

Directed Network Embedding with Virtual Negative Edges

Hyunsik Yoo*, Yeon-Chang Lee*, Sang-Wook Kim

HANYANG UNIVERSITY

Kijung Shin

Equal Contribution

Table of Contents

Background

- Network Embedding (NE)
- Directed Network Embedding (DNE)

Motivation

Proposed Approach

- STEP 1: Inferring the Degree of Negativity
- STEP 2: Selecting Virtual Negative Edges
- STEP 3: Modeling a Signed Directed Network
- STEP 4: Learning Source and Target Embeddings
- Evaluation
- Conclusions

Network embedding (NE)

Represents each node in a given network as a lowdimensional vector that preserves the structural properties of the network

 $\Box e.g.$, proximity between nodes

Can be used as informative features of nodes in various downstream network mining tasks

- Link prediction
- □ Node clustering/classification
- Recommendation

□ In recent studies, additional information has been incorporated to improve the accuracy of NE

Edge directions [Tong et al. NeurIPS'20; Yoo et al. WSDM'22]

□e.g., follower and followee

Edge signs [Lee et al. SIGIR'20; Liu et al. KDD'21]

e.g., trust and distrust

Node attributes [Gao et al. IJCAI'18; Pan et al. WSDM'21]

e.g., bag-of-words

Background (cont'd)

A directed network

- A directed edge from node *i* to *j* expresses an asymmetric relationship (or proximities) between two nodes
- A toy example on Instagram

□ To capture such asymmetric relationships accurately, various directed NE methods have been proposed

APP [AAAI'17], ATP [AAAI'19], NERD [ECML-PKDD'19], GravityAE/VAE [CIKM'19], DiGCN [NeurIPS'20]

Directed NE Methods

Given a directed edge from *i* to *j*,

- Distinguish the source node *i* and the target node *j* according to their roles in the edge
- Learn a source embedding and a target embedding, which preserve the node's properties as sources and targets

Sparsity of real-world networks

Follow power-law degree distribution, which indicates there are a small number of hub nodes and a large number of non-hub nodes

Most nodes have extremely low out- and in-degrees!

Motivation (cont'd)

Challenge of directed NE methods

- They hardly learn the source/target embedding of low out-/indegree nodes
- Thus, they easily fail to capture the properties of low out- and in-degree nodes as sources and targets, respectively
- □ Since a considerable fraction (34.86%/34.29%) of nodes have a zero out- and in-degree, it aggravates the above challenge zero in-degree _____starget ____

Our Idea: Data Augmentation

- NE's intrinsic difficulty is its lack of information when embedding low out- and in-degree nodes in a sparse directed network
- □ New concept: Virtual Negative Edges (VNEs)
 - Represent latent negative relationships between nodes

□ We propose a novel <u>DI</u>rected NE approach with <u>VI</u>rtual <u>N</u>egative <u>E</u>dges, named as <u>DIVINE</u>

- Carefully find and add VNEs to the input network, which originally had positive edges
- Learn embeddings by exploiting both edge types

Overview of DIVINE

Step 3: Modeling a Signed Directed Network

Determine the total number of VNEs to be added

 $|\mathcal{E}^{-}| = |\mathcal{E}^{+}| imes \theta$

- $|\mathcal{E}^{-}|$: the total number of VNEs
- \blacksquare | \mathcal{E}^+ |: the total number of positive edges
- $\boldsymbol{\theta}$: a parameter that determines $|\boldsymbol{\mathcal{E}}^-|$

\Box Intuitively, it is natural to set θ to a small value

- In most real-world signed networks, the number of negative edges is significantly smaller than that of positive edges
- e.g., Wiki-election dataset
 - □ Positive edges : negative edges = 79% : 21%

Deal with this issue based on a well-known property of signed networks, i.e., structural balance

How well the edge signs in a given signed network *follow the balance theory*?

