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Network embedding (NE)
 Represents each node in a given network as a low-

dimensional vector that preserves the structural properties of
the network
e.g., proximity between nodes

 Can be used as informative features of nodes in various
downstream network mining tasks
Link prediction
Node clustering/classification
Recommendation

Background
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Background (cont’d)
 In recent studies, additional information has been

incorporated to improve the accuracy of NE
 Edge directions [Tong et al. NeurIPS’20; Yoo et al. WSDM’22]
e.g., follower and followee

 Edge signs [Lee et al. SIGIR’20; Liu et al. KDD’21]
e.g., trust and distrust

 Node attributes [Gao et al. IJCAI’18; Pan et al. WSDM’21]
e.g., bag-of-words

trust

distrust

trust

(b) Signed Network (c) Attributed Network(a) Directed Network
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Background (cont’d)
A directed network
 A directed edge from node 𝑖𝑖 to 𝑗𝑗 expresses an asymmetric

relationship (or proximities) between two nodes
 A toy example on Instagram

To capture such asymmetric relationships accurately,
various directed NE methods have been proposed
 APP [AAAI’17], ATP [AAAI’19], NERD [ECML-PKDD’19],

GravityAE/VAE [CIKM’19], DiGCN [NeurIPS’20]

User 𝑖𝑖 Influencer 𝑗𝑗

follow

not follow
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Directed NE Methods 
Given a directed edge from 𝒊𝒊 to 𝒋𝒋,

 Distinguish the source node 𝑖𝑖 and the target node 𝑗𝑗 according
to their roles in the edge

 Learn a source embedding and a target embedding, which
preserve the node’s properties as sources and targets

Source Node 𝑖𝑖 Target Node 𝑗𝑗

User 𝑖𝑖 Influencer 𝑗𝑗

𝑖𝑖’s source
embedding 

𝑖𝑖’s target
embedding 

𝑗𝑗’s source
embedding 

𝑗𝑗’s target
embedding 

learn!
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Motivation
Sparsity of real-world networks
 Follow power-law degree distribution, which indicates there

are a small number of hub nodes and a large number of non-
hub nodes

 Most nodes have extremely low out- and in-degrees!
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Motivation (cont’d)
Challenge of directed NE methods
 They hardly learn the source/target embedding of low out-/in-

degree nodes
 Thus, they easily fail to capture the properties of low out- and

in-degree nodes as sources and targets, respectively

Since a considerable fraction (34.86%/34.29%) of
nodes have a zero out- and in-degree, it aggravates the
above challenge

𝒗𝒗𝟏𝟏

𝑣𝑣1’s source
embedding

𝒗𝒗𝟐𝟐
𝑣𝑣2’s target
embedding

not learn!

zero out-degree
node

zero in-degree
node

not learn!
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NE’s intrinsic difficulty is its lack of information when
embedding low out- and in-degree nodes in a sparse
directed network

New concept: Virtual Negative Edges (VNEs)
 Represent latent negative relationships between nodes

We propose a novel DIrected NE approach with VIrtual
Negative Edges, named as DIVINE
 Carefully find and add VNEs to the input network, which

originally had positive edges
 Learn embeddings by exploiting both edge types

Our Idea: Data Augmentation
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Overview of DIVINE

STEP 1 STEP 2

STEP 3

Directed Network 𝓖𝓖

𝒗𝒗𝟏𝟏
𝒗𝒗𝟐𝟐

𝒗𝒗𝟑𝟑
𝒗𝒗𝟒𝟒

𝒗𝒗𝟓𝟓
𝒗𝒗𝟔𝟔

𝒗𝒗𝟕𝟕
𝒗𝒗𝟖𝟖

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 ⋯ 𝒗𝒗𝟖𝟖
𝒗𝒗𝟏𝟏 - 0.5 0.3

𝒗𝒗𝟐𝟐 0 - 0.7

⋮ ⋱
𝒗𝒗𝟖𝟖 0.2 0 -

Asymmetric Matrix 𝑿𝑿 with 
Degree of Negativity 𝒙𝒙𝒊𝒊𝒊𝒊

Positive Edges

VNEs
Descending Order of 𝒙𝒙𝒊𝒊𝒊𝒊

0.7 0.6 0.5 0.3 0.2 0.1

⋮

𝒗𝒗𝟏𝟏

𝒗𝒗𝟐𝟐

𝒗𝒗𝟖𝟖

0.9 0.7 0.4 0.3 0.2

0.8 0.2 0.1

Potential VNEs

+
+

+

Balanced!

