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Background

Network embedding (NE)

B Represents each node in a given network as a low-
dimensional vector that preserves the structural properties of
the network

Lle.g., proximity between nodes

)

»
>

B Can be used as informative features of nodes in various
downstream network mining tasks

L1Link prediction
[I1Node clustering/classification
[JRecommendation
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Background (cont’d)

In recent studies, additional information has been

incorporated to improve the accuracy of NE

B Edge directions [Tong et al. NeurlPS’20; Yoo et al. WSDM’22]
Lle.g., follower and followee

B Edge signs [Lee et al. SIGIR’20; Liu et al. KDD’21]
[le.g., trust and distrust

B Node attributes [Gao et al. [JCAI’18; Pan et al. WSDM’21]
[le.g., bag-of-words
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Background (cont’d)

A directed network

B A directed edge from node i to j expresses an asymmetric
relationship (or proximities) between two nodes

B A toy example on Instagram

follow

—X

not follow
User i Influencer j

To capture such asymmetric relationships accurately,
various directed NE methods have been proposed

B APP [AAAI'l7], ATP [AAAI'19], NERD [ECML-PKDD’19],
GravityAE/VAE [CIKM’19], DiGCN [NeurlIPS’20]
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Directed NE Methods

Given a directed edge from i to j,

g

User i Influencer j

B Distinguish the source node i and the target node j according
to their roles in the edge

B Learn a source embedding and a target embedding, which
preserve the node’s properties as sources and targets

— —

| I’s source J’s source
l embeddlng ‘ ‘ embeddlng
target \/ target |
erlnsbeadrcg:l en Ie{nsloeadrcgzl en |
Source Node { ! Target Node] [ ne —

Page 6 /31



Motivation

Sparsity of real-world networks

B Follow power-law degree distribution, which indicates there
are a small number of hub nodes and a large number of non-
hub nodes

_ o = e
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Number of nodes
(in log scale)
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Node degree (in log scale)

B Most nodes have extremely low out- and in-degrees!
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Motivation (cont’d)

Challenge of directed NE methods

B They hardly learn the source/target embedding of low out-/in-
degree nodes

B Thus, they easily fail to capture the properties of low out- and
in-degree nodes as sources and targets, respectively

Since a considerable fraction (34.86%/34.29%) of
nodes have a zero out- and in-degree, it aggravates the
above challenge

zero in-degree ™

Vo starget
ot learnt node vy IembeddmgI
' EmEEEE
— 5 =1
| v4’s source | | —===1
| embedding | not learn!

zero out-degree
node
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Our Idea: Data Augmentation

NE’s intrinsic difficulty is its lack of information when
embedding low out- and in-degree nodes in a sparse
directed network

New concept: Virtual Negative Edges (VNEs)

B Represent latent negative relationships between nodes

We propose a novel Directed NE approach with Virtual
Negative Edges, named as DIVINE

B Carefully find and add VNEs to the input network, which
originally had positive edges

B Learn embeddings by exploiting both edge types
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Overview of DIV

INE

Potential VNEs

Directed Network G

[v 9v

Source/Target Embeddings

V1 V3 Vg
V4 0.5 0.3
123 0 0.7
vg|02| 0

Asymmetric Matrix X with

Degree of Negativity x;;

Positive Edges
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Descending Order of x;;

STEP 3 ‘

Balanced!

P

Unbalanced!

v

Structural Balance
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Step 3: Modeling a Signed Directed Network

Determine the total number of VNEs to be added

€7 =|ET| x @

B |£E7|: the total number of VNEs
B |E7|: the total number of positive edges
B 0: a parameter that determines |E7|

Intuitively, it is natural to set 0 to a small value

B In most real-world signed networks, the number of negative
edges is significantly smaller than that of positive edges

B e.g., Wiki-election dataset
L] Positive edges : negative edges = 79% : 21%
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How to determine the number of VNEs?

Deal with this issue based on a well-known property
of signed networks, i.e., structural balance

How well the edge signs in a given signed network follow the balance theory?

Vy v, Vx Vg

(R1) A friend of my friend (R2) An enemy of my friend
y is my friend v,y is my enemy

(R3) A friend of my enemy (R4) An enemy of my enemy
v,y is my enemy Dy is my friend
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How to determine the number of VNEs?