The effect of the parameter θ on the structural balance in our signed directed networks

- Observation 1: edge signs in real-world signed networks follow the rules of balance theory well

□ Based on this observation,

We set θ to a value around 0.25 or 0.5 where the structural balance of both real-world and our signed networks become similar

 \Box We will also show empirically that such values of θ lead to high accuracy of DIVINE in link prediction tasks.

Step 3: Modeling a Signed Directed Network

Build a signed directed network composed of both the existent positive edges and the VNEs

Directed Network *G*

Signed Directed Network ${\mathcal S}$

Step 4: Learning Source/Target Embeddings

□ Incorporate recent signed NE methods into our DIVINE

- Nodes with the positive edges to be close to each other
- Nodes with the negative edges to be distant from each other

DIVINE can be equipped with any signed NE methods!

Datasets

Datasets	GNU	Wiki-Vote	JUNG	EAT
Nodes	6,301	7,115	6,120	23,132
0 out-degree	59.35%	15.21%	1.35%	63.54%
0 in-degree	4.11%	64.49%	66.43%	2.16%
Edges	20,777	103,689	50,535	312,320
Reciprocity	0.00%	5.64%	0.90%	9.50%
Density	0.05%	0.20%	0.13%	0.06%
Types	P2P	Election	Software	Word

- Gnutella (GNU): a peer-to-peer network
- Wiki-Vote: an online voting network
- JUNG: a software class dependency network
- Edinburgh Associative Thesaurus (EAT): a lexical network

Experimental Setup

Two variants of DIVINE

- DIVINE-I employing SIDE [WWW'18]
- DIVINE-T employing STNE [ICDM'19]

Nine competitors

3 undirected NE methods
 DeepWalk [KDD'14]
 LINE [WWW'15]
 Node2Vec [KDD'16]
 6 directed NE methods
 APP [AAAI'17]
 ATP [AAAI'19]
 NERD [ECML-PKDD'19]

GravityAE [CIKM'19] GravityVAE [CIKM'19] DiGCN [NeurIPS'20]

Evaluation Task: Link Prediction (LP)

□ How accurately we can predict the directed edges removed from the input directed network?

Evaluation protocol

Split the edges into training (80%) and test (20%) sets

Consider the existent edges as positive examples

□ Consider the same number of randomly-sampled non-existent edges as negative examples

Measure classification accuracy using area under curve (AUC)

LP Task for Directed Networks

□ How accurately the directions of the unidirectional edges in the input network can be predicted?

Evaluation protocol (sampling negative examples)

- Sample k% of the unidirectional positive examples and consider the edges with the opposite directions as negative examples
- Sample the remaining (100-k)% of negative examples uniformly at random among non-existent edges

Three types of LP task according to the ratio (i.e., k%) (1) k=0, Uniform LP (U-LP) (2) k=50, Mixed LP (M-LP) (3) k=100, Biased LP (B-LP)

LP Task for Directed Networks

Example of M-LP (i.e., *k*=50)

50% of the unidirectional

- RQ1: How should the degree of negativity be inferred in DIVINE?
- RQ2: How should the locations of VNEs be decided in DIVINE?
- **RQ3:** How should VNEs be distributed to nodes in DIVINE?
- **RQ4:** How many VNEs should be added in DIVINE?
- RQ5: Does DIVINE outperform its competitors for directed NE?
- **RQ6:** Is DIVINE effective for embedding low-degree nodes?