+
-

-

-
+

+

Unbalanced!

-
-

-
Structural BalanceSigned Directed Network 𝓢𝓢

𝒇𝒇𝒗𝒗 𝒈𝒈𝒗𝒗

Source/Target Embeddings

𝒗𝒗𝟏𝟏
𝒗𝒗𝟐𝟐

𝒗𝒗𝟑𝟑

𝒗𝒗𝟒𝟒

𝒗𝒗𝟓𝟓
𝒗𝒗𝟔𝟔

𝒗𝒗𝟕𝟕
𝒗𝒗𝟖𝟖

STEP 4
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Determine the total number of VNEs to be added

 𝓔𝓔− : the total number of VNEs
 𝓔𝓔+ : the total number of positive edges
 𝜽𝜽: a parameter that determines 𝓔𝓔−

 Intuitively, it is natural to set 𝜽𝜽 to a small value
 In most real-world signed networks, the number of negative

edges is significantly smaller than that of positive edges
 e.g., Wiki-election dataset
Positive edges : negative edges = 79% : 21%

Step 3: Modeling a Signed Directed Network

𝓔𝓔− = |𝓔𝓔+| × 𝜽𝜽



Page 12 / 31

Deal with this issue based on a well-known property
of signed networks, i.e., structural balance

How to determine the number of VNEs?

-𝒗𝒗𝒙𝒙 𝒗𝒗𝒛𝒛

+

𝒗𝒗𝒚𝒚

-

-𝒗𝒗𝒙𝒙 𝒗𝒗𝒛𝒛

-

𝒗𝒗𝒚𝒚

+

+𝒗𝒗𝒙𝒙 𝒗𝒗𝒛𝒛

-

𝒗𝒗𝒚𝒚

-

𝒗𝒗𝒙𝒙 𝒗𝒗𝒛𝒛

+

+

+

𝒗𝒗𝒚𝒚
(R1) A friend of my friend 

is my friend

(R3) A friend of my enemy
is my enemy

(R2) An enemy of my friend 
is my enemy

(R4) An enemy of my enemy
is my friend

How well the edge signs in a given signed network follow the balance theory? 
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The effect of the parameter 𝜽𝜽 on the structural
balance in our signed directed networks

 Observation 1: edge signs in real-world signed networks
follow the rules of balance theory well

 Observation 2: as 𝜃𝜃 increases, our signed networks contain
more uncertain VNEs, so the edge signs do not follow well the
rules of balance theory

How to determine the number of VNEs?

Real-world
signed networks

Our signed networks
modeled by DIVINE
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Based on this observation,

 We set 𝜃𝜃 to a value around 0.25 or 0.5 where the structural
balance of both real-world and our signed networks become
similar

We will also show empirically that such values of 𝜽𝜽
lead to high accuracy of DIVINE in link prediction tasks.

How to determine the number of VNEs?

Real-world
signed networks

Our signed networks
modeled by DIVINE
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Build a signed directed network composed of both the
existent positive edges and the VNEs

Step 3: Modeling a Signed Directed Network

Directed Network 𝓖𝓖

𝒗𝒗𝟏𝟏
𝒗𝒗𝟐𝟐

𝒗𝒗𝟑𝟑

𝒗𝒗𝟒𝟒

𝒗𝒗𝟓𝟓
𝒗𝒗𝟔𝟔

𝒗𝒗𝟕𝟕
𝒗𝒗𝟖𝟖

Signed Directed Network 𝓢𝓢

𝒗𝒗𝟏𝟏
𝒗𝒗𝟐𝟐

𝒗𝒗𝟑𝟑

𝒗𝒗𝟒𝟒

𝒗𝒗𝟓𝟓
𝒗𝒗𝟔𝟔

𝒗𝒗𝟕𝟕
𝒗𝒗𝟖𝟖
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 Incorporate recent signed NE methods into our DIVINE
 Nodes with the positive edges to be close to each other
 Nodes with the negative edges to be distant from each other