The effect of the parameter 0 on the structural
balance in our signed directed networks

Real-world Our signed networks

signed networks modeled by DIVINE
S 1 / i / '
E“’ 0.8 % 2 :
@
a 0.6 -
< 04
2 0.2
=0

B Observation 1: edge signs in real-world signed networks
follow the rules of balance theory well

B Observation 2: as 6 increases, our signed networks contain
more uncertain VNEs, so the edge signs do not follow well the
rules of balance theory
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How to determine the number of VNEs?

Based on this observation,

Real-world Our signed networks

/ signed networks / modeled by DIVINE
______________ |

Triadic balance

B We set 0 to a value around 0.25 or 0.5 where the structural
balance of both real-world and our signed networks become
similar

We will also show empirically that such values of 0
lead to high accuracy of DIVINE in link prediction tasks.
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Step 3: Modeling a Signed Directed Network

Build a signed directed network composed of both the
existent positive edges and the VNEs
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Step 4: Learning Source/Target Embeddings

Incorporate recent signed NE methods into our DIVINE

B Nodes with the positive edges to be close to each other
B Nodes with the negative edges to be distant from each other

) [ @A
.. e
positive - &
® positive &
P-4 " g ‘
®
a
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Experimental Setup

Datasets
Datasets GNU Wiki-Vote JUNG EAT
Nodes 6,301 7,115 6,120 23,132
0 out-degree 59.35% 15.21% 1.35% 63.54%
0 in-degree 4.11% 64.49% 66.43% 2.16%
Edges 20,777 103,689 50,535 312,320
Reciprocity 0.00% 5.64% 0.90% 9.50%
Density 0.05% 0.20% 0.13% 0.06%
Types P2P Election Software Word

B Gnutella (GNU): a peer-to-peer network

B Wiki-Vote: an online voting network
B JUNG: a software class dependency network
B Edinburgh Associative Thesaurus (EAT): a lexical network
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Experimental Setup

Two variants of DIVINE
B DIVINE-I employing SIDE [WWW’18]
B DIVINE-T employing STNE [ICDM’19]

Nine competitors

B 3 undirected NE methods
[1DeepWalk [KDD’14]
LILINE [WWW’15]
[I1Node2Vec [KDD’16]

B 6 directed NE methods
LIAPP [AAAI'17] L1GravityAE [CIKM’19]
LIATP [AAAI'19] L1GravityVAE [CIKM’19]
LINERD [ECML-PKDD’19] LIDIGCN [NeurlPS'20]
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Evaluation Task: Link Prediction (LP)

How accurately we can predict the directed edges
removed from the input directed network?

Evaluation protocol

B Split the edges into training (80%) and test (20%) sets
L] Consider the existent edges as positive examples

[ Consider the same number of randomly-sampled non-existent
edges as negative examples

B Measure classification accuracy using area under curve (AUC)
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LP Task for Directed Networks

How accurately the directions of the unidirectional
edges in the input network can be predicted?

Evaluation protocol (sampling negative examples)

B Sample k% of the unidirectional positive examples and
consider the edges with the opposite directions as negative
examples

B Sample the remaining (100-k)% of negative examples
uniformly at random among non-existent edges

Three types of LP task according to the ratio (i.e., k%)
(1) k=0, Uniform LP (U-LP) (2) k=50, Mixed LP (M-LP)
(3) k=100, Biased LP (B-LP)
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LP Task for Directed Networks

Example of M-LP (i.e., k=50)

50% of the unidirectional
positive examples

Training Set Test Set
(80%) (20%)
\ 4 \

v v

negative examples with

Existent edges nAETES
the dpposite directions

(i.e., positive examples)

Non-existent edges
(i.e., negative examples)

rangdomly-sampled
nﬁative examples
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Questions to Be Answered

RQ1: How should the degree of negativity be inferred in
DIVINE?

RQ2: How should the locations of VNEs be decided in
DIVINE?

RQ3: How should VNEs be distributed to nodes in DIVINE?

RQ4: How many VNEs should be added in DIVINE?

