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Introduction

Large-scale Tensors are Everywherel

Air pollutant
Traffic volumes measurements

Destination Pollutant type

Images . Videos H Neural-network parameters
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Introduction

Why Compression is Important?

* Handling large-scale tensors as they are...
* requires heavy memory or network |/O usage @

* Their compact representation reduces storage and communication costs
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Real-world Large-scale Tensors tn:n:n:n:l:l:n:l:j
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Introduction

Generic Tensor Compression

* Methods that do not rely on specific data property assumptions are important

* ex) Video compression methods, which heavily rely on continuity, are not applicable to
tensors in other contexts

S
* Decomposition-based Methods g 2 A

 CP [Caroll et al, 1970], Tucker [Tucker et al., 1966] '-'CJ a
* Breaks down tensors into smaller components [e 8
. . +— QO
e Has also been used for other applications g %
* ex) tensor completion, neural-network compression 5. =

O

Q

Q

<C

Running Time
(Lower is better)
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Introduction

Generic Tensor Compression

* Methods that do not rely on specific data property assumptions are important

* ex) Video compression methods, which heavily rely on continuity, are not applicable to
tensors in other contexts

* Decomposition-based Methods
 CP [Caroll et al, 1970], Tucker [Tucker et al., 1966]
* Breaks down tensors into smaller components

e Has also been used for other applications
* ex) tensor completion, neural-network compression

(Lower is better)

* Deep-learning-based methods

* Generalizes decomposition-based methods with
neural networks

e Extremely slower than decomposition-based
methods due to heavy computational cost

Approximation Error

Running Time
(Lower is better)
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Introduction

ELICIT: Our Proposed Method

* Question: Can we accelerate tensor compression while maintaining or even
improving compression performance?

e Our solution: ELICiT (Effective Lightweight
Compression of Tensors)
* Significantly reduces computational costs

* (Partially) generalizes decomposition-based
methods and deep-learning-based methods

* Can be extended to various applications

(Lower is better)

ELIiCiT
O

Approximation Error

Running Time
(Lower is better)
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Proposed Method

Problem Definition

Air pollutant

: Traffic volumes measurements
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: Destination Pollutant type
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» Given: A tensor X € RN1xNzx--XNg

* Find: A fitting model ©
* To minimize: (1) The total size of parameters of @
(2) The approximation error HX X@”
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Proposed Method

Existing Deep-learning-based Techniques

* NeuKron and TensorCodec [Kwon et al., 2023]
* Generalizes the Kronecker model and tensor-train decomposition using LSTIVI
* Proposes order optimization method for tensors to exploit meaningful patterns
* Outperforms decomposition-based method

Real-valued outputs

Find similar pairs of slices
and Exchange slices with
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Proposed Method

Limitations of Deep-learning-based Methods

* While these methods exhibit exceptional compression performance...

* Limitation 1: High Computational Cost of Neural networks
* Introduces a significant computational burden during training
* The sequential design imposes limitations on parallelism

Real-valued outputs
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Proposed Method

Limitations of Deep-learning-based Methods

 Limitation 2: High Computational Cost of Order Optimization
* The orders cannot be optimized concurrently with other parameters
* Consumes a substantial portion of the total compression time

Order
optimization

Iterative update
Real-valued Outputs .
1 x [] x CJ+4m until convergence

ing
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Model
optimization
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Proposed Method

Limitations of Deep-learning-based Methods

* Limitation 3: Limited Expressiveness of Order-based Models
» Recursively dividing the mode indices into equal-sized groups can be limited

TLC Taxi Zones TLC Taxi Zones TLC Taxi Zones
Staten Island Queens Manhattan

.....

_» — —

(top, left) (bottom, right) (top, right)

e
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e —p

(bottom, right)  (bottom, left)  (bottom, left) ””” 2
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Proposed Method

Key Idea of ELICIT

e eeesmesrsrassssrersaererenns L M

FO) (1 FC) (a); ] Real-valued outputs ________ , ‘12 2
1st |0.5(] 0 || 1 |/0.7 Fl2| 1 ED:D i ~ F.(3,4) 0.7 ‘ :m
: + 1(1,2) 0 ! X X '~ Find the closest
2nd 1 1 03 02 HE@2)| 1|1 R A frommmmmmmmmes T--' values from the
FO(1) | 1 : {lf_in1eaRr Lin:ar LIn:a:' candidates
: or 1xR) r RX X
0 |01} T | oy oy oY Ga Gh G5 G G
0.5k LSTM candidgate |0-0] - ]0.6[0.9] [0.1]0.3 X 1.0
FO@) | 1|0 § Embedding Embedding Embedding Values t t
S fst2ndi . gexa 2] 2 1] 0.7
Feature-based Lightweight Clustering-based
Index Model Approximation Process Quantization
* More expressive index model * Avoids the use of * Reduces the size of features
« Eliminates the inefficient computationally expensive for more efficient
order optimization process deep neural networks compression

(spec. LSTM)
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Proposed Method

Key Idea (1) - Feature-based Index Model

* Feature-based Index Model: ELICiT uses r-dimensional continuous learnable
features to model each index as parameters

