

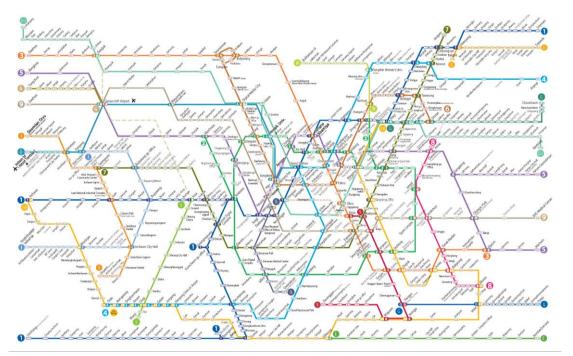
On Improving the Cohesiveness of Graphs by Merging Nodes: Formulation, Analysis, and Algorithms

Fanchen Bu

Kijung Shin

Graphs

- A graph G = (V, E) consists of a node set V and an edge set E
 - Each edge joins a pair of nodes
- Graphs naturally represent relations between real-world objects



Public Transportation Networks

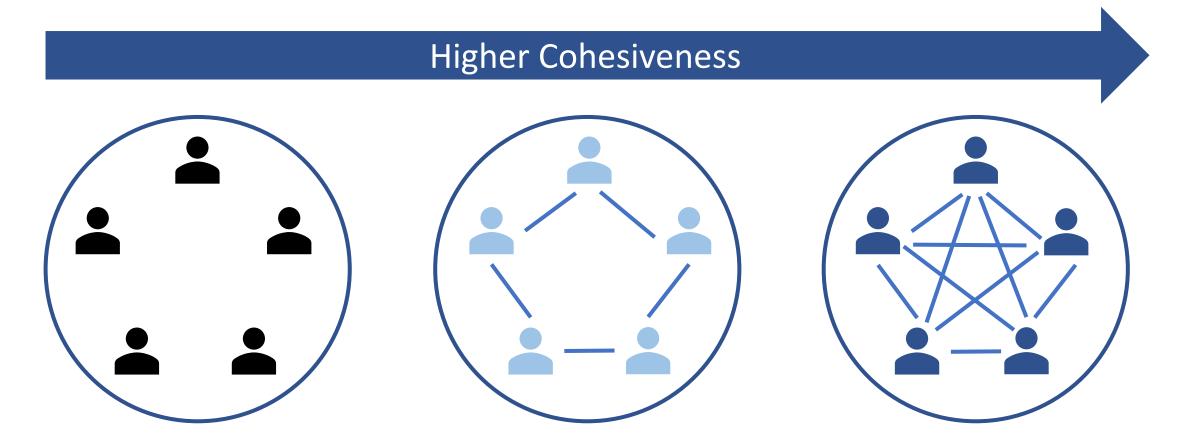
Social Networks

Cohesiveness of Graphs

• Cohesive in general: "united and working together effectively"

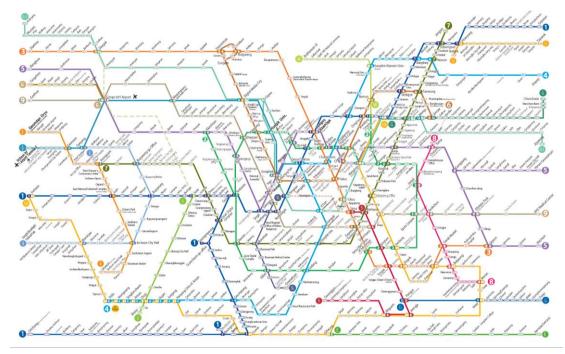
Cohesiveness of Graphs

- Cohesive graphs:
 - Intuitively, well-connected graphs have higher cohesiveness

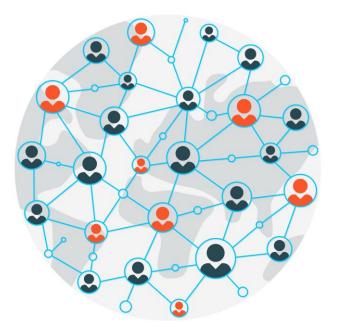


We Love Cohesive Graphs!