RQ5: Does DIVINE outperform its competitors for directed
NE?

RQ6: Is DIVINE effective for embedding low-degree nodes?
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Results for RQ4

Accuracy changes with varying 6

1 = F—H—F—F
—A— GNU J
< 0.9
—@®— Wiki-Vote 55
—8— JUNG 0.8
—o— EAT 0.7
0 025 05 1 2 4 8

0
B DIVINE achieves the best AUC when 0.25 < 6 < 0.5, which is
similar to that of the triadic balance

B Setting 0 so that a signed directed network follows the rules
of balanced theory well helps improve the AUC of DIVINE
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Results for RQ5

Comparison with nine competitors

Undirected NE Directed NE
Datasets  Types . . .
DeepWalk Node2Vec LINE APP GravityAE GravityVAE NERD ATP DiGCN
U-LP | 0.644+0.005 0.639+0.005 0.710+£0.003 | 0.617+£0.006 0.634+0.013  0.723x0.005 0.773+0.003 0.758+0.002 0.768+0.002
GNU M-LP | 0.618+0.007 0.600+0.005 0.772+0.004 | 0.606+0.003 0.648+0.016 0.750+0.007 0.809+0.006 0.813+0.004 0.836+0.003
B-LP | 0.654+0.012 0.679+0.008 0.859+0.005 | 0.634+£0.007 0.710+0.017 0.822+0.008 0.851+0.007 0.877+0.004 0.917+0.002
U-LP | 0.890+0.002 0.880+0.003 0.864+0.007 | 0.823+£0.002 0.871+£0.008 0.906+0.002 0.901+0.006 0.824+0.004 0.826+0.001
Wiki-Vote M-LP | 0.883+0.002 0.894+0.002 0.886+0.002 | 0.676+0.004 0.878+0.017 0.905+0.005 0.890+0.007 0.891+0.002 0.850+0.002
B-LP | 0.922+0.002 0.944+0.002 0.944+0.001 | 0.686+0.006 0.9224+0.017 0.9504£0.005 0.897+0.007 0.966+0.001 0.917+0.002
U-LP | 0.880+0.009 0.948+0.003 0.936+0.003 | 0.939+0.002 0.946+0.039  0.954+0.002 0.955+0.002 0.951+0.002 0.955+0.001
JUNG M-LP | 0.902+0.007 0.956+0.003 0.957+0.002 | 0.950+0.002 0.944+0.033  0.968+0.003  0.963+0.002 0.968+0.002 0.971+0.002
B-LP | 0.950+0.006 0.982+0.001 0.989+0.001 | 0.930+0.001 0.976+0.027 0.991+0.002 0.979+0.001 0.990+0.001 0.994+0.001
U-LP | 0.831+£0.001 0.832+0.002 0.824+0.001 | 0.772+0.001 0.836+0.009  0.839+0.004 0.864+0.002 0.855+0.002 0.831+0.001
EAT M-LP | 0.682+0.001 0.759+0.001 0.827+0.001 | 0.701+£0.001 0.791+0.033  0.815+0.001 0.825+0.002 0.882+0.001 0.860+0.001
B-LP | 0.614+0.001 0.819+0.001 0.863+0.001 | 0.630+£0.002 0.838+0.029 0.851+0.003 0.802+0.002 0.915+0.001 0.901+0.001

B Undirected NE methods provide AUCs comparable to or even
higher than some directed NE methods (e.g., APP)

B No single competitor consistently outperforms the other
competitors
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Results for RQ5