Results for RQ4

\Box Accuracy changes with varying heta

- DIVINE achieves the best AUC when $0.25 \le \theta \le 0.5$, which is similar to that of the triadic balance
- Setting θ so that a signed directed network follows the rules of balanced theory well helps improve the AUC of DIVINE

Comparison with nine competitors

Deterrete	T	Undirected NE				Directed NE				
Datasets Ty	Types	DeepWalk	Node2Vec	LINE	APP	GravityAE	GravityVAE	NERD	ATP	DiGCN
	U-LP	0.644 ± 0.005	0.639 ± 0.005	0.710 ± 0.003	0.617 ± 0.006	0.634 ± 0.013	0.723 ± 0.005	0.773 ± 0.003	0.758 ± 0.002	$0.768 {\pm} 0.002$
GNU	M-LP	0.618 ± 0.007	0.600 ± 0.005	0.772 ± 0.004	0.606 ± 0.003	0.648 ± 0.016	0.750 ± 0.007	0.809 ± 0.006	0.813 ± 0.004	0.836 ± 0.003
	B-LP	0.654 ± 0.012	0.679 ± 0.008	0.859 ± 0.005	0.634 ± 0.007	0.710 ± 0.017	0.822 ± 0.008	$0.851 {\pm} 0.007$	0.877 ± 0.004	0.917 ± 0.002
	U-LP	0.890 ± 0.002	$0.880 {\pm} 0.003$	0.864 ± 0.007	0.823 ± 0.002	0.871 ± 0.008	0.906 ± 0.002	0.901 ± 0.006	0.824 ± 0.004	0.826 ± 0.001
Wiki-Vote	M-LP	0.883 ± 0.002	0.894 ± 0.002	0.886 ± 0.002	0.676 ± 0.004	0.878 ± 0.017	0.905 ± 0.005	0.890 ± 0.007	0.891 ± 0.002	0.850 ± 0.002
	B-LP	0.922 ± 0.002	0.944 ± 0.002	0.944 ± 0.001	0.686 ± 0.006	0.922 ± 0.017	0.950 ± 0.005	0.897 ± 0.007	0.966 ± 0.001	0.917 ± 0.002
	U-LP	0.880 ± 0.009	0.948 ± 0.003	0.936 ± 0.003	0.939 ± 0.002	0.946 ± 0.039	0.954 ± 0.002	0.955 ± 0.002	0.951 ± 0.002	0.955 ± 0.001
JUNG	M-LP	0.902 ± 0.007	0.956 ± 0.003	0.957 ± 0.002	0.950 ± 0.002	0.944 ± 0.033	0.968 ± 0.003	0.963 ± 0.002	0.968 ± 0.002	0.971 ± 0.002
	B-LP	0.950 ± 0.006	0.982 ± 0.001	0.989 ± 0.001	0.930 ± 0.001	0.976 ± 0.027	0.991 ± 0.002	0.979 ± 0.001	0.990 ± 0.001	0.994 ± 0.001
	U-LP	0.831 ± 0.001	0.832 ± 0.002	0.824 ± 0.001	0.772 ± 0.001	0.836 ± 0.009	0.839 ± 0.004	0.864 ± 0.002	$0.855 {\pm} 0.002$	$0.831 {\pm} 0.001$
EAT	M-LP	0.682 ± 0.001	0.759 ± 0.001	0.827 ± 0.001	0.701 ± 0.001	0.791 ± 0.033	0.815 ± 0.001	0.825 ± 0.002	0.882 ± 0.001	0.860 ± 0.001
	B-LP	0.614 ± 0.001	0.819 ± 0.001	0.863 ± 0.001	0.630 ± 0.002	0.838 ± 0.029	$0.851 {\pm} 0.003$	0.802 ± 0.002	0.915 ± 0.001	0.901 ± 0.001

- Undirected NE methods provide AUCs comparable to or even higher than some directed NE methods (e.g., APP)
- No single competitor consistently outperforms the other competitors