Cohesiveness = Well-Connectedness + Robustness



Public Transportation Networks



Social Networks

Roadmap

- Analysis & Algorithms
- Experiments
- Conclusions

F. Bu and K. Shin

Existing Research

- How can we **improve the cohesiveness** of a network?
 - Metric: What to optimize?
 - **Operation**: How to optimize?

		Anchoring nodes	Adding edges
Metric	Maximizing the size of a k-core	Bhawalkar et al. 2015 Zhang et al. 2022	Zhou et al. 2022
	Maximizing the size of a k-truss	Zhang et al. 2018	Sun et al. 2021 Chen et al. 2022

Operation

Merging Nodes: Together! Stronger!

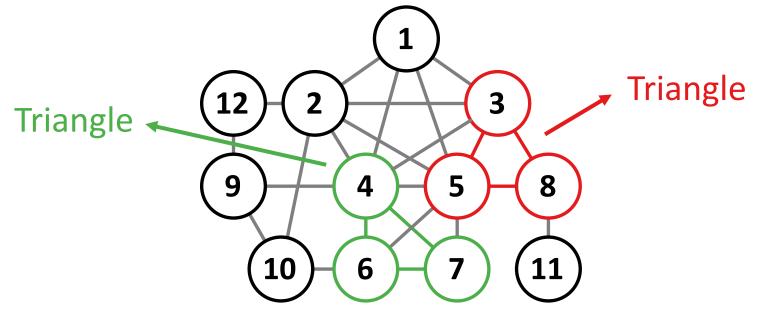
- Merging Stations = More Compact + More Economical
- Forming Teams = More Collaborative + More Synergic

Public Transportation Networks

Social Networks

Size of a k-Truss: Definition

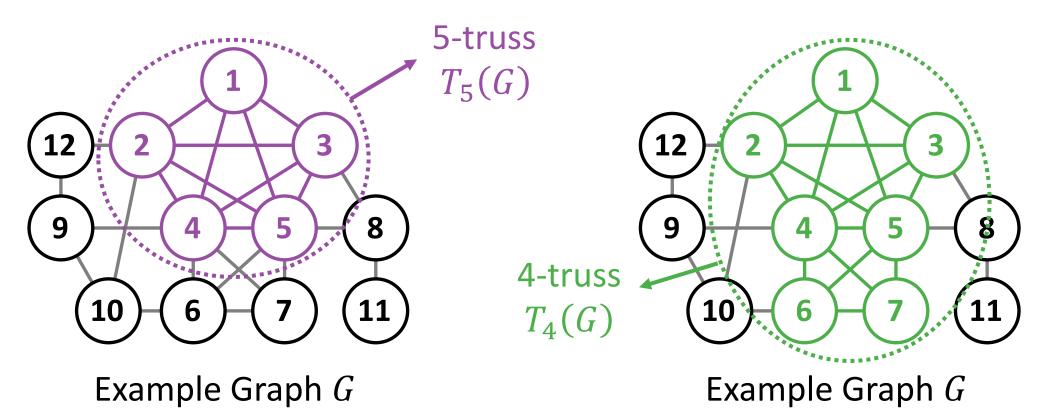
- Given G = (V, E) and $k \in \mathbb{N}$
- The *k*-truss $T_k(G)$ of *G* is the maximal subgraph where each edge in $T_k(G)$ is contained in at least k 2 triangles in it
 - A triangle is a complete subgraph of size three



