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ABSTRACT
The directed network embedding problem is to represent the nodes
in a given directed network as embeddings (i.e., low-dimensional
vectors) that preserve the asymmetric relationships between nodes.
While a number of approaches have been developed for this prob-
lem, we point out that existing approaches commonly face diffi-
culties in accurately preserving asymmetric proximities between
nodes in a sparse network containing a large number of low out- and
in-degree nodes. In this paper, we focus on addressing this intrinsic
difficulty caused by the lack of information. We first introduce the
concept of virtual negative edges (VNEs), which represent latent
negative relationships between nodes. Based on the concept, we
propose a novel DIrected NE approach with VIrtual Negative Edges,
named as DIVINE. DIVINE carefully decides the number and lo-
cations of VNEs to be added to the input network. Once VNEs are
added, DIVINE learns embeddings by exploiting both the signs and
directions of edges. Our experiments on four real-world directed
networks demonstrate that adding VNEs alleviates the lack of in-
formation about low-degree nodes, thereby enabling DIVINE to
yield high-quality embeddings that accurately capture asymmetric
proximities between nodes. Specifically, the embeddings obtained
by DIVINE lead to up to 10.16% more accurate link prediction,
compared to those obtained by state-of-the-art competitors. All
DIVINE code are available at: https://github.com/hsyoo32/divine.
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1 INTRODUCTION
Background. Network embedding (NE) aims to represent the nodes
in a given network by vectors in a low-dimensional embedding
space so that the vectors, which are called embeddings, preserve
structural properties, such as proximity in the network [5]. Lit-
erature [6, 25, 32] has shown that the low-dimensional vectors
can be used as informative features of nodes in solving various
information-retrieval tasks – e.g., link prediction [21] and node
classification [42]. In recent studies, additional information, such as
edge directions [22, 41], edge signs [12, 37], and node attributes [20,
39], has been incorporated to improve the accuracy of NE.

In this paper, we focus on NE that utilizes edge directions. For
example, on Instagram, even if a user 𝑖 follows an influencer 𝑗 , 𝑗
may not follow 𝑖 . This asymmetric relationship can be expressed as
a directed edge from 𝑖 to 𝑗 but not from 𝑗 to 𝑖 . In order to accurately
capture such asymmetric relationships and furthermore asymmetric
proximities [41] between nodes, various directed NE methods [11,
22, 27, 30, 41] have been proposed. For each directed edge from
𝑖 to 𝑗 , most directed NE methods distinguish the source node 𝑖

and the target node 𝑗 according to their roles in the edge. Then,
for each node, the methods learn a source embedding and a target
embedding, which preserve the node’s properties as sources and
targets, respectively. The source and target embeddings of nodes
can be used as inputs in various downstream tasks.

Most existing directed NE methods can be categorized into (1)
matrix factorization (MF)-based methods, (2) deep learning (DL)-
based methods, and (3) random walk (RW)-based methods, as sug-
gested in [5, 38]. Specifically, MF-based [22, 30] and DL-based [27]
methods first represent the asymmetric proximities between all
pairs of source and target nodes in the form of a matrix. Then,
they seek embeddings that approximate asymmetric proximities
between nodes by using MF techniques (e.g., singular value decom-
position [23]) or DL techniques (e.g., graph autoencoder [13]). On
the other hand, for each node, RW-based methods [11, 41] sample
a number of nodes visited during RWs from the node as a seed.
Then, they seek embeddings that maximize relative asymmetric
proximities between each seed node and the sampled nodes.
Motivation. In this paper, we show that the sparsity of real-world
networks makes it difficult for existing directed NE methods to
accurately preserve asymmetric proximities. It is well known that
the density, which is defined as the ratio of the number of (directed)
edges with respect to the maximum possible (directed) edges, is
extremely low in many real-world networks. To make matters more
challenging, they have power-law degree distributions. That is, most
nodes in them have extremely low out- and in-degrees.

As a result, in MF-based and DL-based methods, many rows and
columns that correspond to low out-degree and in-degree nodes,
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respectively, are filled mostly with 0 values. In RW-based methods,
RWs from low out-degree nodes tend to visit relatively a small num-
ber of unique nodes; and low in-degree nodes are hardly sampled
during RWs. Therefore, the three NE approaches easily fail to cap-
ture the properties of low out- and in-degree nodes as sources and
targets, respectively. Surprisingly, in real-world directed networks,
a considerable fraction of nodes have a zero out- and in-degree.
For instance, in the four datasets considered in this work, the aver-
age ratios of nodes with a zero out- and in-degree are 34.86% and
34.29%, respectively (refer to Table 2 in Section 4). Such zero out-
and in-degree nodes aggravate the aforementioned challenges.
Our Ideas. The intrinsic difficulty of the directed NE problem is
the lack of information for understanding the properties of low
out- and in-degree nodes as sources and targets, respectively, in a
sparse network. Regarding this difficulty, we note that literature has
shown that exploiting not only positive edges (e.g., trust or friend)
but also negative edges (e.g., distrust or foe) helps to improve the
accuracy of various network analysis tasks, including NE [16, 17,
19, 31]. From these earlier studies, we can infer that exploiting
both two types of relationships between nodes, which often convey
different meanings and information [16], helps to address the lack
of information. Unfortunately, however, most real-world directed
networks do not have explicit negative edges.

In this work, we aim to answer three relevant research questions:
(1) Can we infer negative edges and use them as a source of informa-
tion? (2) Do such inferred negative edges help accurate embedding of
low-degree nodes? (3) How can we maximize the accuracy gain?

To this end, we propose a novel DIrected NE approach with
VIrtual Negative Edges, named as DIVINE, which effectively pre-
serves asymmetric proximities between nodes based on three steps:
(1) selecting the number and locations of virtual negative edges
(VNEs), which represent latent negative relationships between
nodes in the input network; (2) adding VNEs to the input network;
(3) performing NE by exploiting both signs and directions of edges.

The key challenge in designing DIVINE is to selectively choose
VNEs from a large number of potential ones (i.e., non-existent edges)
in the (original) input network. To address this challenge, we first
infer the degree of (latent) negativity of 𝑖 with respect to 𝑗 for each
pair of nodes 𝑖 and 𝑗 from existent (positive) edges (Section 3.2).
Next, for each node 𝑖 , we find a proper number of nodes with respect
to which 𝑖 has the highest degree of negativity; then, we add VNEs
from 𝑖 to such nodes to the input network (Sections 3.3 and 3.4).
We here deal with the issue of determining the number of VNEs
from each node based on structural balance [1, 4, 9], which is a
well-known property of signed networks.