Step 4: Learning Source/Target Embeddings

positive

negative

positive

DIVINE can be equipped with any signed NE methods!
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Experimental Setup
Datasets

 Gnutella (GNU): a peer-to-peer network
 Wiki-Vote: an online voting network
 JUNG: a software class dependency network
 Edinburgh Associative Thesaurus (EAT): a lexical network
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Experimental Setup
Two variants of DIVINE
 DIVINE-I employing SIDE [WWW’18]
 DIVINE-T employing STNE [ICDM’19]

Nine competitors
 3 undirected NE methods
DeepWalk [KDD’14]
LINE [WWW’15]
Node2Vec [KDD’16]

 6 directed NE methods
APP [AAAI’17]
ATP [AAAI’19]
NERD [ECML-PKDD’19]

GravityAE [CIKM’19]
GravityVAE [CIKM’19]
DiGCN [NeurIPS’20]
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Evaluation Task: Link Prediction (LP)
How accurately we can predict the directed edges

removed from the input directed network?

Evaluation protocol
 Split the edges into training (80%) and test (20%) sets
Consider the existent edges as positive examples
Consider the same number of randomly-sampled non-existent

edges as negative examples
 Measure classification accuracy using area under curve (AUC)

?
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LP Task for Directed Networks
How accurately the directions of the unidirectional

edges in the input network can be predicted?

Evaluation protocol (sampling negative examples)
 Sample k% of the unidirectional positive examples and

consider the edges with the opposite directions as negative
examples

 Sample the remaining (100-k)% of negative examples
uniformly at random among non-existent edges

Three types of LP task  according to the ratio (i.e., k%)
(1) k=0, Uniform LP (U-LP)          (2) k=50, Mixed LP (M-LP)
(3) k=100, Biased LP (B-LP)
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LP Task for Directed Networks
Example of M-LP (i.e., k=50)

Existent edges 
(i.e., positive examples)

Non-existent edges 
(i.e., negative examples)

50% of the unidirectional
positive examples

Test Set
(20%)

Training Set 
(80%)

𝒗𝒗𝟒𝟒𝒗𝒗𝟏𝟏

𝒗𝒗𝟑𝟑𝒗𝒗𝟏𝟏

𝒗𝒗𝟐𝟐𝒗𝒗𝟒𝟒

𝒗𝒗𝟒𝟒𝒗𝒗𝟑𝟑

𝒗𝒗𝟏𝟏𝒗𝒗𝟐𝟐

𝒗𝒗𝟏𝟏𝒗𝒗𝟑𝟑

𝒗𝒗𝟒𝟒𝒗𝒗𝟐𝟐

𝒗𝒗𝟑𝟑𝒗𝒗𝟒𝟒

𝒗𝒗𝟏𝟏𝒗𝒗𝟒𝟒

𝒗𝒗𝟐𝟐𝒗𝒗𝟏𝟏

𝒗𝒗𝟓𝟓𝒗𝒗𝟑𝟑

𝒗𝒗𝟕𝟕𝒗𝒗𝟗𝟗

𝒗𝒗𝟒𝟒𝒗𝒗𝟕𝟕

𝒗𝒗𝟔𝟔𝒗𝒗𝟕𝟕

𝒗𝒗𝟔𝟔𝒗𝒗𝟐𝟐

𝒗𝒗𝟏𝟏𝒗𝒗𝟗𝟗

𝒗𝒗𝟏𝟏𝒗𝒗𝟖𝟖

𝒗𝒗𝟑𝟑𝒗𝒗𝟕𝟕

𝒗𝒗𝟗𝟗𝒗𝒗𝟏𝟏

𝒗𝒗𝟐𝟐𝒗𝒗𝟓𝟓

negative examples with
the opposite directions

randomly-sampled 
negative examples
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Questions to Be Answered

 RQ1: How should the degree of negativity be inferred in
DIVINE?