Example Graph G

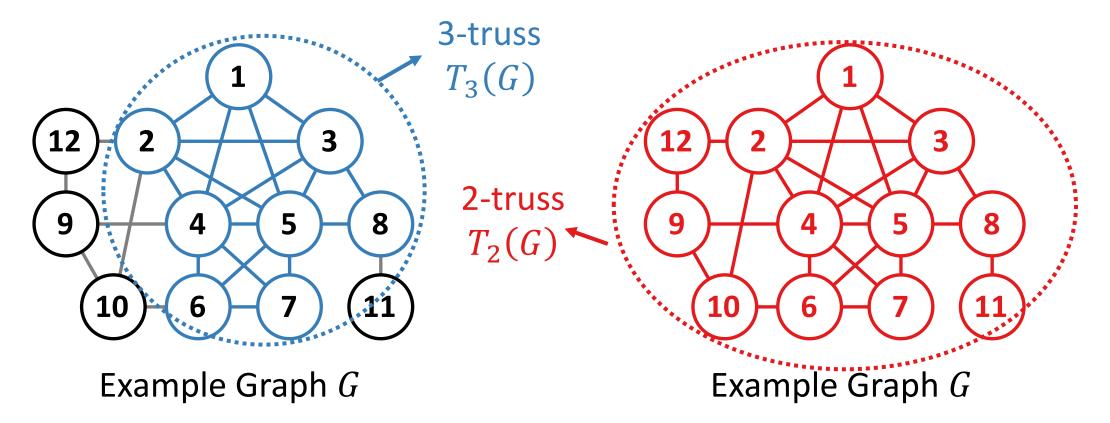
Size of a k-Truss: Definition

- Given G = (V, E) and $k \in \mathbb{N}$
- The *k*-truss $T_k(G)$ of G is the maximal subgraph where each edge in $T_k(G)$ is a part of at least k 2 triangles in it



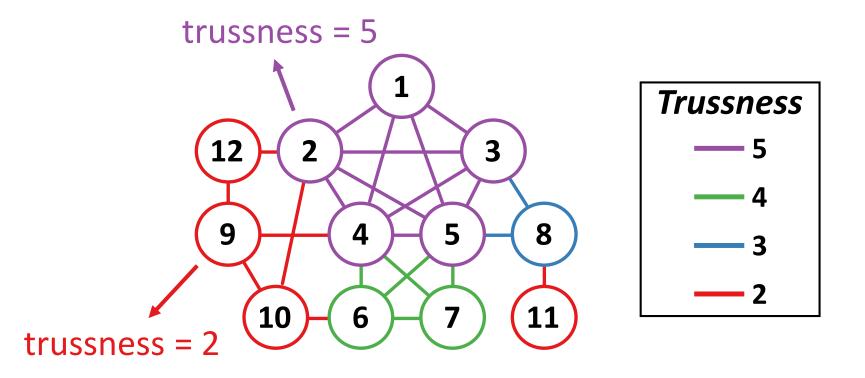
Size of a k-Truss: Definition

- Given G = (V, E) and $k \in \mathbb{N}$
- The *k*-truss $T_k(G)$ of *G* is the maximal subgraph where each edge in $T_k(G)$ is a part of at least k 2 triangles in it



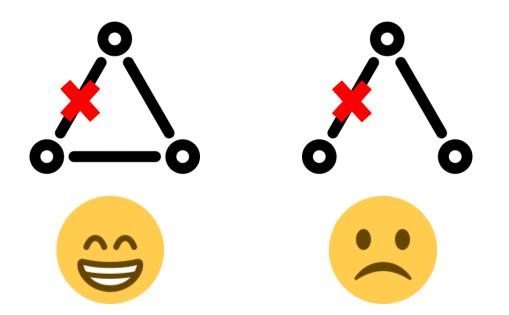
Related Concept: Trussness

- The **trussness** of an edge *e* is the maximum *k* s.t. *e* is in the *k*-truss
- The **trussness** of a node v is the maximum k s.t. v is in the k-truss



Why k-Trusses?

• Intuitively, **triangles** increase the robustness of graphs

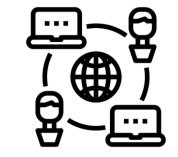


Why k-Trusses?