Comparison with nine competitors

e ———————————— -
Directed NE I !
. . . I DIVINE-I DIVINE-T |
APP GravityAE GravityVAE NERD ATP DiGCN |
|
I
0.61740.006 0.634+0.013  0.723+0.005 0.773+0.003 0.758+0.002 0.768+0.002 j 0.784+0.006 0.798+0.002 |
0.606+£0.003 0.648+0.016 0.750+£0.007 0.809+0.006 0.813+0.004 0.836:1:0.003: 0.858+0.010 0.857+0.002 :
0.634+0.007 0.710+0.017  0.822+0.008 0.851+0.007 0.877+0.004 0.91740.002 j 0.943+0.008 0.937+0.003 :
i
0.823+£0.002 0.871+0.008 0.906+0.002 0.901+0.006 0.824+0.004 0.826+0.001 1 0.910+0.002 0.929+0.001 :
0.676+£0.004 0.878+0.017 0.905+0.005 0.890+0.007 0.891+0.002 0.850+0.002 : 0.918+0.003  0.933+0.001
0.686+0.006 0.922+0.017  0.950+£0.005 0.897+0.007 0.966+0.001 0.917+0.002 1| 0.966+0.004 0.971+0.001 :
0.939+0.002 0.94640.039  0.954+0.002  0.9554+0.002 0.951+0.002 0.955+0.001 1 0.948+0.002 0.960+0.002 :
0.950+0.002 0.944+0.033  0.968+0.003 0.963+£0.002 0.968+0.002 0.971+0.002 : 0.969+0.001 0.976+0.001 |
0.930+£0.001 0.976+0.027  0.991+0.002 0.979+0.001 0.990+0.001 0.994+0.001 : 0.994+0.001  0.996+0.001 :
0.7724£0.001 0.836+0.009  0.839+0.004 0.864+0.002 0.855+0.002 0.831+0.001 : 0.880+0.006 0.888+0.001 :
0.701+£0.001 0.791£0.033  0.815+£0.001  0.825x0.002 0.882+0.001 0.860+0.001 y 0.881+0.007 0.889+0.001 1|
0.630+£0.002 0.838+0.029 0.851+0.003 0.802+0.002 0.915+0.001 0.901+0.001 : 0.917+£0.006 0.921+0.002 :
ol

B Both versions of DIVINE significantly and consistently
outperform all competitors in all LP tasks on all datasets

B DIVINE is most accurate in the task of predicting the edge
directions (i.e., B-LP)
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Results for RQ6

Effectiveness in embedding low-degree nodes

FFEEE NERD B== ATP [[I[]]l DiGCN DIVINE-I g DIVINE-T

1 1.27% 2.74% 1 1.14%

. " i 4.47% 118

O 4'71\7% _ O 7.04% 1 :
— 0.8 . E: — T -
< 0. % : T < 0.8 : L

0.6 - ] : . : : : 0-6 —_— : -_: : : :

Low Medium High Low Medium High

(a) Out-degree-based (b) In-degree-based

B Out-degree-based: divide all nodes in the test set into low,
medium, and high groups according to their out-degree

B In-degree-based: divide all nodes in the test set into low,
medium, and high groups according to their in-degree
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Results for RQ6 (cont’d)

Effectiveness in embedding low-degree nodes

FFEEE NERD B== ATP [[I[]]l DiGCN DIVINE-I g DIVINE-T

1 1.27% 2.74% 1 1.14%

. " i 4.47% 118

O 4'71\7% _ O 7.04% 1 :
— 0.8 . E: — T -
< 0. % : T < 0.8 : L

0.6 - ] : . : : : 0-6 —_— : -_: : : :

Low Medium High Low Medium High

(a) Out-degree-based (b) In-degree-based

B DIVINE consistently outperform all the competitors
B The performance gain is largest in the low-degree groups

B DIVINE successfully address the lack of information about low
out- and in-degree nodes
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Conclusions

We pointed out that the existing directed NE methods
face difficulties in accurately preserving asymmetric
proximities between nodes in a sparse network

Under DIVINE, we proposed three ideas to selectively
add VNEs

B Inferring the degree of negativity

B Using the local selection strategy to distribute VNEs to all
nodes

B Determining the number of VNEs based on the theory of
structural balance

DIVINE significantly outperforms its 9 state-of-the-art
competitors in 3 LP tasks on 4 real-world datasets
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Thank You !
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Appendix



Inferring the Degree of Negativity

Quantify the degree of positivity of all pairs of nodes

based on weighted reqularized matrix factorization

higher the degree of negativity is

Adjacency
Matrix A
vl vz cee vs
v| - |0 0
vZ 1 = 0
Vg 0 1
vl vz cee v8
vy - |01 0.1
v | 1] - 0.1
vg|0.1] 1
Weight
Matrix W