 RQ2: How should the locations of VNEs be decided in
DIVINE?

 RQ3: How should VNEs be distributed to nodes in DIVINE?

 RQ4: How many VNEs should be added in DIVINE?

 RQ5: Does DIVINE outperform its competitors for directed
NE?

 RQ6: Is DIVINE effective for embedding low-degree nodes?
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Accuracy changes with varying 𝜽𝜽

 DIVINE achieves the best AUC when 0.25 ≤ 𝜃𝜃 ≤ 0.5, which is
similar to that of the triadic balance

 Setting 𝜃𝜃 so that a signed directed network follows the rules
of balanced theory well helps improve the AUC of DIVINE

Results for RQ4



Page 24 / 31

Results for RQ5 
Comparison with nine competitors

 Undirected NE methods provide AUCs comparable to or even
higher than some directed NE methods (e.g., APP)

 No single competitor consistently outperforms the other
competitors
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Results for RQ5
Comparison with nine competitors

 Both versions of DIVINE significantly and consistently
outperform all competitors in all LP tasks on all datasets

 DIVINE is most accurate in the task of predicting the edge
directions (i.e., B-LP)
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Results for RQ6 
Effectiveness in embedding low-degree nodes

 Out-degree-based: divide all nodes in the test set into low,
medium, and high groups according to their out-degree

 In-degree-based: divide all nodes in the test set into low,
medium, and high groups according to their in-degree
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Results for RQ6 (cont’d) 
Effectiveness in embedding low-degree nodes

 DIVINE consistently outperform all the competitors
 The performance gain is largest in the low-degree groups
 DIVINE successfully address the lack of information about low

out- and in-degree nodes
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Conclusions
We pointed out that the existing directed NE methods

face difficulties in accurately preserving asymmetric
proximities between nodes in a sparse network

Under DIVINE, we proposed three ideas to selectively
add VNEs
 Inferring the degree of negativity
 Using the local selection strategy to distribute VNEs to all

nodes
 Determining the number of VNEs based on the theory of

structural balance

DIVINE significantly outperforms its 9 state-of-the-art
competitors in 3 LP tasks on 4 real-world datasets
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Thank You !
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Appendix
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Quantify the degree of positivity of all pairs of nodes
based on weighted regularized matrix factorization

Consider that the lower the degree of positivity is, the
higher the degree of negativity is

Inferring the Degree of Negativity

2.7 ⋯ 0.5

0.9 ⋯ 0.3

0.7 ⋯ 1.5

⋮ ⋱ ⋮

1.9 ⋯ 0.2

𝑑𝑑

𝑑𝑑

Target
So

ur
ce

0.3 0.7 1.5 ⋯ 1.2

⋮ ⋮ ⋮ ⋱ ⋮

1.6 0.5 0.1 ⋯ 2.5

Adjacency 
Matrix 𝐀𝐀

𝐏𝐏

𝐐𝐐𝑻𝑻

=

�𝐀𝐀
𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 ⋯ 𝒗𝒗𝟖𝟖

𝒗𝒗𝟏𝟏 - 0 0

𝒗𝒗𝟐𝟐 1 - 0

⋮ ⋱
𝒗𝒗𝟖𝟖 0 1 -

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 ⋯ 𝒗𝒗𝟖𝟖
𝒗𝒗𝟏𝟏 - 0.1 0.1

𝒗𝒗𝟐𝟐 1 - 0.1

⋮ ⋱
𝒗𝒗𝟖𝟖 0.1 1 -

Weight
Matrix 𝐖𝐖

W
RM

F

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 ⋯ 𝒗𝒗𝟖𝟖
𝒗𝒗𝟏𝟏 - 0.5 0.3

𝒗𝒗𝟐𝟐 1 - 0.7

⋮ ⋱
𝒗𝒗𝟖𝟖 0.2 1 -

×

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 ⋯ 𝒗𝒗𝟖𝟖
𝒗𝒗𝟏𝟏 - 0.5 0.7

𝒗𝒗𝟐𝟐 1 - 0.3

⋮ ⋱
𝒗𝒗𝟖𝟖 0.8 1 -

𝐗𝐗
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Equations
 Objective function