Results for RQ5

Comparison with nine competitors

	Directed NE							
APP	GravityAE	GravityVAE	NERD	ATP	DiGCN	DIVINE-I	DIVINE-1	
0.617±0.006	0.634 ± 0.013	0.723 ± 0.005	0.773 ± 0.003	$0.758 {\pm} 0.002$	0.768 ± 0.002	0.784 ± 0.006	$0.798 {\pm} 0.002$	
0.606 ± 0.003	0.648 ± 0.016	0.750 ± 0.007	0.809 ± 0.006	0.813 ± 0.004	0.836 ± 0.003	0.858 ± 0.010	0.857 ± 0.002	
0.634 ± 0.007	0.710 ± 0.017	0.822 ± 0.008	$0.851 {\pm} 0.007$	0.877 ± 0.004	0.917 ± 0.002	$0.943 {\pm} 0.008$	0.937 ± 0.003	
0.823±0.002	0.871 ± 0.008	0.906 ± 0.002	0.901 ± 0.006	0.824 ± 0.004	0.826 ± 0.001	0.910 ± 0.002	0.929 ± 0.001	
0.676 ± 0.004	0.878 ± 0.017	0.905 ± 0.005	0.890 ± 0.007	0.891 ± 0.002	0.850 ± 0.002	0.918 ± 0.003	$0.933 {\pm} 0.001$	
0.686 ± 0.006	0.922 ± 0.017	0.950 ± 0.005	0.897 ± 0.007	0.966 ± 0.001	0.917 ± 0.002	0.966 ± 0.004	$0.971 {\pm} 0.001$	
0.939 ± 0.002	0.946 ± 0.039	0.954 ± 0.002	0.955 ± 0.002	$0.951 {\pm} 0.002$	0.955 ± 0.001	0.948 ± 0.002	$0.960 {\pm} 0.002$	
0.950 ± 0.002	0.944 ± 0.033	0.968 ± 0.003	0.963 ± 0.002	0.968 ± 0.002	0.971 ± 0.002	0.969 ± 0.001	0.976 ± 0.001	
0.930 ± 0.001	0.976 ± 0.027	0.991 ± 0.002	0.979 ± 0.001	0.990 ± 0.001	0.994 ± 0.001	0.994 ± 0.001	0.996 ± 0.001	
0.772 ± 0.001	0.836 ± 0.009	0.839 ± 0.004	0.864 ± 0.002	$0.855 {\pm} 0.002$	0.831 ± 0.001	0.880 ± 0.006	$0.888 {\pm} 0.001$	
0.701 ± 0.001	0.791 ± 0.033	0.815 ± 0.001	0.825 ± 0.002	0.882 ± 0.001	0.860 ± 0.001	0.881 ± 0.007	0.889 ± 0.001	
0.630 ± 0.002	0.838 ± 0.029	0.851 ± 0.003	0.802 ± 0.002	0.915 ± 0.001	0.901 ± 0.001	0.917 ± 0.006	0.921±0.002	

- Both versions of DIVINE significantly and consistently outperform all competitors in all LP tasks on all datasets
- DIVINE is most accurate in the task of predicting the edge directions (i.e., B-LP)

Results for RQ6

Effectiveness in embedding low-degree nodes

- Out-degree-based: divide all nodes in the test set into low, medium, and high groups according to their out-degree
- In-degree-based: divide all nodes in the test set into low, medium, and high groups according to their in-degree

Results for RQ6 (cont'd)

Effectiveness in embedding low-degree nodes

- DIVINE consistently outperform all the competitors
- The performance gain is largest in the low-degree groups
- DIVINE successfully address the lack of information about low out- and in-degree nodes

- □ We pointed out that the existing directed NE methods face difficulties in accurately preserving asymmetric proximities between nodes in a sparse network
- Under DIVINE, we proposed three ideas to selectively add VNEs
 - Inferring the degree of negativity
 - Using the local selection strategy to distribute VNEs to all nodes
 - Determining the number of VNEs based on the theory of structural balance

DIVINE significantly outperforms its 9 state-of-the-art competitors in 3 LP tasks on 4 real-world datasets **Thank You !**

.....

Appendix

.....

