
On Improving the Cohesiveness of Graphs
by Merging Nodes:

Formulation, Analysis, and Algorithms

Fanchen Bu Kijung Shin

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Graphs

• A graph 𝐺 = (𝑉, 𝐸) consists of a node set 𝑉 and an edge set 𝐸

• Each edge joins a pair of nodes

• Graphs naturally represent relations between real-world objects

2

Public Transportation Networks Social Networks

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Cohesiveness of Graphs

• Cohesive in general: “united and working together effectively”

3

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Cohesiveness of Graphs

• Cohesive graphs:

• Intuitively, well-connected graphs have higher cohesiveness

4

Higher Cohesiveness

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

We Love Cohesive Graphs!

• Cohesiveness = Well-Connectedness + Robustness

5

Public Transportation Networks Social Networks

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Roadmap

Formulation <<

Analysis & Algorithms

Experiments

Conclusions

6

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Existing Research

• How can we improve the cohesiveness of a network?

• Metric: What to optimize?

• Operation: How to optimize?

7

Bhawalkar et al. 2015
Zhang et al. 2022

Zhou et al. 2022

Zhang et al. 2018
Sun et al. 2021

Chen et al. 2022

Maximizing the
size of a k-core

Maximizing the
size of a k-truss

Metric

Anchoring nodes Adding edges

Operation

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Merging Nodes: Together! Stronger!

• Merging Stations = More Compact + More Economical

• Forming Teams = More Collaborative + More Synergic

8

Public Transportation
Networks

Social Networks

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Size of a k-Truss: Definition

• Given 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ

• The 𝒌-truss 𝑇𝑘 𝐺 of 𝐺 is the maximal subgraph where each edge
in 𝑇𝑘(𝐺) is contained in at least 𝑘 − 2 triangles in it

• A triangle is a complete subgraph of size three

9

2

4

3

5

6 7

8

1110

9

12

1

Example Graph 𝐺

Triangle
Triangle

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Size of a k-Truss: Definition

• Given 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ

• The 𝒌-truss 𝑇𝑘 𝐺 of 𝐺 is the maximal subgraph where each edge
in 𝑇𝑘(𝐺) is a part of at least 𝑘 − 2 triangles in it

10

2

4

3

5

6 7

8

1110

9

12

1

5-truss
𝑇5 𝐺

Example Graph 𝐺

2

4

3

5

6 7

8

1110

9

12

1

4-truss
𝑇4 𝐺

Example Graph 𝐺

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Size of a k-Truss: Definition

• Given 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ

• The 𝒌-truss 𝑇𝑘 𝐺 of 𝐺 is the maximal subgraph where each edge
in 𝑇𝑘(𝐺) is a part of at least 𝑘 − 2 triangles in it

11

2

4

3

5

6 7

8

1110

9

12

1

3-truss
𝑇3 𝐺

2

4

3

5

6 7

8

1110

9

12

1

2-truss
𝑇2 𝐺

Example Graph 𝐺 Example Graph 𝐺

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Related Concept: Trussness

• The trussness of an edge 𝑒 is the maximum 𝑘 s.t. 𝑒 is in the 𝑘-truss

• The trussness of a node 𝑣 is the maximum 𝑘 s.t. 𝑣 is in the 𝑘-truss

12

2

4

3

5

6 7

8

1110

9

12

1 Trussness

3

4

5

2

trussness = 5

trussness = 2

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Why k-Trusses?

• Intuitively, triangles increase the robustness of graphs

13

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Why k-Trusses?

• Theoretically,

• Node-level: engagement (degree) is guaranteed

• Edge-level: interrelatedness (# triangles) is guaranteed

• Subgraph-level: closeness (diameter) is guaranteed

• Practically meaningful

14

Transportation
Systems

Social
Networks

Communication
Systems

Recommender
Systems

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Problem Statement

• Given: 𝐺 = (𝑉, 𝐸), 𝑘 ∈ ℕ, “budget” 𝑏 ∈ ℕ

• Find: 𝑏 pairs of nodes to be merged

• To Maximize: # edges in the 𝑘-truss after merging those pairs

• Example:

“Which node pair should we merge to maximize the size of the 3-truss?”

15

2

4 8

1

3

5

6 7

9

10 11

12
size = 17

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Problem Statement: Example

“Which node pair should we merge to maximize the size of the 3-truss?”

16

2

4 8

1

3

5

6 7

9

10 11

12

M 85

6 7 11

12

9

10

31
Size = 19

(+2)
Size = 17

Merge
& 2 4

Merging nodes 2 and 4 increases the size by 2

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Merge
&

Problem Statement: Example

“Which node pair should we merge to maximize the size of the 3-truss?”

17

2

4 8

1

3

5

6 7

9

10 11

12
Size = 17

6 12

Merging nodes 6 and 12 increases the size by 6

2

4 8

1

3

5

M 7 11

Size = 23
(+6)

9

10

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Roadmap

Formulation

Analysis & Algorithms <<

Experiments

Conclusions

18

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Hardness and a Naïve Algorithm

• Theorem: The problem is NP-hard

• We need to find practical and efficient heuristics.