Once VNEs are added, we can learn the source and target embed-
dings of nodes by employing any signed NEmethods [12, 18, 36, 37],
which are designed to be effective for signed directed networks
(Section 3.5). We show experimentally that adding VNEs, carefully
as proposed, effectively alleviates the lack of information about low-
degree nodes. Specifically, we show that, by exploiting information
in the form of VNEs, existing signed NE methods capture asym-
metric proximities between nodes in the input directed network
significantly more accurately.
Why Virtual Negative Edges? Since virtual edges (VEs) are in-
ferred only from the topology of a given input network, VEs do

not bring any extra information beyond the network. However,
adding VEs facilitates the utilization of information expressed in
the form of VEs, and as a result, adding VEs has been proven useful
for various graph mining tasks [15, 40].

Previous studies focused on positive edges (VPEs), and our ap-
proach DIVINE can easily be extended to VPEs. In our preliminary
experiments, while adding VPEs improved the quality of directed
NE in terms of link-prediction accuracy, the accuracy gain was
larger when VNEs were added instead. The results show that VNEs
provide information more useful to directed NEmethods than VPEs;
furthermore, we suspect that the information inherent in VNEs is
more difficult for directed NE methods to utilize (than that in VPEs)
unless it is explicitly provided in the form of VEs.
Contributions. Our contributions are summarized as follows:

• Novel Solution to the Lack of Information: We propose the
idea of exploiting latent negative relationships between nodes,
i.e., VNEs, to mitigate the lack of information when embedding
low-degree nodes in a sparse directed network.

• Effective Algorithm: We propose DIVINE, which carefully de-
cides the number and locations of VNEs, which it then exploits
for effective directed NE. The embeddings obtained by DIVINE

lead to up to 10.16% more accurate link prediction, compared
to those obtained by state-of-the-art competitors.

• General Methodology:We propose a methodology that can be
equipped with any signed NE methods. Thus, if better signed
NE methods become available, they can be used without any
modification to improve the performance of DIVINE.

• Extensive Experiments: We validate the effectiveness of DI-
VINE by comparing it with 9 competitors in 3 types of link predic-
tion tasks on 4 real-world datasets. We also validate the benefit
of our design choices through extensive ablation studies.

Organization. In Section 2, we review previous studies on NE. In
Section 3, we present our proposed approach in detail. In Section 4,
we validate the effectiveness of the proposed approach through
extensive experiments. Finally, we conclude the paper in Section 5.

2 RELATEDWORK
In this section, we briefly review existing approaches for NE of undi-
rected and directed networks. These approaches can be categorized
into (1) matrix factorization (MF)-based methods, (2) deep learning
(DL)-based methods, and (3) random walk (RW)-based methods.
Undirected NE. First, MF-based methods, such as GraRep [3] and
M-NMF [35], build a proximity matrix that represents the prox-
imities of all pairs of nodes. Then, they factorize the proximity
matrix into a product of low-rank matrices, which correspond to
embeddings of nodes. Next, DL-based methods, such as SDNE [34]
and GraphSAGE [7], employ deep neural network models (e.g., deep
autoencoder [26] and graph convolutional networks (GCN) [14]) as
encoders that map the input network and node attributes to embed-
dings of nodes. Lastly, RW-based methods, such as DeepWalk [25],
Node2Vec [6], and LINE [32], sample a number of nodes visited
during RWs from each seed node. Then, they obtain embeddings of
nodes by maximizing the proximities between each seed node and
the sampled nodes while minimizing those between the seed node
and randomly chosen nodes.



Figure 1: Overview of DIVINE, which consists of four steps: (1) inferring the degree of negativity; (2) selecting VNEs based on
the degree of negativity; (3) modeling a signed directed network; (4) learning source and target embeddings of nodes.

Directed NE. However, none of the above-mentioned methods are
designed to consider edge directions; thus, the embeddings pro-
vided by them do not accurately preserve asymmetric proximities
between nodes. To address this limitation, a number of approaches
have been proposed. For each node, they learn separately a source
embedding and a target embedding, which are vectors that preserve
the node’s properties as sources and targets, respectively.

First, HOPE [22] and ATP [30] extend MF-based undirected NE
methods; and GravityAE/VAE [27] and DiGCN [33] extend DL-
based ones. They are based on different asymmetric proximity
scores. Specifically, HOPE directly employs a well-known proximity
measurement (e.g., Katz measure [10] and Rooted PageRank [29]),
while ATP is based on a new measurement that captures both the
hierarchy and reachability between nodes in the network. Then,
both HOPE and ATP build a proximity matrix where each (𝑖, 𝑗)-th
entry indicates an asymmetric proximity score from 𝑖 to 𝑗 , while
GravityAE/VAE andDiGCNuse the asymmetric adjacencymatrix of
the input network. Then, they obtain source and target embeddings
of nodes, which the asymmetric proximities are approximated from,
by using MF techniques (e.g., singular value decomposition [23]) or
DL techniques (e.g., graph autoencoders [13, 34] and GCN [14]).

Next, APP [41] and NERD [11] extend the RW-based undirected
NE methods. They employ different RW strategies to sample a
number of positive nodes close to each seed node while taking edge
directions into consideration. Specifically, APP employs an RW
strategy that starts from a seed node and then follows out-going
edges randomly. On the other hand, NERD proposes an alternating
RW strategy that starts from a seed node and follows out-going and
in-coming edges alternately. APP and NERD also sample negative
nodes for each seed node uniformly at random. Then, both methods
update the source embedding of each seed node and the target
embeddings of the sampled positive and negative nodes so that the
proximities between the seed node and the positive nodes surpass
those between the seed node and the negative nodes. Note that,
by the RW strategy of NERD, low out- and in-degree nodes are
sampled mostly as targets and sources, respectively, but rarely as
sources and targets, respectively. Thus, NERD still fails to accurately
capture the properties of low out- and in-degree nodes as sources
and targets, respectively, as discussed in Section 1.

All the aforementioned directed NE methods, including NERD,
face difficulties in correctly preserving asymmetric proximities in a
sparse network with many low out- and in-degree nodes.