ℒ 𝐏𝐏,𝐐𝐐
= �

𝑖𝑖,𝑗𝑗
𝑤𝑤𝑢𝑢𝑢𝑢 𝑎𝑎𝑖𝑖𝑖𝑖 − 𝐏𝐏𝑖𝑖 � (𝐐𝐐𝑗𝑗 � )⊺

2
+ λ 𝐏𝐏𝑖𝑖 � 𝐹𝐹

2
+ 𝐐𝐐𝑗𝑗 � 𝐹𝐹

2

 Updates elements in the matrices 𝐏𝐏 and 𝐐𝐐

𝐏𝐏𝑖𝑖 � = 𝐀𝐀𝑖𝑖 � �𝐖𝐖𝑖𝑖 � 𝐐𝐐 𝐐𝐐⊺ �𝐖𝐖𝑖𝑖 � 𝐐𝐐 + λ �
𝑗𝑗
𝑤𝑤𝑖𝑖𝑗𝑗 𝐈𝐈

−1

𝐐𝐐𝑗𝑗 � = (𝐀𝐀 � 𝑗𝑗)⊺ �𝐖𝐖 � 𝑗𝑗𝐏𝐏 𝐏𝐏⊺ �𝐖𝐖 � 𝑗𝑗𝐏𝐏 + λ �
𝑖𝑖
𝑤𝑤𝑖𝑖𝑖𝑖 𝐈𝐈

−1

 �𝐖𝐖𝑖𝑖 � is a diagonal matrix with elements of 𝐖𝐖𝑖𝑖(�) on the diagonal
Matrix I is an identity matrix

 Final value

Inferring the Degree of Negativity (cont’d)

 �𝐀𝐀 ≈ 𝐀𝐀 = 𝐏𝐏𝐐𝐐⊺ 𝒙𝒙𝒊𝒊𝒊𝒊 = 𝟏𝟏 −
�𝒂𝒂𝒊𝒊𝒊𝒊− �𝐀𝐀 𝒎𝒎𝒎𝒎𝒎𝒎
�𝐀𝐀 𝒎𝒎𝒎𝒎𝒎𝒎− �𝐀𝐀 𝒎𝒎𝒎𝒎𝒎𝒎
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Propose two strategies: global/local selection
Global selection
 Select VNEs with high degrees of negativity among all

potential VNEs (i.e., non-existent edges)

Selecting VNEs

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 𝒗𝒗𝟑𝟑 𝒗𝒗𝟒𝟒 ⋯ 𝒗𝒗𝟖𝟖
𝒗𝒗𝟏𝟏 -

𝒗𝒗𝟐𝟐 -

𝒗𝒗𝟑𝟑 -

𝒗𝒗𝟒𝟒 -

⋮ ⋱
𝒗𝒗𝟖𝟖 -

(1) Sorting in descending order 
of the degree of negativity 

(2) Selecting VNEs
(e.g., a pre-defined number=5)

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 𝒗𝒗𝟑𝟑 𝒗𝒗𝟒𝟒 ⋯ 𝒗𝒗𝟖𝟖
𝒗𝒗𝟏𝟏 - 0.4 0.8 0 0.7