• A naïve greedy algorithm

• Repeat until the budget is exhausted

• For each possible merger

• Compute # edges in the k-truss after the merger

• Operate the best merger

• The naïve greedy algorithm takes 𝑂(𝑏 𝑉 2 𝐸 1.5) time!

• 𝑏: budget, 𝑉: set of nodes, 𝐸: set of edges

19

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Research Questions

• The naïve greedy algorithm takes 𝑂(𝑏 𝑉 2 𝐸 1.5) time!

• The k-truss is computed for each of 𝑂(𝑉 2) possible node pairs.

20

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Research Questions

• The naïve greedy algorithm takes 𝑂(𝑏 𝑉 2 𝐸 1.5) time!

• The k-truss is computed for each of 𝑂(𝑉 2) possible node pairs.

• Q: How can we reduce the time complexity?

• A: Rapidly filter promising node pairs and focus on them

21

All
node pairs

Promising
node pairs

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Algorithm Overview

• Repeat until the budget is exhausted

• S1. Node filter: find promising nodes

• S2. Pair filter: find promising pairs of promising nodes

• S3. Final selector: among the promising pairs and merge the best

22

All
node pairs

S1. Node filter S2. Pair filter S3. Final selector

Node pair
to be

merged

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Algorithm Overview

• Repeat until the budget is exhausted

• S1. Node filter: find promising nodes

• S2. Pair filter: find promising pairs of promising nodes

• S3. Final selector: among the promising pairs and merge the best

23

All
node pairs

S1. Node filter S2. Pair filter S3. Final selector

Rapid
heuristics

Rapid
heuristics

Exact
computation
of k-trusses

Node pair
to be

merged

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Algorithm Overview

• Repeat until the budget is exhausted

• S1. Node filter: find promising nodes <<

• S2. Pair filter: find promising pairs of promising nodes

• S3. Best selector: evaluate the promising pairs and merge the best

24

All
node pairs

S1. Node filter S2. Pair filter S3. Final selector

Node pair
to be

merged

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Step 1. Node Filter

• S1-1. Divide the inside nodes and outside nodes

• S1-2. Filter “good” outside nodes

• S1-3. Filter “good” inside nodes

25

S1-2. Filter for
outside nodes

S1-3. Filter for
inside nodes

S1. Node filter

S1-1. Divide
inside & outside

nodes

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Step 1-1. Divide the Inside and Outside Nodes

• Given a graph 𝐺 = 𝑉, 𝐸 and 𝑘 ∈ ℕ

• A node 𝑣 ∈ 𝑉 is if an inside node if its trussness 𝑡 𝑣 ≥ 𝑘 − 1

• Otherwise, it is an outside node

• Example with 𝑘 = 4:

26

2

4

3

5

6 7

8

1110

9

12

1

inside
nodes

outside
nodes

3-truss
𝑇3 𝐺

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Step 1-1. Divide the Inside and Outside Nodes

• Given a node 𝒖 ∈ 𝑉

• The inside neighbors of 𝑢 are the neighbors of 𝑢 that are inside nodes

• The outside neighbors of 𝑢 are the neighbors of 𝑢 that are outside nodes

27

2

4

3

5

6 7

8

1110

9

12

1

inside neighbors

outside
neighbors

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Step 1-2. Filter Good Outside Nodes

• Lemma:

• For two outside nodes 𝑎, 𝑏 and any 𝑐,

• if the inside neighborhood of 𝑎 is a strict superset of that of 𝑏,

• then merging 𝑎 and 𝑐 is always better than merging 𝑏 and 𝑐

• Example:

28

2

4

3

5

6 7

8

1110

9

12

1

Better

Worse

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Step 1-2. Filter Good Outside Nodes

• Implications:

• Outside nodes with many inside neighbors are good!

• We only need to consider those with maximal inside neighborhood

• Problem formulation – Maximal-Set Enumeration (Yellin, 1992):

• Given: a set of sets (i.e., sets of inside neighbors of outside nodes)

• Find: maximal sets

• Algorithm:

• We use an existing algorithm that is simple yet effective

29

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Step 1-3. Filter Good Inside Nodes

• For each inside node 𝑣,

• Count the number of promising neighbors, which can potentially
enter the 𝑘-truss after 𝑣 is merged with another node

• Technically, the promising neighbors of an inside node 𝑣
are the neighbors of 𝑣 with trussness 𝑘 − 1

• Then, choose the top-𝒏 inside nodes based on the number

30

Estimate potential Rank nodes

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Algorithm Overview

• Repeat until the budget is exhausted

• S1. Node filter: find promising nodes

• S2. Pair filter: find promising pairs of promising nodes <<

• S3. Final selector: among the promising pairs and merge the best

31

All
node pairs

S1. Node filter S2. Pair filter S3. Final selector

Node pair
to be

merged

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Step 2. Pair Filter

• S2-1. Exclude outside-outside node pairs

• S2-2. Filter “good” pairs from the remaining ones

32

S2-1. Exclude
outside-outside

node pairsPromising
outside nodes

Promising
inside nodes

S2-2. Filter
“good” pairs

from the
remaining ones

S2. Pair filter

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Step 2-1. Exclude Outside-Outside Node Pairs