Inferring the Degree of Negativity

- **Quantify the degree of positivity of all pairs of nodes** based on *weighted regularized matrix factorization*
- □ Consider that the lower the degree of positivity is, the higher the degree of negativity is

Inferring the Degree of Negativity (cont'd)

Equations

Objective function

$$\mathcal{L}(\mathbf{P}, \mathbf{Q}) = \sum_{i,j} w_{ui} \left\{ \left(a_{ij} - \mathbf{P}_{i(\cdot)} (\mathbf{Q}_{j(\cdot)})^{\mathsf{T}} \right)^2 + \lambda \left(\left\| \mathbf{P}_{i(\cdot)} \right\|_F^2 + \left\| \mathbf{Q}_{j(\cdot)} \right\|_F^2 \right) \right\}$$

Updates elements in the matrices P and Q

$$\mathbf{P}_{i(\cdot)} = \mathbf{A}_{i(\cdot)} \widetilde{\mathbf{W}}_{i(\cdot)} \mathbf{Q} \left\{ \mathbf{Q}^{\mathsf{T}} \widetilde{\mathbf{W}}_{i(\cdot)} \mathbf{Q} + \lambda \left(\sum_{j} w_{ij} \right) \mathbf{I} \right\}^{-1}$$
$$\mathbf{Q}_{j(\cdot)} = (\mathbf{A}_{(\cdot)j})^{\mathsf{T}} \widetilde{\mathbf{W}}_{(\cdot)j} \mathbf{P} \left\{ \mathbf{P}^{\mathsf{T}} \widetilde{\mathbf{W}}_{(\cdot)j} \mathbf{P} + \lambda \left(\sum_{i} w_{ij} \right) \mathbf{I} \right\}^{-1}$$

- $\square \widetilde{\mathbf{W}}_{i(\cdot)}$ is a diagonal matrix with elements of $\mathbf{W}_{i(\cdot)}$ on the diagonal \square Matrix I is an identity matrix
- Final value

$$\Box \widehat{\mathbf{A}} \approx \mathbf{A} = \mathbf{P} \mathbf{Q}^{\mathsf{T}} \quad \Longrightarrow \quad x_{ij} = \mathbf{1} - \frac{\widehat{a}_{ij} - \|\widehat{\mathbf{A}}\|_{min}}{\|\widehat{\mathbf{A}}\|_{max} - \|\widehat{\mathbf{A}}\|_{min}}$$

Propose two strategies: global/local selection Global selection

Select VNEs with high degrees of negativity among all potential VNEs (i.e., non-existent edges)

(1) Sorting in descending order of the degree of negativity

(2) Selecting VNEs (e.g., a pre-defined number=5)

Selecting VNEs (cont'd)

Local selection

Select an equal number of VNEs with high degrees of negativity for each node

(1) Sorting in descending order of the degree of negativity (2) Selecting VNEs per source node(e.g., a pre-defined number=1)

Comparisons of methods for inferring the degree of negativity

When it is equipped with WRMF, DIVINE consistently achieves high AUC in all datasets

Results for RQ2

Effectiveness of the local selection strategy

Found that DIVINE(Global) added VNEs to only 35%, 44%, 53%, and 34% of nodes in GNU, Wiki-Vote, JUNG, and EAT, respectively

Effectiveness of the local selection strategy

Effectiveness of adding an equal number of VNEs to each source node

Datasets	GNU	Wiki-Vote	JUNG	EAT
DIVINE(Prop.)	0.922	0.862	0.976	0.806
DIVINE(InverseProp.)	0.915	0.951	0.994	0.760
DIVINE(Uniform)	0.943	0.966	0.994	0.917

- DIVINE(Prop.) sets the number of VNEs from each node proportionally to its out-degree
- DIVINE(InverseProp.) sets the number of VNEs from each node inverse proportionally to its out-degree
- DIVINE(Uniform) sets an equal number of VNEs to all nodes

Effectiveness of adding an equal number of VNEs to each source node

Datasets	GNU	Wiki-Vote	JUNG	EAT
DIVINE(Prop.) DIVINE(InverseProp.)	0.922	0.862 0.951	0.976 0 994	0.806 0.760
DIVINE(Uniform)	0.943	0.966	0.994	0.917

- DIVINE(Uniform) consistently outperforms the others
- Treating all source nodes equally by adding an equal number of VNEs to them helps learn accurate embeddings most

Why Virtual Negative Edges?