3 DIVINE: PROPOSED APPROACH
In this section, we propose DIVINE, a novel directed NE approach
based on virtual negative edges (VNEs). We first formulate the

Table 1: Notations used in this paper

Notation Description

G Original directed network only with positive edges
S Signed directed network with positive edges and VNEs

V , E+, E− Sets of nodes, positive edges and VNEs
|V |, |E+ |, |E− | Numbers of nodes, positive edges and VNEs

𝜃 Parameter for determining the number of VNEs
A = (𝑎𝑖 𝑗 )𝑛×𝑛 Asymmetric adjacency matrix of G
X = (𝑥𝑖 𝑗 )𝑛×𝑛 Asymmetric matrix whose entry 𝑥𝑖 𝑗 represents the degree

of negativity of 𝑣𝑖 with respect to 𝑣𝑗

f𝑣𝑖 , g𝑣𝑖 ∈ R𝑑 𝑑-dimensional source and target embeddings of 𝑣𝑖

problem of directed NE and present an overview of DIVINE. Then,
we describe each step of DIVINE in detail.
3.1 Overview
The directed NE problem is formulated as follows: Let G = (V, E)
be a given directed network, where V = {𝑣1, 𝑣2, · · · , 𝑣𝑛} denotes
the set of 𝑛 nodes and E denotes the set of directed edges. Let
𝑒𝑖 𝑗 ∈ E be the directed edge from 𝑣𝑖 (i.e., source) to 𝑣 𝑗 (i.e., target).
Directed NE methods aim to learn source/target embedding func-
tions f, g : V → R𝑑 which map each node 𝑣𝑖 ∈ V to 𝑑-dimensional
source/target embeddings so that asymmetric proximities between
nodes in G are preserved. Table 1 summarizes a list of notations.

Now, we present an overview of ourDIVINE approach. As shown
in Figure 1, DIVINE consists of four steps: (Step 1) inferring the
degree of negativity; (Step 2) selecting VNEs based on the degree
of negativity; (Step 3) modeling a signed directed network; (Step
4) learning source and target embeddings of nodes. In Step 1, from
the existent (positive) edges in G, we infer the degree of negativity
𝑥𝑖 𝑗 of 𝑣𝑖 with respect to 𝑣 𝑗 for each pair of nodes 𝑣𝑖 and 𝑣 𝑗 . In Step
2, we select VNEs from each node 𝑣𝑖 based on each 𝑥𝑖 𝑗 , i.e., 𝑣𝑖 ’s
degree of negativity for each of other nodes, 𝑣 𝑗 . In Step 3, after
determining the number of VNEs from each node, based on the
structural balance [1, 4, 9] of signed directed networks, we add VNEs
to G and model it as a signed directed network S = (V, E+, E−),
whereV = {𝑣1, 𝑣2, · · · , 𝑣𝑛} denotes the set of 𝑛 nodes and E+ and
E− denote the sets of directed positive edges and directed VNEs,
respectively. We let 𝑒+

𝑖 𝑗
∈ E+ and 𝑒−

𝑖 𝑗
∈ E− be a directed positive

edge and a VNE from 𝑣𝑖 (i.e., source) to 𝑣 𝑗 (i.e., target), respectively.
Note that E+ ∩ E− = ∅; that is, a node pair cannot have both a
positive edge and a VNE simultaneously. In Step 4, we learn the
source and target embeddings of each node 𝑣𝑖 while exploiting both
signs and directions of edges in S.

As a demonstration of our key challenge, Figure 2 shows the
number of existent edges and non-existent edges in real-world
directed networks. We observe that the number of non-existent
edges is quite large – i.e., 39M, 50M, 37M, 534M for GNU, Wiki-
Vote, JUNG, EAT, respectively. As such, it is very challenging to
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Figure 2: The numbers of existent and non-existent edges in
real-world networks.

selectively create a small number of VNEs among a large number
of non-existent edges. In DIVINE, Steps 1, 2, and 3 address this
challenge. Then, in Step 4, we learn the embeddings of nodes by
employing off-the-shelf NE methods designed to be effective for
signed directed networks.

3.2 Inferring the degree of negativity
To quantify the degree of negativity of all pairs of nodes, we first
regard each existent edge 𝑒𝑖 𝑗 ∈ E in the input network as a positive
edge 𝑒+

𝑖 𝑗
∈ E+. From these positive edges, we infer the degree

of positivity 𝑎𝑖 𝑗 of a node 𝑣𝑖 with respect to every other node 𝑣 𝑗 .
Finally, we consider that the lower 𝑎𝑖 𝑗 of 𝑣𝑖 with respect to 𝑣 𝑗 is,
the higher the degree of negativity 𝑥𝑖 𝑗 of 𝑣𝑖 with respect to 𝑣 𝑗 is.

In order to infer the degree of positivity, we employ weighted
regularized matrix factorization (WRMF) [24]. For WRMF, we use
the (asymmetric) adjacency matrixA = (𝑎𝑖 𝑗 )𝑛×𝑛 of a given directed
network G, where each entry 𝑎𝑖 𝑗 indicates whether the correspond-
ing directed edge 𝑒𝑖 𝑗 exists (i.e., 𝑎𝑖 𝑗 = 1) or not (i.e., 𝑎𝑖 𝑗 = 0). Then,
we construct a weight matrixW = (𝑤𝑖 𝑗 )𝑛×𝑛 whose entries indicate
the relative confidence in the corresponding entries of A. For each
existent edge 𝑒𝑖 𝑗 , which we directly observe, we assign the highest
value of 1 to the corresponding entry of W (i.e., if 𝑎𝑖 𝑗 = 1, then
𝑤𝑖 𝑗 = 1). For all non-existent edges, we assign an equal weight less
than 1 to the corresponding entries ofW. 1

Then, we factorize A into the product of two low-rank matrices
P and Q by performing weighted alternating least squares using
W as weights. Specifically, to obtain P and Q, which are latent
factors representing the properties of nodes as sources and targets,
respectively, we aim to minimize the following objective function:

L(P,Q) =
∑

𝑖,𝑗
𝑤𝑖 𝑗 {(𝑎𝑖 𝑗 − P𝑖 (·) (Q𝑗 (·) )⊤)2 + 𝜆 ( ∥P𝑖 (·) ∥2𝐹 + ∥Q𝑗 (·) ∥2𝐹 ) },

where P𝑖 ( ·) and Q𝑗 ( ·) indicate the i-th row of P, and the j-th row of
Q, respectively. In addition, ∥(·)∥𝐹 denotes the Frobenius norm and
𝜆 is a regularization parameter for preventing overfitting. In order
to factorize A, WRMF first assigns random values to the entries of
Q, and updates the entries of P as follows, ∀1 ≤ 𝑖 ≤ 𝑛:

P𝑖 (·) = A𝑖 (·)W̃𝑖 (·)Q{Q⊤W̃𝑖 (·)Q + 𝜆 (
∑

𝑗
𝑤𝑖 𝑗 )I}−1, (1)

where W̃𝑖 ( ·) is a diagonal matrix with the entries ofW𝑖 ( ·) on the
diagonal, and I is an identity matrix. After that, WRMF updates the
entries of Q while fixing P as follows, ∀1 ≤ 𝑗 ≤ 𝑛:

Q𝑗 (·) = (A(·) 𝑗 )⊤W̃(·) 𝑗P{P⊤W̃(·) 𝑗P + 𝜆 (
∑

𝑖
𝑤𝑖 𝑗 )I}−1 . (2)

We reduce the objective function by repeatedly updating P and Q
using Eq. (1) and Eq. (2) computing both P𝑖 ( ·) and Q𝑗 ( ·) until P and
Q converge. Then, we compute the matrix Â = (𝑎𝑖 𝑗 )𝑛×𝑛 , which
approximates A, by multiplying P and Q (i.e., A ≈ Â = PQ⊤). Here,
each entry 𝑎𝑖 𝑗 of Â indicates the degree of positivity of 𝑣𝑖 with

1This corresponds to the the uniform scheme. In [24], the authors proposed three
schemes–i.e., user-oriented, item-oriented, and uniform, but the differences in their
accuracies are insignificant in our preliminary experiments.

respect to 𝑣 𝑗 . Lastly, for each node pair 𝑣𝑖 and 𝑣 𝑗 , we compute the
degree of negativity of 𝑣𝑖 with respect to 𝑣 𝑗 by as follows:

𝑥𝑖 𝑗 = 1 −
𝑎𝑖 𝑗 − ∥Â∥min

∥Â∥max − ∥Â∥min
. (3)

Note that the degree of negativity is not necessarily symmetric.
That is, for each node pair 𝑣𝑖 and 𝑣 𝑗 , 𝑥𝑖 𝑗 and 𝑥 𝑗𝑖 can be different.

To infer the degree of negativity, we can also exploit any existing
methods (e.g., RWR [28], directed NE methods) that are designed
to consider edge directions, instead of WRMF. However, we found
that, compared to five competitors, WRMF performs better or at
least comparably; we will discuss the results in detail in Section 4.2.

3.3 Selecting virtual negative edges
In this subsection, we discuss selecting VNEs among a large number
of non-existent edges, based on their degree of negativity. To this
end, we can consider two strategies: (1) global selection and (2)
local selection. The global selection strategy is to select VNEs with
high degrees of negativity among all potential ones. while the local
selection strategy is to select incident VNEs for each node.

First, the global selection strategy sorts all non-existent edges in
descending order of their degree of negativity (i.e., Eq. (3)). Then,
it selects a pre-defined number of VNEs sequentially from the be-
ginning of the sorted list. This strategy may select a large fraction
of VNEs among non-existent edges between high-degree nodes,
failing to address the lack of information about low-degree nodes.

On the other hand, the local selection strategy selects an equal
number of VNEs per source node. Specifically, for each node 𝑣𝑖 ,
the local selection strategy sorts all non-existent edges from 𝑣𝑖 in
descending order of their degree of negativity, and then it selects
a pre-defined number of VNEs sequentially from the beginning of
the sorted list. By selecting an equal number of VNEs from each
node, the local selection strategy guarantees that every node has
an equal opportunity to express its latent negative relationships.

We validate empirically in Section 4.2 that the local selection
strategy addresses the sparsity problemmore effectively than (1) the
global selection strategy and (2) two variants of the local selection
strategy where the number of VNEs from each node is proportional
and inversely proportional, respectively, to its out-degree. In addi-
tion, we confirmed in our preliminary experiments that selecting
an equal number of VNEs per source node, as proposed, is more
effective than (1) selecting an equal number of VNEs per target
node and (2) mixing the two strategies.

3.4 Modeling a signed directed network
In this subsection, we determine the total number of VNEs to be
added and then build a signed directed network composed of both
the VNEs and the existent postive edges.

First, we formulate an equation for determining the total number
of VNEs. Since we are adding the VNEs to the given (unsigned)
networkG, we determine the total number of VNEs, |E− |, by consid-
ering the total number of (positive) edges, |E+ |, in G. That is, we set
|E− | to be 𝜃 times the number of positive edges (i.e., |E− | = |E+ |×𝜃 ),
and 𝜃 is a parameter that determines |E− |. Intuitively, it is natural
to set 𝜃 to a small value since in most real-world signed networks,
the number of negative edges is significantly smaller than that of



Figure 3: All four types of transitive triads [1].
positive edges (e.g., in the Wiki-election dataset, the ratios of posi-
tive and negative edges are 79% and 21%, respectively). Moreover,
among a large number of potential VNEs, only a small fraction of
them clearly represent negative relationships. Below, we further
discuss the effect of the parameter 𝜃 on structural balance [1, 4, 9],
an important property of signed networks.

The structural balance indicates how well the edge signs in a
given signed network follow the balance theory, a well-known
theory in social sciences [9]. The balance theory states four rules of
real-world social relationships: “a friend of my friend is my friend,”
“a friend of my enemy is my enemy,” “an enemy of my friend is
my enemy,” and “an enemy of my enemy is my friend.” Specifically,
this theory considers triangles with an even number (i.e., 0 or 2)
of negative edges as balanced triangles and the other triangles
as unbalanced triangles [4]. While the balance theory originated
from social network analysis, it is also valid and useful in various
types of signed networks, such as biological, political, and technical
networks [2]. However, the structural balance has been studied
primarily for signed “undirected” networks. Therefore, most related
measures cannot take into account edge directions within triangles.

Recently, Aref et al. [1] proposed a new measure a triadic balance
𝑇 (S) for assessing the structural balance of the signed “directed”
network S. Given S, they first collect all the transitive triads con-
sisting of at least one or multiple triangles where the directions of
three edges satisfy the transitivity (i.e., if 𝑥 follows 𝑦 and 𝑦 follows
𝑧, then 𝑥 follows 𝑧.), as described in Figure 3. Then, they measure
the ratio, 𝑇 (S), of balanced ones among all the collected transitive
triads. A transitive triad is balanced if all of its transitive triangles
(see Figure 3-(a) for a transitive triangle) inside are balanced, and a
transitive triangle is balanced if it has an even number (i.e., 0 or 2)
of negative edges. The larger the value of 𝑇 (S) is, the better the
edge signs of S follow the balance theory.