Target
A
0.3 0.7 1.5 1.2
1.6 0.5 0.1 2.5
QT

Consider that the lower the degree of positivity is, the

vl vz cee vB
- o5 0.3
1 0.7
02| 1

Vi Uy - Vg
- |05 0.7
1 0.3
08| 1
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Inferring the Degree of Negativity (cont’d)

Equations

B Objective function

L(P,Q) 2 2 :
= Z Wy {(aij — Pi(.)(Qj(-))T) + }\(”Pi(‘)“F T “Qj(')”F)}

iJ
B Updates elements in the matrices P and Q
-1
Py = Ai(.)Wi(.)Q {QTWi(.)Q + A <z _Wij> I}

J

-1
Qj(.) = (A(.)j)TW(.)jP {PTW(.)J-P + A <2 Wij) I}

l

L] Wi(.) is a diagonal matrix with elements of W;(,y on the diagonal
L1 Matrix | is an identity matrix

B Final value
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Selecting VNEs

Propose two strategies: global/local selection

Global selection

B Select VNEs with high degrees of negativity among all
potential VNEs (i.e., non-existent edges)

VNEs

V4 VU V3 V4 - Vg  Potential VNEs V1 Uy /V3| Uy Vg
vy| - |04]08] 0 0.7 v3 > vg |09 vy - /
Vy| 0| - | 0|05 0.2 vy > vz |08 vy
vy |03 01| - |03 09| Vs™V1 |97 V3
V1 > Vg 0.7
Vgl 0| 0 |04] - 0.5 Vy /
Vg > Vy 0.5
: e V4 > Vg 0.5 :
vg| 07| 0 | 0 |02 - : ; Vg
v
(1) Sorting in descending order (2) Selecting VNEs
of the degree of negativity (e.g., a pre-defined number=5)

Page 33 /31



Selecting VNEs (cont’d)

Local selection

B Select an equal number of VNEs with high degrees of
negativity for each node

Positive Edges Potential VNEs Positive Edges - VNEs
> F-—n
10 . 0.7]0.6]0.5/0.3|0.2]0.1 10O . i.:
14 O - 0.9/0.7|0.4|0.3(0.2 12 O - i.:
] ¥
30 0.9(0.7/0.6{0.5[0.2|0.2|0.1 30 :.:
I [ ]
vs QO - 0.5|0.4|0.4|0.3|0.2 vs QO - :.i
|

I I
: : I !
: : | I
v O | I | %0 | I I
-

(1) Sorting in descending order (2) Selecting VNEs per source node

of the degree of negativity (e.g., a pre-defined number=1)
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Results for RQ1

Comparisons of methods for inferring the degree of
nhegativity

B DIVINE(RWR) 1 O - A
DIVINE(AT v = _ ¥
(ATP) o 0.9 137 = 7
[ITITI] DIVINE(APP) = : miz7 - 7
JWEEE] DIVINE(GravityVAE) < 0.8 [ [: 7 = %
77777 DIVINE(NERD) 0 : 7 — |I 2\
RN DIVINE(WRMF) " GNU Wiki-Vote JUN G EAT

B When it is equipped with WRMF, DIVINE consistently
achieves high AUC in all datasets
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Results for RQ2

Effectiveness of the local selection strategy

Datasets GNU Wiki-Vote JUNG EAT
DIVINE(Global) | __ 1 _ 0923 ____. 0832 _____. 0978 ___0.802__
/D IVINE(Loca)~ [ 0943 _____ 0.966______0.994 __ 0917 ;
DIVINE(Localy,gri) 10.920 0.838 098  0.813
W
Employing the global selection Employing the local selection

B DIVINE(Global) vs DIVINE(Local)

1 Giving VNEs to all nodes (i.e., local) is more beneficial than
giving those to only a small fraction of nodes (i.e., global)

L1 Found that DIVINE(Global) added VNEs to only 35%, 44%, 53%,
and 34% of nodes in GNU, Wiki-Vote, JUNG, and EAT,
respectively
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Results for RQ2 (cont’d)

Effectiveness of the local selection strategy

Datasets GNU Wiki-Vote JUNG EAT
_DIVINE(Global) ___1__ 0923 ____. 083 - 0978 ___0.802__
_DIVINE(Local) ____| 0.943 0.966______0.994_ __0.917 :
DIVINE(Localygri) ] 0.920 0.838 0.98  0.813
S~