- □ Adding virtual edges (VEs) facilitates the utilization of information expressed in the form of VEs
 - It has been proven useful for various graph mining tasks
 - e.g., node classification [Klicpera et al. NeurIPS'19, Zhao et al. AAAI'21], community detection [Kang et al. CIKM'20]
 - They only focused on positive edges (VPEs)
- However, we confirmed that VNEs provide information more useful to directed NE methods than VPEs
 - The information inherent in VNEs is more difficult for directed NE methods to utilize (than that in VPEs) unless it is explicitly provided in the form of VEs

Why Virtual Negative Edges? (cont'd)

Comparisons of several methods for adding VEs

Datasets	Types	Based on GDC VPEs	Based VPEs	on the d VNEs	egree of negativity VPEs+VNEs
	U-LP	0.756	0.778	0.784	0.788
GNU	M-LP	0.822	0.846	0.858	0.859
	B-LP	0.911	0.934	0.943	0.944
	U-LP	0.871	0.879	0.910	0.911
Wiki-Vote	M-LP	0.875	0.892	0.918	0.916
	B-LP	0.903	0.954	0.966	0.967
	U-LP	0.936	0.951	0.948	0.951
JUNG	M-LP	0.942	0.969	0.969	0.970
	B-LP	0.979	0.992	0.994	0.994
	U-LP	0.820	0.849	0.880	0.881
EAT	M-LP	0.830	0.845	0.881	0.882
	B-LP	0.867	0.880	0.917	0.917

- Adding VNEs achieves superior AUC over adding VPEs
- Adding VPEs in addition to VNEs resulted in marginal additional gains.

	Methods
Matrix Factorization	HOPE Asymmetric Transitivity Preserving Graph Embedding [KDD-2016]
(MF)-based Methods	ATP Directed Graph Embedding with Asymmetric Transitivity Preservation [AAAI-2019]
Deep Learning (DL)-based	GravityAE/VAE Gravity-Inspired Graph Autoencoders for Directed Link Prediction [CIKM-2019]
Methods	DiGCN Digraph Inception Convolutional Networks [NeurIPS-2020]
Random Walk	APP Scalable Graph Embedding for Asymmetric Proximity [AAAI-2017]
Methods	NERD Node Representation Learning for Directed Grpahs [ECML-PKDD-2019]

MF-based and DL-based Methods

- **1.** Represent the asymmetric proximities between source and target nodes in the form of a matrix
 - ATP [AAAI'19] uses a measurement that captures both the hierarchy and reachability between nodes in the network
 - GravityAE/VAE [CIKM'19] and DiGCN [NeurIPS'20] use the asymmetric adjacency matrix of the input network

2. Obtain source and target embeddings of nodes

- By using MF techniques (e.g., SVD)
- By using DL techniques (e.g., autoencoders and GCNs)

RW-based Methods

1. For each seed node,

- Sample a number of positive nodes visited during RWs
 - □ APP [AAAI'17] employs a RW strategy that starts from a seed node and then follows out-going edges randomly
 - □ NERD [ECML-PKDD'19] proposes an alternating RW strategy that starts from a seed node and follows out-going/in-coming edges alternately
- Sample negative nodes uniformly at random as well

2. Obtain source and target embeddings of nodes

- Maximize the proximities between source embedding of each seed node and target embedding of positive nodes
- Minimize the proximities between source embedding of each seed node and target embedding of negative nodes

Our Key Challenge

□ The number of non-existent edges is quite large

□ Selectively choose a small number of VNEs among a large number of non-existent edges

- In Steps 1, 2, and 3, we address this challenge
- In Step 4, we learn the embeddings of nodes by employing off-the-shelf NE methods

Triadic Balance [Aref et al. Sci. Rep.'20]