𝒗𝒗𝟐𝟐 0 - 0 0.5 0.2

𝒗𝒗𝟑𝟑 0.3 0.1 - 0.3 0.9

𝒗𝒗𝟒𝟒 0 0 0.4 - 0.5

⋮ ⋱
𝒗𝒗𝟖𝟖 0.7 0 0 0.2 -

𝒗𝒗𝟑𝟑 → 𝒗𝒗𝟖𝟖 0.9

𝒗𝒗𝟏𝟏 → 𝒗𝒗𝟑𝟑 0.8

𝒗𝒗𝟖𝟖 → 𝒗𝒗𝟏𝟏 0.7

𝒗𝒗𝟏𝟏 → 𝒗𝒗𝟖𝟖 0.7

𝒗𝒗𝟐𝟐 → 𝒗𝒗𝟒𝟒 0.5

𝒗𝒗𝟒𝟒 → 𝒗𝒗𝟖𝟖 0.5

⋮ ⋮

Potential VNEs

VNEs
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Local selection
 Select an equal number of VNEs with high degrees of

negativity for each node

Selecting VNEs (cont’d)

0.7 0.6 0.5 0.3 0.2 0.1

⋮

𝒗𝒗𝟏𝟏
𝒗𝒗𝟐𝟐
𝒗𝒗𝟑𝟑
𝒗𝒗𝟒𝟒

𝒗𝒗𝟖𝟖

Positive Edges

0.9 0.7 0.4 0.3 0.2

0.9 0.7 0.6 0.5 0.2 0.2 0.1

0.5 0.4 0.4 0.3 0.2

0.8 0.2 0.1

Potential VNEs Positive Edges VNEs

⋮

𝒗𝒗𝟏𝟏
𝒗𝒗𝟐𝟐
𝒗𝒗𝟑𝟑
𝒗𝒗𝟒𝟒

𝒗𝒗𝟖𝟖

(1) Sorting in descending order 
of the degree of negativity 

(2) Selecting VNEs per source node
(e.g., a pre-defined number=1)
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Results for RQ1
Comparisons of methods for inferring the degree of

negativity

 When it is equipped with WRMF, DIVINE consistently
achieves high AUC in all datasets
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Results for RQ2
Effectiveness of the local selection strategy

 DIVINE(Global) vs DIVINE(Local)
Giving VNEs to all nodes (i.e., local) is more beneficial than

giving those to only a small fraction of nodes (i.e., global)
 Found that DIVINE(Global) added VNEs to only 35%, 44%, 53%,

and 34% of nodes in GNU, Wiki-Vote, JUNG, and EAT,
respectively

Employing the global selection Employing the local selection
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Results for RQ2 (cont’d)
Effectiveness of the local selection strategy

 DIVINE(Local) vs DIVINE(Local𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
Giving VNEs to all nodes including zero out-degree nodes

effectively mitigates the lack of information

Employing the local selection, but not
selecting VNEs from zero out-degree nodes
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Results for RQ3
Effectiveness of adding an equal number of VNEs to

each source node

 DIVINE(Prop.) sets the number of VNEs from each node
proportionally to its out-degree

 DIVINE(InverseProp.) sets the number of VNEs from each
node inverse proportionally to its out-degree

 DIVINE(Uniform) sets an equal number of VNEs to all nodes
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Results for RQ3 (cont’d)
Effectiveness of adding an equal number of VNEs to

each source node

 DIVINE(Uniform) consistently outperforms the others
 Treating all source nodes equally by adding an equal number

of VNEs to them helps learn accurate embeddings most
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Adding virtual edges (VEs) facilitates the utilization of
information expressed in the form of VEs
 It has been proven useful for various graph mining tasks
e.g., node classification [Klicpera et al. NeurIPS’19, Zhao et al. 

AAAI’21], community detection [Kang et al. CIKM’20]
 They only focused on positive edges (VPEs)

However, we confirmed that VNEs provide information 
more useful to directed NE methods than VPEs
 The information inherent in VNEs is more difficult for directed 

NE methods to utilize (than that in VPEs) unless it is explicitly 
provided in the form of VEs

Why Virtual Negative Edges?
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Comparisons of several methods for adding VEs

 Adding VNEs achieves superior AUC over adding VPEs
 Adding VPEs in addition to VNEs resulted in marginal

additional gains.