Employing the local selection, but not
selecting VNEs from zero out-degree nodes

M DIVINE(Local) vs DIVINE(Localy, ;)

1 Giving VNEs to all nodes including zero out-degree nodes
effectively mitigates the lack of information
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Results for RQ3

Effectiveness of adding an equal number of VNEs to
each source node

Datasets GNU Wiki-Vote JUNG EAT
DIVINE(Prop.) 0.922 0.862 0.976 0.806
_DIVINE(InverseProp,)_ [ 0.915______ 0951 ______0.994 ___0.760__
! DIVINE(Uniform) 0.943 0.966 0.994 0.917 i

B DIVINE(Prop.) sets the number of VNEs from each node
proportionally to its out-degree

B DIVINE(InverseProp.) sets the number of VNEs from each
node inverse proportionally to its out-degree

B DIVINE(Uniform) sets an equal number of VNEs to all nodes
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Results for RQ3 (cont’d)

Effectiveness of adding an equal number of VNEs to
each source node

Datasets GNU Wiki-Vote JUNG EAT
DIVINE(Prop.) 0.922 0.862 0.976 0.806
_DIVINE(InverseProp,)_ [ 0.915______ 0951 ______0.994 ___0.760__
! DIVINE(Uniform) 0.943 0.966 0.994 0.917 i

B DIVINE(Uniform) consistently outperforms the others

B Treating all source nodes equally by adding an equal number
of VNEs to them helps learn accurate embeddings most
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Why Virtual Negative Edges?

Adding virtual edges (VEs) facilitates the utilization of
information expressed in the form of VEs

B [t has been proven useful for various graph mining tasks

[d1e.g., node classification [Klicpera et al. NeurIPS’19, Zhao et al.
AAAI'21], community detection [Kang et al. CIKM’20]

B They only focused on positive edges (VPEs)

However, we confirmed that VNEs provide information
more useful to directed NE methods than VPEs
B The information inherent in VNEs is more difficult for directed

NE methods to utilize (than that in VPEs) unless it is explicitly
provided in the form of VEs
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Why Virtual Negative Edges? (cont’d)

Comparisons of several methods for adding VEs

Datasets  Tvpes Based on GDC | Based on the degree of negativity
P VPEs VPEs | VNEs | VPEs+VNEs
U-LP 0.756 0778 | 0.784 | 0.788
GNU  M-LP 0.822 0.846 | 0.858 | 0.859
B-LP 0.911 0934 1 0.943 ! 0.944
U-LP 0.871 0879 ! 0910 | 0.911
Wiki-Vote M-LP 0.875 0892 | 0918 | 0.916
B-LP 0.903 0954 1 0.966 | 0.967
U-LP 0.936 0951 | 0.048 | 0.951
JUNG  M-LP 0.942 0969 ! 0.969 | 0.970
B-LP 0.979 0992 1 0.994 | 0.994
U-LP 0.820 0849 | 0.880 1 0.881
EAT M-LP 0.830 0845 ! 0881 | 0.882
B-LP 0.867 0.880 1 0.917 | 0.917

B Adding VNEs achieves superior AUC over adding VPEs

B Adding VPEs in addition to VNEs resulted in marginal
additional gains.
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MF-based and DL-based Methods

1. Represent the asymmetric proximities between
source and target nodes in the form of a matrix

B ATP [AAAI'19] uses a measurement that captures both the
hierarchy and reachability between nodes in the network

B GravityAE/VAE [CIKM’19] and DiGCN [NeurlPS’20] use the
asymmetric adjacency matrix of the input network

2. Obtain source and target embeddings of nodes
B By using MF techniques (e.g., SVD)
B By using DL techniques (e.g., autoencoders and GCNs)
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RW-based Methods

1. For each seed node,

B Sample a number of positive nodes visited during RWs

[J APP [AAAI'17] employs a RW strategy that starts from a seed node and
then follows out-going edges randomly

[ NERD [ECML-PKDD’19] proposes an alternating RW strategy that starts
from a seed node and follows out-going/in-coming edges alternately