- Theoretically,
 - Node-level: engagement (degree) is guaranteed
 - Edge-level: interrelatedness (# triangles) is guaranteed
 - Subgraph-level: closeness (diameter) is guaranteed
- Practically meaningful

Transportation Systems

Social Networks



Communication

Systems

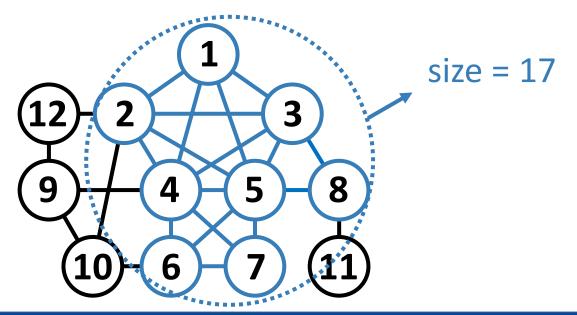
Recommender Systems

F. Bu and K. Shin

Problem Statement

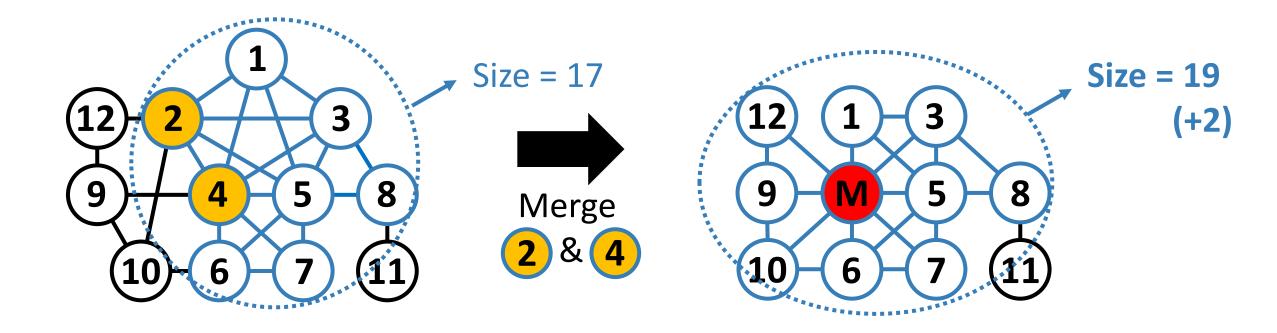
- Given: $G = (V, E), k \in \mathbb{N}$, "budget" $b \in \mathbb{N}$
- Find: b pairs of nodes to be merged
- To Maximize: # edges in the k-truss after merging those pairs
- Example:

"Which node pair should we merge to maximize the size of the 3-truss?"



Problem Statement: Example

"Which node pair should we merge to maximize the size of the 3-truss?"

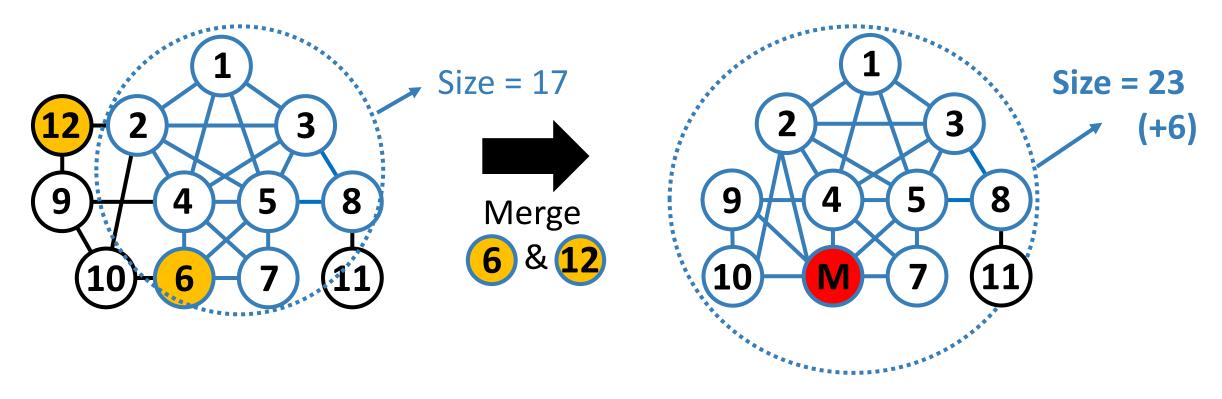


Merging nodes 2 and 4 increases the size by 2

F. Bu and K. Shin

Problem Statement: Example

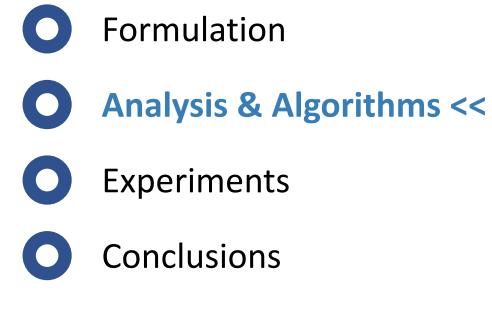
"Which node pair should we merge to maximize the size of the 3-truss?"