Why Virtual Negative Edges? (cont’d)
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Related Work

Methods

Matrix 
Factorization 
(MF)-based 

Methods

HOPE Asymmetric Transitivity Preserving Graph Embedding
[KDD-2016]

ATP Directed Graph Embedding with Asymmetric Transitivity 
Preservation
[AAAI-2019]

Deep Learning 
(DL)-based 
Methods

GravityAE/VAE Gravity-Inspired Graph Autoencoders for Directed 
Link Prediction
[CIKM-2019]

DiGCN Digraph Inception Convolutional Networks
[NeurIPS-2020]

Random Walk 
(RW)-based 

Methods

APP Scalable Graph Embedding for Asymmetric Proximity
[AAAI-2017]

NERD Node Representation Learning for Directed Grpahs
[ECML-PKDD-2019]
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MF-based and  DL-based Methods
1. Represent the asymmetric proximities between

source and target nodes in the form of a matrix
 ATP [AAAI’19] uses a measurement that captures both the

hierarchy and reachability between nodes in the network
 GravityAE/VAE [CIKM’19] and DiGCN [NeurIPS’20] use the

asymmetric adjacency matrix of the input network

2. Obtain source and target embeddings of nodes
 By using MF techniques (e.g., SVD)
 By using DL techniques (e.g., autoencoders and GCNs)
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RW-based Methods
1. For each seed node,
 Sample a number of positive nodes visited during RWs
 APP [AAAI’17] employs a RW strategy that starts from a seed node and

then follows out-going edges randomly
 NERD [ECML-PKDD’19] proposes an alternating RW strategy that starts

from a seed node and follows out-going/in-coming edges alternately

 Sample negative nodes uniformly at random as well

2. Obtain source and target embeddings of nodes
 Maximize the proximities between source embedding of each

seed node and target embedding of positive nodes
 Minimize the proximities between source embedding of each

seed node and target embedding of negative nodes
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The number of non-existent edges is quite large

Selectively choose a small number of VNEs among a
large number of non-existent edges
 In Steps 1, 2, and 3, we address this challenge
 In Step 4, we learn the embeddings of nodes by employing

off-the-shelf NE methods

Our Key Challenge
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Triadic Balance [Aref et al. Sci. Rep.’20] 
New measure that assesses the structural balance of 

the signed “directed” network

 Collect all the transitive triads consisting of at least one or
multiple triangles where the directions of three edges satisfy
the transitivity

 Measure the ratio of balanced ones among all the collected
transitive triads

* Triad: a set of three nodes with at least one directed edge between each pair of them
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Real-world signed networks

 Reddit represents connections between users of two
subreddits from Jan 2014 to April 2017

 Wiki-election contains approval/disapproval votes for electing
admins in Wikipedia from 2003 to 2013

 Bitcoin OTC and Bitcoin Alpha represent the record of
reputation/trust of users on a Bitcoin trading platform

 Highland represents alliance structure among three tribal
groups

 College-A, College-B, and College-C represent preference
rankings of a group of girls in an Eastern college

How to determine the number of VNEs?



Page 48 / 31

SIDE [Kim et al. WWW’18]

 Perform a directed random walk that start from each node 𝒗𝒗𝒊𝒊
by following out-going edges

 Generate a sequence {𝒗𝒗𝒊𝒊 → 𝒗𝒗𝟏𝟏 → ⋯ → 𝒗𝒗𝒏𝒏} with edge signs
 Sample each directed node pair (𝒗𝒗𝒊𝒊,𝒗𝒗𝒋𝒋) where 𝒗𝒗𝒊𝒊 (i.e., source)

precedes 𝒗𝒗𝒋𝒋 (i.e., target) in the sequence within a window size
 Determine the sign of each (𝒗𝒗𝒊𝒊,𝒗𝒗𝒋𝒋) by combining the edge

signs in the sequence from 𝒗𝒗𝒊𝒊 to 𝒗𝒗𝒋𝒋 based on balance theory

𝒗𝒗𝒊𝒊

𝒗𝒗𝟏𝟏

𝒗𝒗𝟐𝟐

𝒗𝒗𝟑𝟑

𝒗𝒗𝒏𝒏

Window 
Size = 2 (𝒗𝒗𝟏𝟏,𝒗𝒗𝟑𝟑)(𝒗𝒗𝒊𝒊,𝒗𝒗𝟏𝟏)