• We exclude outside-outside node pairs

• Theoretically, each edge incident to such merged nodes is not helpful

• Empirically, there are too many such pairs

• Thus, finding promising ones among them is costly

33

A large number of outside-
outside node pairs that are

theoretically less useful
Few good pairs

that are costly to find

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Step 2-2. Filter “Good” Pairs from the Remaining Ones

• Score the other pairs based on positive and negative factors

• Inside-inside promising node pairs

• Inside-outside promising node pairs

• Positive factors (+1 for each)

• Support gains: edges in new triangles formed by merging the pair

• Negative factors (-1 for each)

• Support losses: edges in triangles destroyed by merging the pair

• Collisions: edges merged into one after merging the pair

• Choose the top-𝒏 pairs with the highest scores

34

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Algorithm Overview

• Repeat until the budget is exhausted

• S1. Node filter: find promising nodes

• S2. Pair filter: find promising pairs of promising nodes

• S3. Final selector: among the promising pairs and merge the best <<

35

All
node pairs

S1. Node filter S2. Pair filter S3. Final selector

Node pair
to be

merged

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Step 3. Final Selector

• Finally choose a node pair and merge them

• Algorithm:

• For each promising pair

• Compute the exact gain in the objective after their merger

• Merge the best pair with the largest gain

• This is the only step where exact trussness is computed in 𝑂(𝐸 1.5)

36

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Final Algorithm: BATMAN

• BATMAN: Best-merger seArcher for Truss MAximizatioN

37

All
node pairs

S1. Node filter S2. Pair filter S3. Final selector

REPEAT 𝑏 (budget) times

Node pair
to be

merged

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Theoretical Properties of BATMAN

• BATMAN takes 𝑂(𝑏 𝐸 1.5 + |𝑉|) time

• Some user parameters are treated as constants

• Recall that the naïve greedy algorithm takes 𝑂(𝑏 𝑉 2 𝐸 1.5) time

• Unfortunately, no accuracy guarantee has been proven for BATMAN

38

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Roadmap

Formulation

Analysis & Algorithms

Experiments <<

Conclusions

39

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Experimental Settings

• Datasets: 14 real-worlds graphs

• # nodes: 986 – 2.4M

• # edges: 16k – 4.7M

• Different 𝑘 @ 𝑘-trusses: 5, 10, 15, 20

• Baseline methods: different heuristics

• Most New Triangles (NT): choose the edge increasing the number
of triangles among the nodes in the 𝑘 − 1 -truss

• Most New Edges (NE): choose the edge increasing the number of
edges between the nodes in the 𝑘 − 1 -truss

• RanDom (RD): uniform random sampling among all IIMs and IOMs

• The naïve greedy algorithm runs out of time in all the datasets!

40

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Effectiveness: Different Datasets

41

• BATMAN shows consistent superiority on different datasets

• 1.4 - 10× better than the second-best one ~10X
Better

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Effectiveness: Different Parameters

42

• BATMAN shows consistent superiority under various parameter settings

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Efficiency: Speed & Performance Tradeoff

43

• BATMAN provides the best trade-off between speed & performance

BATMAN

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Application: Merging Bus Stations

44

• Datasets: 21 bus station datasets in different cities

• Goal: Merging stations to improve the robustness of bus network

• Constraints: Only stations close enough can be merged

• But there are still many possible choices!

• Baseline methods:
• BATMAN (BM): Try to enlarge a k-truss

• Core (CR): Try to enlarge a 𝑘-core

• Constraints (CS): Randomly pick station
pairs satisfying the constraints

• Closest (CL): Pick the closest station pairs

Paris

Rome

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Application: Merging Bus Stations

45

• Metrics: 8 robustness measures for transportation networks

• VB: Average vertex betweenness

• EB: Average edge betweenness

• ER: Effective resistance

• SG: Spectral gap

• NC: Natural connectivity

• AD: Average distance

• TS: Transitivity

• LC: Average local clustering coefficient

• All these measures have been used in existing transportation network
literature

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Application: Merging Bus Stations

46

• BATMAN (BM) shows the largest improvement in robustness overall

• Each robustness metric is computed after merging the stations

• For each metric, the Z-score and the average ranking are computed

Z-scores (higher = better) Ranking (lower = better)

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Roadmap

Formulation

Analysis & Algorithms

Experiments

Conclusions <<

47

[KDD’23] On Improving the Cohesiveness of Graphs by Merging NodesF. Bu and K. Shin

Conclusions

• Novel Problem of improving graph cohesiveness by merging nodes

• Theoretical Analysis including the NP-hardness of the problem

• Fast and Effective Algorithm based on the analysis

• Empirical Validation including an application to real-world scenarios

48

Image attribution: SEOULMETRO, Freepik, R Diepenheim,
Oleksandr Panasovesky, macrovector, rawpixel.com, Sentavio,

Harryarts, Cornecoba, pch.vector, brgfx, Webtechops LLP

Code: bit.ly/truss_merge_code

BATMAN

https://bit.ly/truss_merge_code

