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Large-scale Tensors are Everywhere!

2ELiCiT: Effective and Lightweight Lossy Compression of Tensors

Air pollutant 
measurementsTraffic volumes

Destination Pollutant type

1 p.m.

2 p.m.

3 p.m.

S
o

u
rc

e
July 1

July 2

July 3

L
o

ca
ti

o
n

Images                   Videos                   Neural-network parameters

Introduction Proposed Method        Experiments        Conclusion



Why Compression is Important?
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• Handling large-scale tensors as they are...
• requires heavy memory or network I/O usage

• Their compact representation reduces storage and communication costs

Real-world Large-scale Tensors
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Generic Tensor Compression
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• Methods that do not rely on specific data property assumptions are important
• ex) Video compression methods, which heavily rely on continuity, are not applicable to 

tensors in other contexts

• Decomposition-based Methods
• CP [Caroll et al, 1970], Tucker [Tucker et al., 1966]

• Breaks down tensors into smaller components

• Has also been used for other applications
• ex) tensor completion, neural-network compression
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Generic Tensor Compression
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• Methods that do not rely on specific data property assumptions are important
• ex) Video compression methods, which heavily rely on continuity, are not applicable to 

tensors in other contexts

• Decomposition-based Methods
• CP [Caroll et al, 1970], Tucker [Tucker et al., 1966]

• Breaks down tensors into smaller components

• Has also been used for other applications
• ex) tensor completion, neural-network compression

• Deep-learning-based methods
• Generalizes decomposition-based methods with 

neural networks

• Extremely slower than decomposition-based 
methods due to heavy computational cost
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ELiCiT: Our Proposed Method
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• Question: Can we accelerate tensor compression while maintaining or even 
improving compression performance?
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ELiCiT

• Our solution: ELiCiT (Effective Lightweight 
Compression of Tensors)
• Significantly reduces computational costs

• (Partially) generalizes decomposition-based 
methods and deep-learning-based methods

• Can be extended to various applications
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Problem Definition
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• Given: A tensor 𝓧 ∈ ℝ𝑁1×𝑁2×⋯×𝑁𝑑

• Find: A fitting model 𝚯
• To minimize: (1) The total size of parameters of 𝜣

(2) The approximation error 𝓧− ෩𝓧𝚯 𝐹

2

Compression Model
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Existing Deep-learning-based Techniques

• NeuKron and TensorCodec [Kwon et al., 2023]
• Generalizes the Kronecker model and tensor-train decomposition using LSTM

• Proposes order optimization method for tensors to exploit meaningful patterns

• Outperforms decomposition-based method
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Find similar pairs of slices
and Exchange slices with the neighboring slices



Limitations of Deep-learning-based Methods

• While these methods exhibit exceptional compression performance...

• Limitation 1: High Computational Cost of Neural networks
• Introduces a significant computational burden during training

• The sequential design imposes limitations on parallelism
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Bottleneck!
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Limitations of Deep-learning-based Methods

• Limitation 2: High Computational Cost of Order Optimization
• The orders cannot be optimized concurrently with other parameters

• Consumes a substantial portion of the total compression time
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Limitations of Deep-learning-based Methods

• Limitation 3: Limited Expressiveness of Order-based Models
• Recursively dividing the mode indices into equal-sized groups can be limited
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Different Sizes of 
Location Groups
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Key Idea of ELiCiT
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Feature-based
Index Model

Lightweight
Approximation Process

Clustering-based
Quantization

• More expressive index model
• Eliminates the inefficient 

order optimization process

• Avoids the use of 
computationally expensive 
deep neural networks       
(spec. LSTM)

• Reduces the size of features 
for more efficient 
compression
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Key Idea (1) – Feature-based Index Model

• Feature-based Index Model: ELiCiT uses r-dimensional continuous learnable 
features to model each index as parameters
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Key Idea (1) – Feature-based Index Model

• Feature-based Index Model: ELiCiT uses r-dimensional continuous learnable 
features to model each index as parameters

• The features of entries are determined based on the features of indices
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Key Idea (1) – Feature-based Index Model

• Limitation: High Computational Cost of Order Optimization

• Advantage: End-to-end Training
• Eliminates the order optimization process and supports gradient descent-based update