New measure that assesses the structural balance of the signed "directed" network

- Collect all the transitive triads consisting of at least one or multiple triangles where the directions of three edges satisfy the transitivity
- Measure the ratio of balanced ones among all the collected transitive triads

* Triad: a set of three nodes with at least one directed edge between each pair of them

Real-world signed networks

Datasets	Reddit	Wiki-election	Bitcoin OTC	Bitcoin Alpha	Highland	College-A	College-B	College-C
Nodes	18,313	7,118	5,881	3,783	16	21	17	20
Edges	120,792	103,675	35,592	24,186	116	94	83	81
Positive Edges	111,891	81,318	32,029	22,650	58	51	41	41
Negative Edges	8,901	22,357	3,563	1,536	58	43	42	40

- Reddit represents connections between users of two subreddits from Jan 2014 to April 2017
- Wiki-election contains approval/disapproval votes for electing admins in Wikipedia from 2003 to 2013
- Bitcoin OTC and Bitcoin Alpha represent the record of reputation/trust of users on a Bitcoin trading platform
- Highland represents alliance structure among three tribal groups
- College-A, College-B, and College-C represent preference rankings of a group of girls in an Eastern college

SIDE [Kim et al. WWW'18]

 \Box Perform a directed random walk that start from each node v_i by following out-going edges

- \Box Generate a sequence $\{v_i \rightarrow v_1 \rightarrow \cdots \rightarrow v_n\}$ with edge signs
- □ Sample each directed node pair (v_i, v_j) where v_i (i.e., source) precedes v_j (i.e., target) in the sequence within a window size
- **Determine the sign of each** (v_i, v_j) by combining the edge signs in the sequence from v_i to v_j based on balance theory

SIDE [Kim et al. WWW'18] (cont'd)

$$\mathcal{L}(\mathbf{f}, \mathbf{g}) = \sum_{(v_i, v_j) \in \mathcal{O}} \left[-\log \mathcal{P}(v_i, v_j) + \sum_{k=1}^{\alpha} -\log \mathcal{P}(v_i, v_k) \right] + \mathcal{R}(\delta)$$

\Box For each (v_i, v_j) with a positive sign,

Maximize the proximity between v_i 's source embedding and v_j 's target embedding

\Box For each (v_i, v_j) with a negative sign,

Minimize the proximity between v_i 's source embedding and v_j 's target embedding

Evaluation Task

Implementation Details

Competitors

- Learning rate $\in \{0.001, 0.0025, 0.01, 0.025, 0.1\}$
- Number of walks $\in \{10, 20, 40, 80\}$ (DeepWalk, Node2Vec, APP)
- Walk length \in {60, 80, 100} (DeepWalk, Node2Vec, APP)
- Window size $\in \{10, 12, 14, 16\}$ (DeepWalk, Node2Vec)
- $p, q \in \{0.25, 0.50, 1, 2, 4\}$ (Node2Vec)
- Negative $\in \{5, 10, 12, 14, 16\}$ (LINE)
- Number of samples ∈ {100M, 500M, 1000M} (LINE)
- $\gamma \in \{5, 10, 15, 20\}$ (NERD)
- $\kappa \in \{3, 5\}$ (NERD)
- $\lambda \in \{0.005, 0.05, 1, 5, 10\}$ (GravityAE/VAE)
- $\alpha \in \{0.05, 0.1, 0.15, 0.2\}$ (DiGCN)
- Model type ∈ {with inception block, without inception block} (DiGCN)
- Method to break cycles = H_voting (ensembling) (ATP)
- Strategy to build a hierarchical matrix = log (ATP)

Implementation Details

- Learning rate = 0.025 (SIDE, STNE)
- Number of walks = 80 (SIDE) / 20 (STNE)
- Walk length = 40 (SIDE, STNE)
- Window size = 5 (SIDE) / 10 (STNE)
- Number of negative samples = 20 (SIDE) / 5 (STNE)