Figure 4 shows the triadic balance 𝑇 (S) in our S with varying
𝜃 for four unsigned directed networks (i.e., GNU, Wiki-Vote, JUNG,
and EAT). For comparison, we also show 𝑇 (R) in eight real-world
signed directed networks R described in [1] (see the left side of
Figure 4.). Note that R has true negative edges, and VNEs are not
added to them. Thus, each ofR has a single value of𝑇 (R) regardless
of 𝜃 . Overall, the values of 𝑇 (R) are high across all signed directed
networks with an average of 0.78 (min=0.5, max=0.9, stdev=0.12),
except for College-B [1]. The results show that the edge signs in real-
world signed directed networks follow the rules of balance theory
well. On the other hand, in the cases of S, which are modeled
by DIVINE, as 𝜃 increases, the values of 𝑇 (S) tend to decrease.
Specifically, when 𝜃 < 1, the values of 𝑇 (S) become as high as
𝑇 (R), whereas, when 𝜃 ≥ 1, the values of𝑇 (S) become lower than
𝑇 (R). Recall that as 𝜃 increases, S contains more VNEs with lower
degrees of negativity. Accordingly, if S includes uncertain VNEs,
the edge signs in S do not follow well the rules of balance theory.

Based on this observation, we propose to set 𝜃 to a value around
0.25 or 0.5 where𝑇 (S) and𝑇 (R) in Figure 4 become close. We will
also show empirically in Section 4.2 that such values of 𝜃 lead to
high accuracy of DIVINE in the link-prediction task. Finally, we
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Figure 4: The triadic balance in 8 real-world signed directed
networks R and the effect of 𝜽 on the triadic balance in 4
real-world unsigned directed networks S. Larger 𝜃 indicates
that more VNEs are added to S.

build a signed directed network S composed by both the positive
edges E+ and the VNEs E−. Now, we can exploit E− in addition to
E+ to better understand the properties of low-degree nodes, thereby
addressing the lack of information about them.

3.5 Learning source and target embeddings
We learn the source and target embeddings of each node while
preserving the asymmetric proximities between nodes inSmodeled
by DIVINE. To this end, we note recent signed NE methods [12,
18, 36, 37]. In a nutshell, they attempt to represent the node pairs
with the positive edges to be close and those with the negative
edges to be distant in the embedding space. Some of them further
use the balance theory [4, 9] to exploit more-complex relationships
between nodes by combining positive and negative edges. In this
paper, we incorporate such a signed NE method into our DIVINE
approach. We present the process of learning the source and target
embeddings of nodes in S based on SIDE [12], which is designed to
consider edge directions. However, we note any signed NE method,
such as STNE [36] as shown in our evaluation, can be used instead.

First, we perform a directed random walk that starts from each
node and follows out-going edges while generating a walk sequence
{𝑣𝑖 → 𝑣1 → 𝑣2 → · · · → 𝑣𝑛} with edge signs. Within a window
of size 𝑠 , we then sample each directed node pair (𝑣𝑖 , 𝑣 𝑗 ) where 𝑣𝑖
(i.e., source) precedes 𝑣 𝑗 (i.e., target) in the sequence. For example,
when there is a sequence {𝑣𝑖 → 𝑣1 → 𝑣2} and 𝑠 is 2, we sample
three node pairs (𝑣𝑖 , 𝑣1), (𝑣𝑖 , 𝑣2), (𝑣1, 𝑣2). Here, we determine the
sign of each node pair (𝑣𝑖 , 𝑣 𝑗 ) by combining the edge signs in the
sequence from 𝑣𝑖 to 𝑣 𝑗 based on the balance theory.2 Finally, for
each node pair (𝑣𝑖 , 𝑣 𝑗 ) with a positive (resp. negative) sign, we aim
to maximize (resp. minimize) the proximity between the source
embedding of 𝑣𝑖 and the target embedding of 𝑣 𝑗 . To this end, we
aim to minimize the following objective function:

L(f, g) =
∑

(𝑣𝑖 ,𝑣𝑗 )∈O
[− log P(𝑣𝑖 , 𝑣𝑗 ) +

𝛼∑
𝑘=1

− log P(𝑣𝑖 , 𝑣𝑘 ) ] + R (𝛿), (4)

where O is a set of the sampled node pairs. For each pair (𝑣𝑖 , 𝑣 𝑗 ),
𝛼 noise nodes are randomly selected, and each noise node 𝑣𝑘 is
used to form a noise pair (𝑣𝑖 , 𝑣𝑘 ); R(𝛿) is a regularization term for
bias vectors of 𝑣𝑖 and 𝑣 𝑗 . Lastly, P(𝑣𝑖 , 𝑣 𝑗 ) corresponds to the esti-
mated likelihood of (𝑣𝑖 , 𝑣 𝑗 ) being sampled. Specifically, P(𝑣𝑖 , 𝑣 𝑗 )
is calculated depending on the sign of (𝑣𝑖 , 𝑣 𝑗 ): if the sign is posi-
tive, P(𝑣𝑖 , 𝑣 𝑗 ) = (f𝑣𝑖 · g𝑣𝑗 ), otherwise, P(𝑣𝑖 , 𝑣 𝑗 ) = −(f𝑣𝑖 · g𝑣𝑗 ). To
minimize Eq. (4), we employ the gradient descent algorithm. Due
to space limitations, we omit the details of the bias term and the
optimization process; we refer to [12] for the details of SIDE.

Now, we obtain source and target embeddings f𝑣𝑖 and g𝑣𝑖 of
each node 𝑣𝑖 , that approximate asymmetric proximities in S. The
embeddings can be used as inputs in various downstream tasks.

2The sign is negative if there are an odd number of negative edges along the
sequence while it is positive if there are an even number of negative edges.



4 EVALUATION
We designed our experiments, aiming at answering the following
key research questions (RQs):

• RQ1: How should the degree of negativity be inferred inDIVINE?
• RQ2: How should the locations of VNEs be decided in DIVINE?
• RQ3: How should VNEs be distributed to nodes in DIVINE?
• RQ4: How many VNEs should be added in DIVINE?
• RQ5: Does DIVINE outperform its competitors for directed NE?
• RQ6: Is DIVINE effective for embedding low-degree nodes?

4.1 Experimental settings
Datasets. We used four real-world datasets of unsigned directed
networks in different types: Gnutella (GNU), Wiki-Vote, JUNG,
and Edinburgh Associative Thesaurus (EAT). They are all publicly
available.3 Table 2 provides some statistics of the four datasets.

• GNU is a peer-to-peer network for file sharing. A node represents
a host, and a directed edge from a host 𝑣𝑖 to a host 𝑣 𝑗 represents
that 𝑣𝑖 made a connection to 𝑣 𝑗 .