• Significantly reduces the required training time
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Key Idea (1) – Feature-based Index Model

• Limitation: Limited Expressiveness of Order-Dependent Models

• Solution: Feature-based Index Model
• Generalizes the order-based models

• Naturally interprets groups of varying numbers and sizes
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Key Idea (2) – Approximation Process

• Simple case (1): Each feature of index is one-dimensional binary feature

• 2𝑑 binary reference states (𝑑: order of tensor)
• Each reference state 𝑠𝑖 has its corresponding value 𝑣𝑖

• Finds the reference state identical to the feature vector

• Retrieves the corresponding value
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Key Idea (2) – Approximation Process

• Simple case (2): Each feature of index is one-dimensional continuous feature

• 2𝑑 reference states
• Each reference state 𝑠𝑖 has its corresponding value 𝑣𝑖

• Finds the reference state identical to the feature vector <- impossible!

• Use weighted sum instead of matching the feature vectors
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Key Idea (2) – Approximation Process

• Each feature of index is multi-dimensional continuous feature

• For each 𝑘-th feature, each reference state 𝑠𝑖 has its corresponding value 𝑣𝑘,𝑖

• Uses differentiable reduce function 𝑔 to determine the final output
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Key Idea (3) – Clustering-based Quantization

• Compressed output size of ELiCiT
• = (size of features) + (size of the corresponding values of the reference states) 
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Key Idea (3) – Clustering-based Quantization

• Compressed output size of ELiCiT
• = (size of features) + (size of the corresponding values of the reference states) 

• Solution - qELiCiT: Utilizes clustering-based quantization to reduce the size of 
features -> q + o(1) bit for each feature, where q << 64
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Details Comparison with K-means Clustering

• Prepares 2𝑞 candidates 𝑐𝑘,𝑙
(𝑗) for each mode index 𝑗 and feature index 𝑘 and 

finds the closest 𝑐𝑘,𝑙
𝑗
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Details Comparison with K-means Clustering

• Prepares 2𝑞 candidates 𝑐𝑘,𝑙
(𝑗) for each mode index 𝑗 and feature index 𝑘 and 

finds the closest 𝑐𝑘,𝑙
𝑗

• Commonalities: Similar to 1D K-means clustering
• There are multiple candidate values, and the closest one is selected

• Candidates and features are corresponded to centroids and samples

• Differences
• The features also should be updated

• Our quantization method is trained in an end-to-end manner with an objective 
designed to optimize compression performance
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Details Extension to Other Real-world Applications

• Matrix Completion 
• Goal: To predict the missing entries in the input matrix accurately

• Proposed Method: qELiCiT++
• Modifies SVD++ [Koren, 2008] by replacing low-rank decomposition with qELiCiT

• Neural-network Compression 
• Goal: To minimize the number of parameters of a neural-network model while 

minimizing the degradation in the performance of the compressed model

• Proposed Method: TFW-qELiCiT
• Modifies TFWSVD [Hua et al., 2022] by replacing SVD with qELiCiT
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Experimental Setting

• Datasets: 8 real-world tensors (up to 200M entries)

• Baseline Methods:
• Decomposition-based : CPD, TKD, TTD, TRD

• Deep-learning-based: NeuKron, TensorCodec
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ELiCiT is Compact and Accurate

• qELiCiT provides compact and accurate compression of tensors
• Up to 5.05× smaller compression size and 48% higher accuracy
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ELiCiT is Fast

• qELiCiT is significantly faster than the existing deep-learning-based methods
• The compression speed of qELiCiT is up to 96× faster than that of TensorCodec with a 

similar compression size
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ELiCiT is Applicable (1)

• Matrix Completion
• In all settings, except for the largest budget on the ML-10M dataset, qELiCiT++ 

outperforms its competitors
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ELiCiT is Applicable (2)

• Neural-network Compression
• Achieved a compression size of 116MiB, which is 54.7% smaller than 256MiB of 

TFWSVD, while showing competitive accuracy
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Conclusion

We propose ELiCiT, an efficient lossy tensor compression method
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Compact and Accurate Fast Applicable

Code and datasets are available at https://github.com/jihoonko/icdm24-elicit
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