B Sample negative nodes uniformly at random as well

2. Obtain source and target embeddings of nodes

B Maximize the proximities between source embedding of each
seed node and target embedding of positive nodes

B Minimize the proximities between source embedding of each
seed node and target embedding of negative nodes
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Our Key Challenge

The number of non-existent edges is quite large
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Selectively choose a small number of VNEs among a
large number of non-existent edges
B In Steps 1, 2, and 3, we address this challenge

B In Step 4, we learn the embeddings of nodes by employing
off-the-shelf NE methods
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Triadic Balance [Aref et al. Sci. Rep.’20]

New measure that assesses the structural balance of
the signed “directed” network

B Collect all the transitive triads consisting of at least one or
multiple triangles where the directions of three edges satisfy
the transitivity

B Measure the ratio of balanced ones among all the collected
transitive triads

* Triad: a set of three nodes with at least one directed edge between each pair of them
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How to determine the number of VNEs?

Real-world signed networks

Datasets Reddit Wiki-election Bitcoin OTC Bitcoin Alpha Highland College-A College-B College-C

Nodes 18,313 7,118 5,881 3,783 16 21 17 20
Edges 120,792 103,675 35,592 24,186 116 94 83 81
Positive Edges 111,891 81,318 32,029 22,650 58 51 41 41
Negative Edges 8,901 22,357 3,563 1,536 58 43 42 40

B Reddit represents connections between users of two
subreddits from Jan 2014 to April 2017

B Wiki-election contains approval/disapproval votes for electing
admins in Wikipedia from 2003 to 2013

B Bitcoin OTC and Bitcoin Alpha represent the record of
reputation/trust of users on a Bitcoin trading platform

B Highland represents alliance structure among three tribal
groups

B College-A, College-B, and College-C represent preference
rankings of a group of girls in an Eastern college
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SIDE [Kim et al. WWW’18]

positive edges

(vi,v1) (v1,v3) (v3,V,)

(Vi,v2) (v1,v2) (V2,v3) (V2,Vy)

negative edges

[ Perform a directed random walk that start from each node v;
by following out-going edges

[]1 Generate a sequence {v; - v{ = -+ = v, } with edge signs

[1 Sample each directed node pair (v;, v;) where v; (i.e., source)
precedes v; (i.e., target) in the sequence within a window size

[l Determine the sign of each (v;,v;) by combining the edge
signs in the sequence from v; to v; based on balance theory
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SIDE [Kim et al. WWW’18] (cont’d)

+ R(5)

a
—logP(v;, vj) =+ z —log P (v;, vy)
k=1

For each (v;, v;) with a positive sign,

B Maximize the proximity between v;’s source embedding and
v;’s target embedding

For each (v;, vj) with a negative sign,

B Minimize the proximity between v;’s source embedding and
v;’s target embedding
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Evaluation Task
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Implementation Details

Competitors

Learning rate € {0.001, 0.0025,0.01,0.025, 0.1}
Number of walks € {10, 20,40, 80} (DeepWalk, Node2Vec, APP)
Walk length € {60,80,100} (DeepWalk, Node2Vec, APP)
Window size € {10,12,14, 16} (DeepWalk, Node2Vec)
p,q € {0.25,0.50,1, 2,4} (Node2Vec)

Negative € {5,10, 12,14, 16} (LINE)

Number of samples € {100M, 500M, 1000M} (LINE)

y € {5,10,15, 20} (NERD)

k € {3,5 } (NERD)

A € {0.005,0.05,1, 5, 10} (GravityAE/VAE)

a € {0.05,0.1,0.15,0.2} (DIGCN)

Model type € {with inception block, without inception block}
(DiGCN)

Method to break cycles = H voting (ensembling) (ATP)
Strategy to build a hierarchical matrix = log (ATP)
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Implementation Details

DIVINE

B Learning rate = 0.025 (SIDE, STNE)

B Number of walks = 80 (SIDE) / 20 (STNE)

B Walk length = 40 (SIDE, STNE)

B Window size = 5 (SIDE) / 10 (STNE)

B Number of negative samples = 20 (SIDE) / 5 (STNE)
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