Merging nodes 6 and 12 increases the size by 6

F. Bu and K. Shin

Roadmap



F. Bu and K. Shin

Hardness and a Naïve Algorithm

- Theorem: The problem is NP-hard
 - We need to find practical and efficient heuristics.
- A naïve greedy algorithm
 - Repeat until the budget is exhausted
 - For each possible merger
 - Compute # edges in the k-truss after the merger
 - Operate the best merger
- The naïve greedy algorithm takes $O(b|V|^2|E|^{1.5})$ time!
- ××

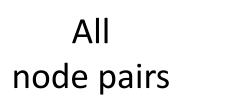
• *b*: budget, *V*: set of nodes, *E*: set of edges

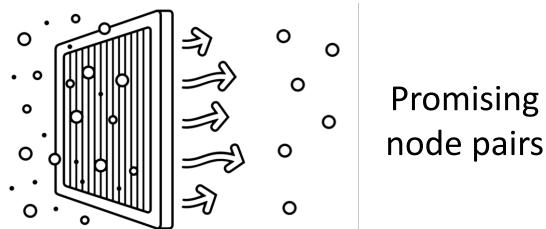
Research Questions

- The naïve greedy algorithm takes $O(b|V|^2|E|^{1.5})$ time! 😵
 - The k-truss is computed for each of $O(|V|^2)$ possible node pairs.

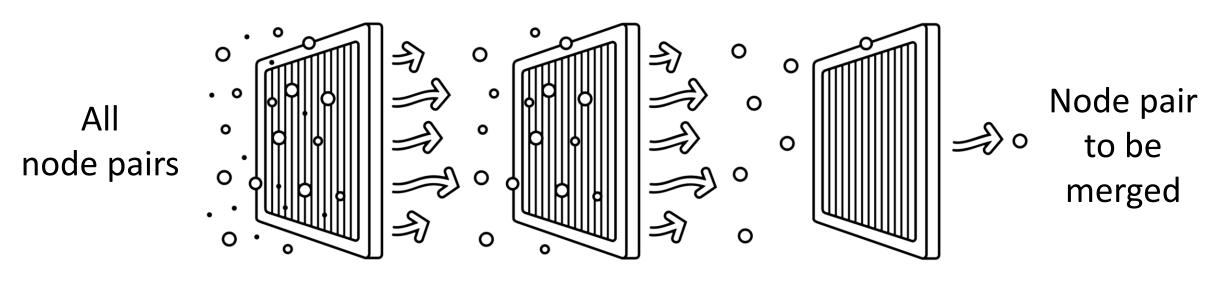
Research Questions

- The naïve greedy algorithm takes $O(b|V|^2|E|^{1.5})$ time! 😵
 - The k-truss is computed for each of $O(|V|^2)$ possible node pairs.
- Q: How can we reduce the time complexity?
- A: Rapidly filter **promising node pairs** and focus on them