• Wiki-Vote is an online voting network. A node represents a user,
and a directed edge from a user 𝑣𝑖 to a user 𝑣 𝑗 represents that 𝑣𝑖
voted on 𝑣 𝑗 .

• JUNG is a software class dependency network of JUNG 2.0.1
libraries. A node represents a Java class, and a directed edge from
a class 𝑣𝑖 to a class 𝑣 𝑗 represents that 𝑣𝑖 is dependent on 𝑣 𝑗 .

• EAT is a lexical network. A node represents an English word,
and a directed edge from a word 𝑣𝑖 to a word 𝑣 𝑗 represents that
𝑣 𝑗 was given as a response to 𝑣𝑖 in user experiments.

Competitors. We have two versions of DIVINE: one employing
SIDE [12], denoted byDIVINE-I, and the other employing STNE [36],
denoted byDIVINE-T. We have two families of state-of-the-art com-
petitors: undirected NE methods (DeepWalk [25], Node2Vec [6],
and LINE [32]) and directed NE methods (APP [41], ATP [30],
NERD [11], GravityAE [27], GravityVAE [27], and DiGCN [33]).

For evaluation, we used the source code provided by the authors.
For a fair comparison, we set the dimensionality of embeddings
to 128 in all methods including DIVINE. We carefully tuned the
hyperparameters of competitors and DIVINE. For DIVINE, we set
its hyperparameters as follows: 𝜃 = 0.5; epochs = 50 (for WRMF);
learning rate = 0.025 (for SIDE and STNE); number of walks = 80
(for SIDE) / 20 (for STNE); walk length = 40 (for SIDE and STNE);
window size = 5 (for SIDE) / 10 (for STNE); number of negative
samples = 20 (for SIDE) / 5 (for STNE).
Evaluation Tasks. We employ a link prediction (LP) task to evalu-
ate the effectiveness of DIVINE and competitors. The goal of this
task is to evaluate how accurately we can predict the directed edges
removed from the input directed network by using each NE method.
For evaluation, we perform five-fold cross-validation, which splits
the edges in the input network into training (80%) and test (20%)
sets. In each of the training/test sets, we consider the existent edges
as positive examples, and the same number of randomly-sampled
non-existent edges as negative examples. Then, we obtain node
embeddings by using each NE method on the training set.

3http://snap.stanford.edu/ | http://konect.cc/networks/

Table 2: Dataset statistics
Datasets GNU Wiki-Vote JUNG EAT

Nodes 6,301 7,115 6,120 23,132
0 out-degree 59.35% 15.21% 1.35% 63.54%
0 in-degree 4.11% 64.49% 66.43% 2.16%

Edges 20,777 103,689 50,535 312,320
Reciprocity 0.00% 5.64% 0.90% 9.50%
Density 0.05% 0.20% 0.13% 0.06%
Types P2P Election Software Word

Then, we concatenate4 the embeddings of two nodes on each
training example and train a logistic regression classifier using the
concatenated embeddings as the input. Finally, we classify whether
each testing example is positive or negative based on the learned
classifier. We measure classification accuracy using the area under
curve (AUC) [8], which has been widely used in many previous
studies on NE [6, 11, 27, 30, 41].

We note that some directed NE methods [11, 27, 41] perform
the above tasks by using the dot product, instead of the classifier
employed in this paper. They predict the appearance of each testing
example 𝑒𝑖 𝑗 via the dot product of 𝑣𝑖 ’s source embedding and 𝑣 𝑗 ’s
target embedding; then, they classify the half of all examples with
the highest predicted values as positive examples and the other
half as negative examples. However, it may be unfair to the undi-
rected NE methods that use a single embedding per node. Note that,
by using the dot product, they cannot predict the appearances of
bidirectional edges (e.g., 𝑒𝑖 𝑗 and 𝑒 𝑗𝑖 ) separately.

In this sense, we claim that employing the classifier instead of the
dot product alleviates the aforementioned limitation in validating
undirected NE methods. Specifically, for the above example, we
use 𝑣𝑖 ’ embedding followed by 𝑣 𝑗 ’s embedding for 𝑒𝑖 𝑗 ; and use
𝑣 𝑗 ’ embedding followed by 𝑣𝑖 ’s embedding for 𝑒 𝑗𝑖 . We confirmed,
through preliminary experiments, that employing the classifier
significantly improves not only the accuracies of undirected NE
methods but also the accuracies of directed NE methods, including
DIVINE, compared to employing the dot product. Thus, in this
work, we report the results in LP when employing the classifier.

Following [11, 27, 41], we further extend the aforementioned
LP task for directed networks. Specifically, we also measure how
accurately the directions of the unidirectional edges in the input
directed network can be predicted using each NE method. Towards
this end, we sample 𝑘% of the unidirectional positive examples
and consider the edges with the opposite directions as negative
examples, as in [11, 27, 41], and we sample the remaining (100−𝑘)%
of negative examples uniformly at random among non-existent
edges. According to the ratio (i.e,. 𝑘%), we divide the LP task into
three types: (1) 𝑘 = 0 (Uniform LP; U-LP, in short), (2) 𝑘 = 50 (Mixed
LP; M-LP, in short), and (3) 𝑘 = 100 (Biased LP; B-LP, in short). Note
that the U-LP task is the same as the aforementioned LP task.

4.2 Results
RQ1: Comparisons of methods for inferring the degree of
negativity. In Section 3.2, DIVINE infers the degree of negativity
between nodes based on WRMF [24]. For RQ1, we compare the
AUCs of the variants of DIVINE equipped with the following meth-
ods for inferring the degree of negativity: WRMF [24], RWR [28],
ATP [30], APP [41], GravityVAE [27], and NERD [11].

4In our comparison experiments, we confirmed that the concatenation operator
consistently outperforms several other operators (e.g., element-wise product)

http://snap.stanford.edu/
http://konect.cc/networks/
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Figure 5: Comparisons of several methods for inferring
the degree of negativity. When it is equipped with WRMF,
DIVINE-I consistently achieves high AUC in all datasets.

Table 3: The effects of VNE-selection strategies on the accu-
racies of DIVINE-I. The local selection strategy is most effec-
tive, improving the accuracies of DIVINE-I most.

