7	
(116MiB)	±1.6	±0.3	±0.5	±0.2	±0.3	±0.6	±0.4	<u>03.7</u>	
TFW-EL1C1T (256MiB)	57.4 ±0.9	83.5 ±0.5	90.0 ±0.6	90.6 ±0.3	$\frac{87.5}{\pm 0.3}$	91.4 ±0.9	88.7 ±0.4	84.1	

GLUE Tasks

ELiCiT: Effective and Lightweight Lossy Compression of Tensors

Conclusion

We propose ELiCiT, an efficient lossy tensor compression method

Code and datasets are available at https://github.com/jihoonko/icdm24-elicit

ELICIT: Effective and Lightweight Lossy Compression of Tensors

Jihoon Ko

Taehyung Kwon

Jinhong Jung

KAIST

Kijung Shin