F@(1) ... F®(4): Learnable |
: Features of Indices

: in 2"d mode
:2nd| 1 || 1 (/0.3(]0.2 (Parameters)
FO@) [ 1] 1§
Learnable P 0 |0.1]
Featuresof : _
Indices : 0.54
i st :
in 15t mode F0@ 1] 0 :
(Parameters) : t :
: 1st 2ndE it : Input
mEsssEEEEEEEEEEEEEEEEEEEEEE E x E IR X E Tensor

---------------------------------
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Proposed Method

Key Idea (1) - Feature-based Index Model

* Feature-based Index Model: ELICiT uses r-dimensional continuous learnable
features to model each index as parameters

e The features of entries are determined based on the features of indices

F® (1) - F(2 (4)
0.5(| 0 || 1 ]]0.7 |" F(,2) |1 |0
FO (1) | 1 -feeefent
- F(3,4) 0.7
;//"
FU4) | 1
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Proposed Method

Key Idea (1) - Feature-based Index Model

* Advantage: End-to-end Training

* Eliminates the order optimization process and supports gradient descent-based update

* Significantly reduces the required training time
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ELiCiT: Effective and Lightweight Lossy Compression of Tensors

15




Proposed Method

Key Idea (1) - Feature-based Index Model

 Solution: Feature-based Index Model
* Generalizes the order-based models
* Naturally interprets groups of varying numbers and sizes

—

—_ === OO
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Proposed Method

Key Idea (2) - Approximation Process

* Simple case (1): Each feature of index is one-dimensional binary feature

e 2% binary reference states (d: order of tensor)
* Each reference state s; has its corresponding value v;

* Finds the reference state identical to the feature vector

* Retrieves the corresponding value
F(Z)(1) F(Z)(4) ---------------------------
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Proposed Method

Key Idea (2) - Approximation Process

* Simple case (2): Each feature of index is one-dimensional continuous feature

¢ Zd reference states
* Each reference state s; has its corresponding value v;

* Finds the reference state identical to the feature vector <- impossible!

e Use weighted sum instead of matching the feature vectors
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Proposed Method

Key Idea (2) - Approximation Process

* Each feature of index is multi-dimensional continuous feature
* For each k-th feature, each reference state s; has its corresponding value v, ;
* Uses differentiable reduce function g to determine the final output

i :
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Proposed Method

Key Idea (3) - Clustering-based Quantization

* Compressed output size of ELICiT
(size of features) >> (size of the corresponding values of the reference states)

< #mode indices

F(® (4)

0.7

0.2
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Proposed Method

Key Idea (3) - Clustering-based Quantization

* Compressed output size of ELICiT
= (size of features) + (size of the corresponding values of the reference states)

 Solution - gELICiT: Utilizes clustering-based quantization to reduce the size of
features -> g + o(1) bit for each feature, where g << 64
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Proposed Method

DBEENE Comparison with K-means Clustering

* Prepares 29 candidates c!/) for each mode index j and feature index k and
finds the closest ¢}
' oy Coa G G2 G5 Cia G4 G5 G G4
F,3,4)[0.4]07 m) [ B concicate [00] Jos[o9] |o.1[o3 [ 1.0
Find the closest Values 4 4
values from the 0.7
candidates )
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Proposed Method

DBEENE Comparison with K-means Clustering

* Prepares 29 candidates c,((’l) for each mode index j and feature index k and
finds the closest ¢}

v 1 @ (v (1 v @ 1O (1
Ci2 €23 €11 €2 Ci3 Cia Caq G Ca3 Coy

F,3,4) [0.4]0.7 m) [ B concicae [00] Jos[o.9] [0.1]o.3[HT 1.0
t

Find the closest Values 4
values from the
candidates

0.7

* Commonalities: Similar to 1D K-means clustering
* There are multiple candidate values, and the closest one is selected
* Candidates and features are corresponded to centroids and samples

e Differences
* The features also should be updated

* Our quantization method is trained in an end-to-end manner with an objective
designed to optimize compression performance
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Proposed Method

DEEYE Extension to Other Real-world Applications

* Matrix Completion

* Goal: To predict the missing entries in the input matrix accurately

* Proposed Method: qELICiT++
* Modifies SVD++ [Koren, 2008] by replacing low-rank decomposition with qELICiT

* Neural-network Compression

* Goal: To minimize the number of parameters of a neural-network model while
minimizing the degradation in the performance of the compressed model

* Proposed Method: TFW-qELICiT
* Modifies TFWSVD [Hua et al., 2022] by replacing SVD with gELICiT

ELiCiT: Effective and Lightweight Lossy Compression of Tensors
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Experiments

Experimental Setting

* Datasets: 8 real-world tensors (up to 200M entries)

' I nll I
Air quality Traffic volume Video feature Stock datum
measurement

* Baseline Methods:
 Decomposition-based : CPD, TKD, TTD, TRD
* Deep-learning-based: NeuKron, TensorCodec
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Experiments

ELICIT is Compact and Accurate

* gELICiT provides compact and accurate compression of tensors
* Up to 5.05x smaller compression size and 48% higher accuracy