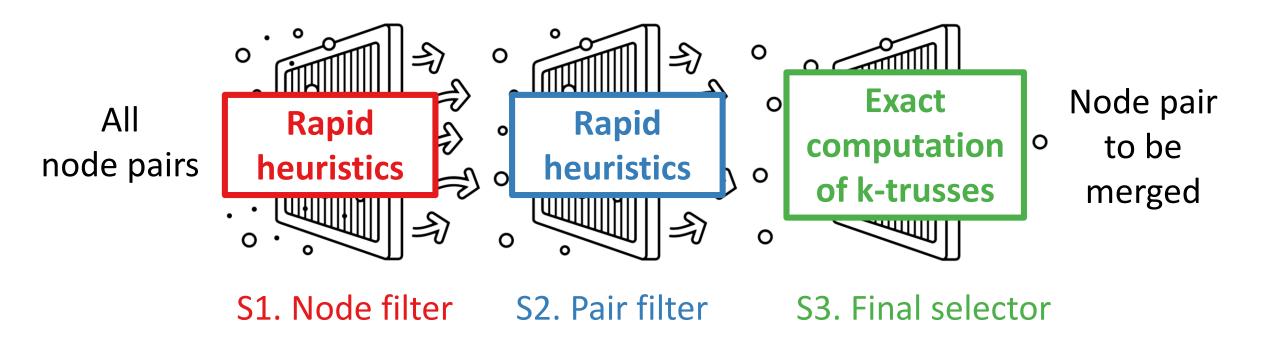


- Repeat until the budget is exhausted
 - **S1. Node filter:** find promising nodes
 - S2. Pair filter: find promising pairs of promising nodes
 - S3. Final selector: among the promising pairs and merge the best

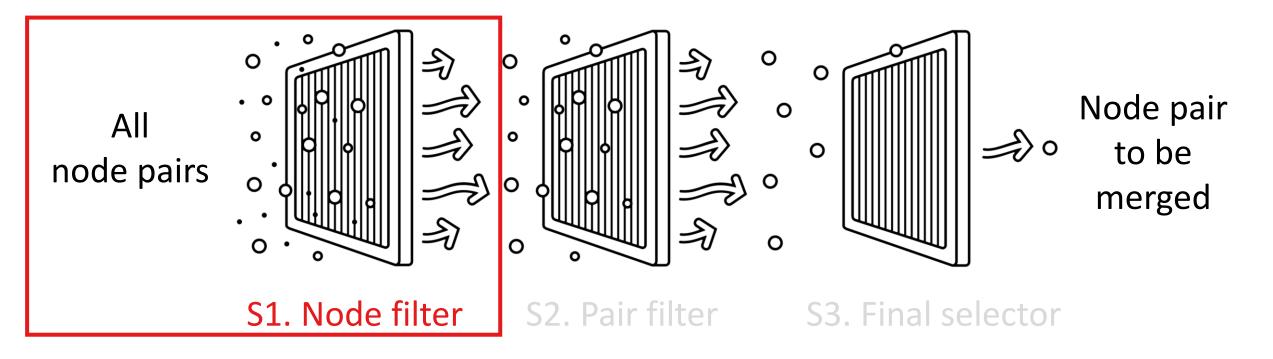


S1. Node filter S2. Pair filter S3. Final selector

- Repeat until the budget is exhausted
 - **S1. Node filter:** find promising nodes
 - S2. Pair filter: find promising pairs of promising nodes
 - S3. Final selector: among the promising pairs and merge the best

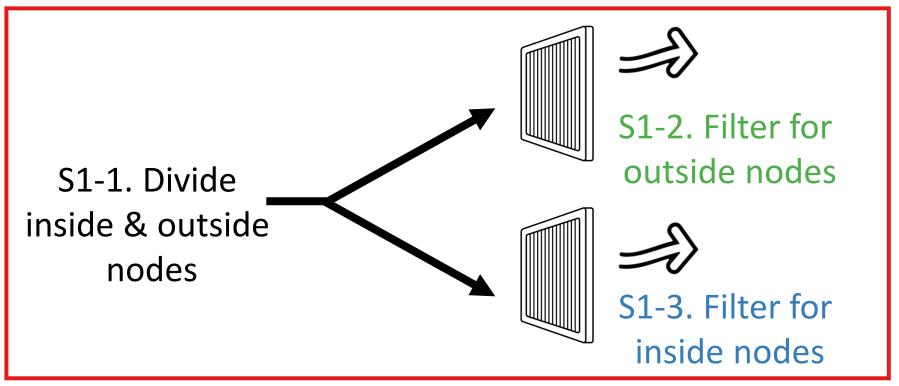


- Repeat until the budget is exhausted
 - **S1. Node filter:** find promising nodes <<
 - S2. Pair filter: find promising pairs of promising nodes
 - S3. Best selector: evaluate the promising pairs and merge the best