(𝒗𝒗𝒊𝒊,𝒗𝒗𝟐𝟐) (𝒗𝒗𝟏𝟏,𝒗𝒗𝟐𝟐) (𝒗𝒗𝟐𝟐,𝒗𝒗𝟑𝟑) (𝒗𝒗𝟐𝟐,𝒗𝒗𝒏𝒏)

(𝒗𝒗𝟑𝟑,𝒗𝒗𝒏𝒏)+

-
-

+

positive edges

negative edges
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SIDE [Kim et al. WWW’18] (cont’d)

For each (𝒗𝒗𝒊𝒊,𝒗𝒗𝒋𝒋) with a positive sign,
 Maximize the proximity between 𝒗𝒗𝒊𝒊’s source embedding and
𝒗𝒗𝑗𝑗’s target embedding

For each (𝒗𝒗𝒊𝒊,𝒗𝒗𝒋𝒋) with a negative sign,
 Minimize the proximity between 𝒗𝒗𝒊𝒊’s source embedding and
𝒗𝒗𝑗𝑗’s target embedding

ℒ 𝐟𝐟, 𝐠𝐠 = �
(𝒗𝒗𝒊𝒊,𝒗𝒗𝒋𝒋)∈𝓞𝓞

−log𝒫𝒫 𝒗𝒗𝒊𝒊,𝒗𝒗𝒋𝒋 + �
𝑘𝑘=1

𝛼𝛼

−log𝒫𝒫 𝒗𝒗𝒊𝒊,𝒗𝒗𝒌𝒌 + ℛ(𝛿𝛿)
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Evaluation Task

𝒋𝒋𝒊𝒊

Training 
(80%)

Test 
(20%)

Existent edges 
(positive examples)

④ Train a classifier by using concatenated 
embeddings as inputs

Logistic 
regression 
classifier

Training examples

⋮ ⋮

𝑖𝑖 𝑗𝑗

⋮

Test examples
+

Classify positive or negative

① Split the edges

③ Sample nonexistent edges

② Obtain node 
embeddings

⑤ Classify whether each testing example 
is positive or negative

Train

1
label

0

Non-existent edges 
(negative examples)
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 Competitors
 Learning rate ∈ {0.001, 0.0025, 0.01, 0.025, 0.1}
 Number of walks ∈ 10, 20, 40, 80 (DeepWalk, Node2Vec, APP)
 Walk length ∈ 60, 80, 100 (DeepWalk, Node2Vec, APP)
 Window size ∈ 10, 12, 14, 16 (DeepWalk, Node2Vec)
 𝑝𝑝, 𝑞𝑞 ∈ 0.25, 0.50, 1, 2, 4 (Node2Vec)
 Negative ∈ 5, 10, 12, 14, 16 (LINE)
 Number of samples ∈ 100M, 500M, 1000M (LINE)
 𝛾𝛾 ∈ 5, 10, 15, 20 (NERD)
 𝜅𝜅 ∈ 3, 5 (NERD)
 𝜆𝜆 ∈ 0.005, 0.05, 1, 5, 10 (GravityAE/VAE)
 𝛼𝛼 ∈ 0.05, 0.1, 0.15, 0.2 (DiGCN)
 Model type ∈ with inception block, without inception block

(DiGCN)
 Method to break cycles = H_voting (ensembling) (ATP)
 Strategy to build a hierarchical matrix = log (ATP)

Implementation Details
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DIVINE
 Learning rate = 0.025 (SIDE, STNE)
 Number of walks = 80 (SIDE) / 20 (STNE)
 Walk length = 40 (SIDE, STNE)
 Window size = 5 (SIDE) / 10 (STNE)
 Number of negative samples = 20 (SIDE) / 5 (STNE)

Implementation Details
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