- 0.4 1 a5 o o &2 |
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ﬂ 8 g 0.2 van® 0.60 o ° % o sl
= = 1.44x NEUKRON 055 ; ; . " : : b v ; s
| -
O L. .55 - L &' % 10 100 1001 10 30 100 300 10 30 100 300
x Compressed Size (KBytes) Compressed Size (KBytes) Compressed Size (KBytes)
c 0.1 | §$ <{>CPD
(@)} i . . . -
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N T T T T 00 T T T T
3 10 30 100 3 10 30 100 VTTD 0.75 = . o7 B 08 G
Compressed Size (KBytes) Compressed Size (KBytes) | X TRD 070]  ®3.10x |1.06x o 5 o ° 1"9‘%“"? 07 e, |1_z18x aF
(Lower is better) (Lower is better) $os] 223 2051 on “TE o foo] o AR
[ [] - 0.60 @i E * 2: Bﬁ * 02 L f f
Dataset: PEMS Dataset: Stock . : ool e
10 30 100 300 & 3 10 30 100 3 10 30 100
Compressed Size (KBytes) Compressed Size (KBytes) Compressed Size (KBytes)
Uber Absorb NYC

Fitness: 1 — ||X — Xo|| /11 X|lF (Higher is better)
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Experiments

ELICIT Is Fast

e gELICiT is significantly faster than the existing deep-learning-based methods

* The compression speed of qELICiT is up to 96 x faster than that of TensorCodec with a
similar compression size

TENSORCODEC NEUKRON
TTD === TRD

e ELICIT (Proposed)
s CPD s Tucker

- — x - x -
>< I . .
- TR o
. —
-8 S = ol ‘ =
™ —
L]

Uber PEMS Aquuallty Actlwty Stock  Action Absorb
Datasets

— — — —
© o o o
— — [#%] (8]

(Lower is better)
Time (seconds)
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Experiments

ELICiT is Applicable (1)
* Matrix Completion
* |n all settings, except for the largest budget on the ML-10M dataset, qELICiT++

outperforms its competitors

O QELICIT++ (Proposed) A SVD <> SVD++ X GlLocal-K ¥/ SparseFC [] IGMC

X O
0.78 1.10 O
= LR ¢ R§ %o_mDDDE 3)“'05DE'><
008 S SOOI 15 S
gmoggu 07218 %@lvv 0.90 L, @% évﬁ%
o =0 O O 30 100 300 10 30 100 300
o o 0.90 % @ @ Budget (KiB) Budget (KiB)
g lbogo Douban ML-100K
= 30 100 300 - x 1.00 v [oom
Budget (KiB) ? 095 AR ut 0.95 a
_ = y 2 0.90 - v
(Lower is better) o 0.90 @ g g S X Rossfo g oo V
. . 0.85 AV 0.80 é -
Dataset: Flixster 100 300 1000 03 10 30 100
Budget (KiB) Budget (MiB)
ML-1M ML-10M
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Experiments

ELICiT is Applicable (2)

* Neural-network Compression

* Achieved a compression size of 116MiB, which is 54.7% smaller than 256MiB of
TFWSVD, while showing competitive accuracy

GLUE Tasks

~

Model (Size) | CoLA MNLI MRPC ONLI QP ssT-2 stsB | avg. (Higher is better)

BERT},sc 501 847 905 917 881 928 894 |
(418MiB) | £1.9 #02 0.7 0.1 +03 04 03|
SVD 444 829 868 897 875 913 869 | . .
(256MiB) | #1.7 +03 06 +02 +03 +06 +05 |
FWSVD 502 833 881 903 876 910 881,
(256MiB) | £1.1 #04 09 %02 +03 05 03|
TFWSVD 47 790 837 861 857 874 847 | .
(134MiB) | #7.4 +04 0.6 =05 +03 +09 +05 |
TFWSVD | 422 815 869 8388 8.9 894 870
(175MiB) | £24 02 09 02 +02 0.5 04 |
TFWSVD | 538 83.5 899 904 874 907 886 | ...
(256MiB) | #1.6 +0.2 0.9 +0.2 +03 +04 405 |
TFW-qELICIT | 55.3 833 898 904 874 911 886 |
(116MiB) | +1.6 03 +0.5 =02 +03 0.6 +04 | ——
TFW-ELICIT | 57.4 835 90.0 90.6 875 914 887
(256MiB) | #0.9 +0.5 0.6 +03 +03 +09 +04 |
ELiCiT: Effective and Lightweight Lossy Compression of Tensors 29



Conclusion

Conclusion
We propose ELICiT, an efficient lossy tensor compression method
b Compact and Accurate D Fast D Applicable

0.65 1 > 5

%) ®@ 1.16x <§% = 103 21 —

§060 esosx gv § 10 m‘[ wWwwW

i 0.55 A A 2 S % ”‘3’ 101 E
0.50 & Xt % |§1O'1 II ' —o-

3 10 30 100 Uber PEMS

Compressed Size (KBytes)

Code and datasets are available at https://github.com/jihoonko/icdm24-elicit
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