Datasets GNU Wiki-Vote JUNG EAT

DIVINE(Global) 0.923 0.839 0.978 0.802
DIVINE(Local) 0.943 0.966 0.994 0.917

DIVINE(Local𝑣𝑎𝑟𝑖 ) 0.920 0.838 0.986 0.813

Figure 5 shows the AUCs of the variants of DIVINE in B-LP.
DIVINE(WRMF) consistently outperforms DIVINE(RWR) and DI-

VINE(ATP) in all datasets; and it shows AUCs higher than or com-
parable to those of DIVINE(APP), DIVINE(GravityVAE), and DI-

VINE(NERD). The results show that WRMF is consistently effective
in inferring the degree of negativity. We also note that, among six
variants, DIVINE(RWR) and DIVINE(ATP) showed the lowest AUC
in most cases. Further investigation reveals that, when RWR and
ATP are used, both (1) the degrees of negativity between a node 𝑣𝑖
and each node non-reachable from 𝑣𝑖 and (2) those between 𝑣𝑖 and
each zero in-degree node are predicted to be high. As a result, when
equipped with RWR or ATP,DIVINE selects VNEs randomly among
them, failing to choose VNEs effectively for accurate embedding.
RQ2: Effectiveness of the local selection strategy. In Section 3.3,
we considered two strategies for selecting VNEs: global selection
and local selection. For RQ2, we compare the AUCs of two variants
of DIVINE: (1) DIVINE(Local), which employs the local selection
strategy and (2)DIVINE(Global), which employs the global selection
strategy. Table 3 shows that, in B-LP, DIVINE(Local) consistently
and significantly outperforms DIVINE(Global) in all datasets. The
results indicate that giving VNEs to all nodes (i.e., the local selec-
tion strategy) is more beneficial than giving those to only a small
fraction of nodes (i.e., the global selection strategy). We found that
the global selection strategy added VNEs to only 35%, 44%, 53%,
and 34% of nodes in GNU, Wiki-Vote, JUNG, and EAT, respectively.

Furthermore, we examine the effectiveness of the local selection
strategy in detail. Note that, in the local selection strategy, we also
select VNEs from zero out-degree nodes, i.e., the extreme case of
low out-degree nodes. To verify whether this strategy, denoted by
DIVINE(Local), contributes to improving the accuracy of directed
NE, we compare it and another variant of DIVINE, denoted by DI-

VINE(Local𝑣𝑎𝑟𝑖 ), which does not select VNEs from zero out-degree
nodes. Table 3 shows that DIVINE(Local) consistently outperforms
DIVINE(Local𝑣𝑎𝑟𝑖 ) in all datasets. The results show that giving
VNEs to all nodes including zero out-degree nodes effectively miti-
gates the lack of information when embedding low-degree nodes.
RQ3: Effectiveness of adding an equal number of VNEs to
each source node. In Section 3.3, DIVINE adds an equal number
of VNEs to all source nodes. For RQ3, we verify that this strategy
is more effective than to add different numbers of VNEs to source

Table 4: The effects of the numbers of VNEs from source
nodes on the accuracies of DIVINE-I. Adding an equal num-
ber of VNEs to all source nodes is most effective.

Datasets GNU Wiki-Vote JUNG EAT

DIVINE(Prop.) 0.922 0.862 0.976 0.806
DIVINE(InverseProp.) 0.915 0.951 0.994 0.760
DIVINE(Uniform) 0.943 0.966 0.994 0.917
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Figure 6: The effect of 𝜽 on the accuracies of DIVINE-I.
Larger 𝜽 indicates that more VNEs are added to S. It is most
effective when the number of added VNEs is 0.25 times or
0.5 times the number of positive edges.

nodes. Towards this end, we made two variants of DIVINE, denoted
by DIVINE(Prop.) and DIVINE(InverseProp.). They set the number
of VNEs from each node proportionally and inverse proportionally,
respectively, to its out-degree. For comparison, we denote DIVINE
based on our strategy by DIVINE(Uniform). Table 4 shows how
the AUCs of DIVINE-I depend on the number of VNEs from source
nodes in B-LP. We confirm that DIVINE(Uniform) consistently
outperforms the other two variants in all datasets. The results show
that treating all source nodes equally by adding an equal number
of VNEs to them helps learn accurate embeddings most.
RQ4: Accuracy changes with varying 𝜽 . The total number of
VNEs in DIVINE is 𝜃 times the number of positive edges. For RQ4,
we show how 𝜃 affects the AUC of DIVINE-I. Figure 6 shows the
results in B-LP. Note that setting 𝜃 = 0 is equivalent to performing
DIVINE-I on the original input directed networks without VNEs.

Figure 6 shows that the AUCs increase in a range between 𝜃 = 0
and 𝜃 = 0.25 and they remain almost the same in a range between
𝜃 = 0.25 and 𝜃 = 1. Then, the AUCs gradually decrease. In summary,
DIVINE-I achieves the best AUCwhen 0.25 ≤ 𝜃 ≤ 0.5 in all datasets.
This trend is similar to that of the triadic balance as shown in
Figure 4 of Section 3.4. Specifically, when 0.25 ≤ 𝜃 ≤ 0.5, each
signed directed network S (modeled by DIVINE) has a high value
of triadic balance, similar to that in real-world signed directed
networksR, indicating that the edge signs of the network follow the
rules of balance theory well. In this sense, we found that setting 𝜃
so that S follows the rules of balance theory well helps improve the
AUC of DIVINE. Notably, DIVINE-I achieves significantly higher
AUC when 0.25 ≤ 𝜃 ≤ 0.5 than when 𝜃 = 0. This indicates that
exploiting VNEs in addition to the given positive edges clearly helps
to obtain more accurate embeddings.
RQ5: Comparison with nine competitors.We conducted com-
parative experiments with 3 LP tasks on 4 datasets to demonstrate
the superiority of DIVINE-I and DIVINE-T over the following 9
competitors: DeepWalk [25], Node2Vec [6], LINE [32], APP [41],
GravityAE/VAE [27], NERD [11], ATP [30], and DiGCN [33]. Table 5
shows the results. The value in boldface and underlined indicate
the best AUC in each row and the AUC of the best ‘competitor’,
respectively. Below, we summarize the results in Table 5.

First, the undirected NE methods provide AUCs comparable to
or even higher than some directed NE methods (e.g., APP). The



Table 5: Accuracies of nine competitors and our DIVINE. Both versions of DIVINE significantly and consistently outperform
all competitors in all LP tasks on all datasets. That is, DIVINE provides most informative embeddings.

Datasets Types Undirected NE Directed NE
DIVINE-I DIVINE-TDeepWalk Node2Vec LINE APP GravityAE GravityVAE NERD ATP DiGCN

GNU
U-LP 0.644±0.005 0.639±0.005 0.710±0.003 0.617±0.006 0.634±0.013 0.723±0.005 0.773±0.003 0.758±0.002 0.768±0.002 0.784±0.006 0.798±0.002
M-LP 0.618±0.007 0.600±0.005 0.772±0.004 0.606±0.003 0.648±0.016 0.750±0.007 0.809±0.006 0.813±0.004 0.836±0.003 0.858±0.010 0.857±0.002
B-LP 0.654±0.012 0.679±0.008 0.859±0.005 0.634±0.007 0.710±0.017 0.822±0.008 0.851±0.007 0.877±0.004 0.917±0.002 0.943±0.008 0.937±0.003

Wiki-Vote
U-LP 0.890±0.002 0.880±0.003 0.864±0.007 0.823±0.002 0.871±0.008 0.906±0.002 0.901±0.006 0.824±0.004 0.826±0.001 0.910±0.002 0.929±0.001
M-LP 0.883±0.002 0.894±0.002 0.886±0.002 0.676±0.004 0.878±0.017 0.905±0.005 0.890±0.007 0.891±0.002 0.850±0.002 0.918±0.003 0.933±0.001
B-LP 0.922±0.002 0.944±0.002 0.944±0.001 0.686±0.006 0.922±0.017 0.950±0.005 0.897±0.007 0.966±0.001 0.917±0.002 0.966±0.004 0.971±0.001

JUNG
U-LP 0.880±0.009 0.948±0.003 0.936±0.003 0.939±0.002 0.946±0.039 0.954±0.002 0.955±0.002 0.951±0.002 0.955±0.001 0.948±0.002 0.960±0.002
M-LP 0.902±0.007 0.956±0.003 0.957±0.002 0.950±0.002 0.944±0.033 0.968±0.003 0.963±0.002 0.968±0.002 0.971±0.002 0.969±0.001 0.976±0.001
B-LP 0.950±0.006 0.982±0.001 0.989±0.001 0.930±0.001 0.976±0.027 0.991±0.002 0.979±0.001 0.990±0.001 0.994±0.001 0.994±0.001 0.996±0.001

EAT
U-LP 0.831±0.001 0.832±0.002 0.824±0.001 0.772±0.001 0.836±0.009 0.839±0.004 0.864±0.002 0.855±0.002 0.831±0.001 0.880±0.006 0.888±0.001
M-LP 0.682±0.001 0.759±0.001 0.827±0.001 0.701±0.001 0.791±0.033 0.815±0.001 0.825±0.002 0.882±0.001 0.860±0.001 0.881±0.007 0.889±0.001
B-LP 0.614±0.001 0.819±0.001 0.863±0.001 0.630±0.002 0.838±0.029 0.851±0.003 0.802±0.002 0.915±0.001 0.901±0.001 0.917±0.006 0.921±0.002
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Figure 7: Comparisons of ourDIVINE and the strongest com-
petitors in the out- and in-degree-based node groups. Both
versions of DIVINE consistently achieve higher AUC than
all competitors across all groups; and the performance gain
is largest for the low-degree node groups.

results are different from those reported in some previous studies
where LP tasks are performed using the dot product [11, 41]. By
employing the logistic classifier, the undirected NE methods can
now consider the directions of edges, making their AUCs improve
significantly in all types of LP tasks. Second, no single competitor
consistently outperforms the other competitors. Best competitors
change depending on tasks and datasets: GravityVAE for U-LP and
M-LP on Wiki-Vote; NERD for U-LP on GNU, JUNG, and EAT; ATP
for B-LP on GNU and for M-LP and B-LP on EAT; DiGCN for all
remaining cases. To the best of our knowledge, this work made a
direct comparison of the four recent NE methods (i.e., GravityAE/VAE,
NERD, ATP, and DiGCN) for the first time.

Third and most importantly, both versions of DIVINE signifi-
cantly and consistently outperform all competitors in all LP tasks
on all datasets. Specifically, DIVINE-T yields up to 14.32%, 14.89%,
12.70%, and 12.41% higher AUC than the strongest competitors
GravityVAE, NERD, ATP, and DiGCN, respectively. Additionally,
we note that the AUCs of DIVINE-I and DIVINE-T are highest in
B-LP followed byM-LP and then U-LP on all datasets. This indicates
that DIVINE is most accurate in the task of predicting the edge
directions. In other words, the embeddings obtained by DIVINE

accurately preserve asymmetric proximities between nodes.
RQ6: Effectiveness in embedding low-degree nodes. We ver-
ify that DIVINE is effective in embedding low out- and in-degree
nodes about which we lack of information. To this end, we divide
all nodes in the test set into three groups (i.e., low, medium, and
high) according to their out-degree. Then, we compare the AUCs
of DIVINE-I and DIVINE-T with those of the strongest competitors
(i.e., NERD, ATP, and DiGCN), obtained from the testing examples

having the nodes of each group as sources. Similarly, we divide the
nodes into three groups according to their in-degree and compare
the AUCs obtained from the nodes of each group as targets. Fig-
ures 7-(a) and 7-(b) show the results in B-LP on GNU, the sparsest
one among the four datasets used in this paper, for out-degree-based
groups and in-degree-based groups, respectively. We note that both
versions of DIVINE consistently outperform all the competitors
across all groups. Notably, the performance gain is largest in the low-
degree node groups. The results indicate that DIVINE successfully
addresses the lack of information about low out- and in-degree
nodes, and as a result, it is particularly effective in improving the
quality of embeddings of such nodes.

5 CONCLUSIONS
Observation. In this work, we pointed out that the existing di-
rected NE methods face difficulties in accurately preserving asym-
metric proximities between nodes in a sparse network with a large
fraction of low out- and in-degree nodes.
AlgorithmDesign. To address this limitation, we designed a novel
directed NE approach, named asDIVINE, which effectively captures
asymmetric proximities between nodes by exploiting information
in the form of VNEs. Under DIVINE, we proposed three ideas to
selectively add VNEs: (1) inferring the degree of negativity; (2) us-
ing the local selection strategy to distribute VNEs to all nodes; (3)
determining the number of VNEs based on the theory of structural
balance. Once VNEs are added, DIVINE learns the source and tar-
get embeddings of nodes by employing any NE methods that are
designed to be effective for signed directed networks.
Experiments. We demonstrated that DIVINE significantly and
consistently outperforms its 9 state-of-the-art competitors in 3 LP
tasks on 4 real-world datasets. Through extensive ablation studies,
we showed clearly the effectiveness of each of our design choices.
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