Step 1. Node Filter

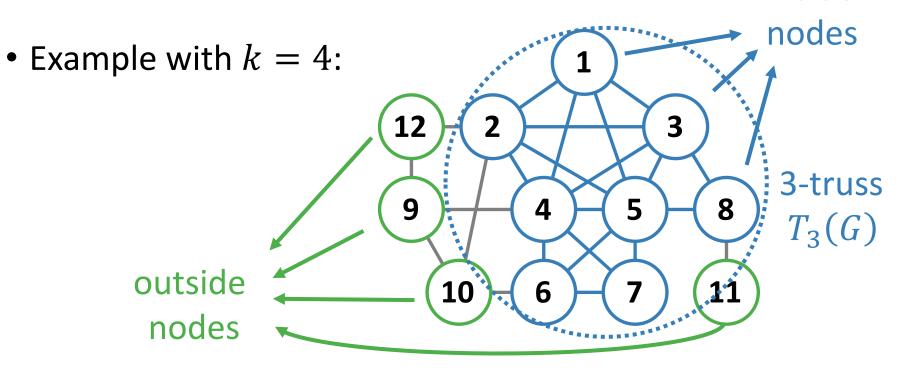
- S1-1. Divide the inside nodes and outside nodes
- S1-2. Filter "good" outside nodes
- S1-3. Filter "good" inside nodes



Step 1-1. Divide the Inside and Outside Nodes

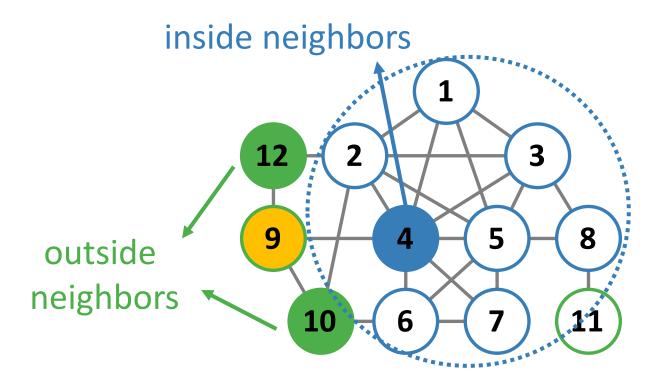
- Given a graph G = (V, E) and $k \in \mathbb{N}$
- A node $v \in V$ is if an **inside node** if its trussness $t(v) \ge k 1$
- Otherwise, it is an outside node

inside



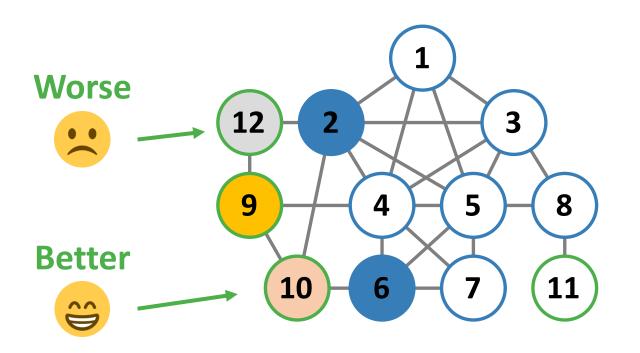
Step 1-1. Divide the Inside and Outside Nodes

- Given a node $u \in V$
- The inside neighbors of u are the neighbors of u that are inside nodes
- The **outside neighbors** of *u* are the neighbors of *u* that are outside nodes



Step 1-2. Filter Good Outside Nodes

- Lemma:
 - For two outside nodes a, b and any c,
 - if the inside neighborhood of a is a strict superset of that of b,
 - then merging a and c is always better than merging b and c
- Example:

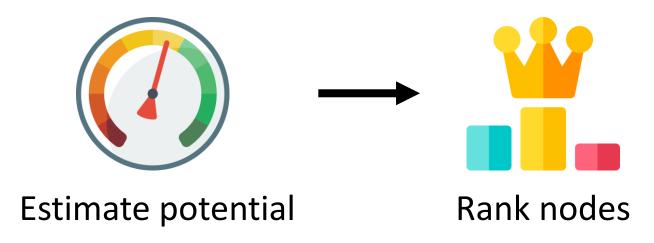


Step 1-2. Filter Good Outside Nodes

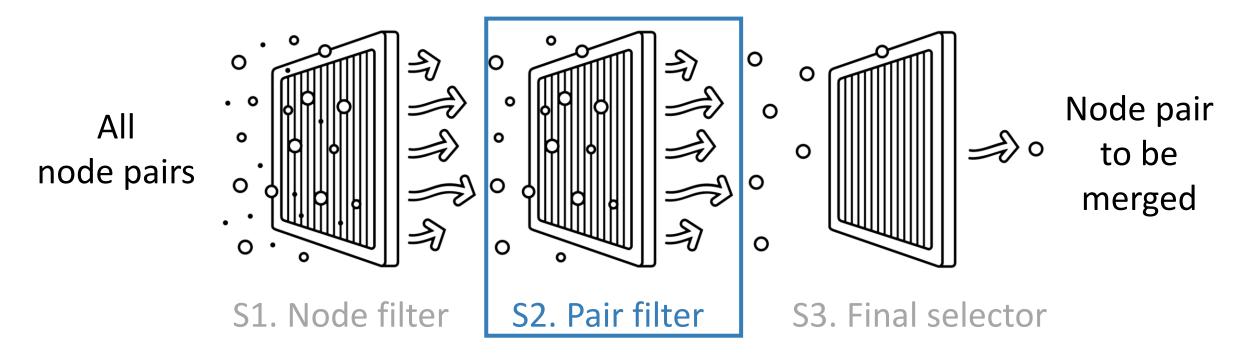
- Implications:
 - Outside nodes with many inside neighbors are good!
 - We only need to consider those with maximal inside neighborhood
- Problem formulation Maximal-Set Enumeration (Yellin, 1992):
 - Given: a set of sets (i.e., sets of inside neighbors of outside nodes)
 - Find: maximal sets
- Algorithm:
 - We use an existing algorithm that is simple yet effective

Step 1-3. Filter Good Inside Nodes

- For each inside node v,
- Count the number of promising neighbors, which can potentially enter the k-truss after v is merged with another node
- Technically, the promising neighbors of an inside node v are the neighbors of v with trussness k-1
- Then, choose the top-n inside nodes based on the number



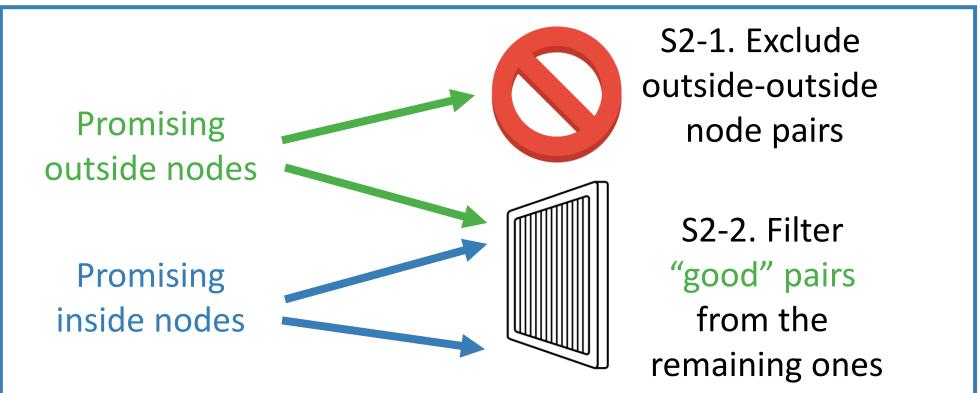
- Repeat until the budget is exhausted
 - S1. Node filter: find promising nodes
 - S2. Pair filter: find promising pairs of promising nodes <<
 - S3. Final selector: among the promising pairs and merge the best



Step 2. Pair Filter

- S2-1. Exclude outside-outside node pairs
- S2-2. Filter "good" pairs from the remaining ones

S2. Pair filter



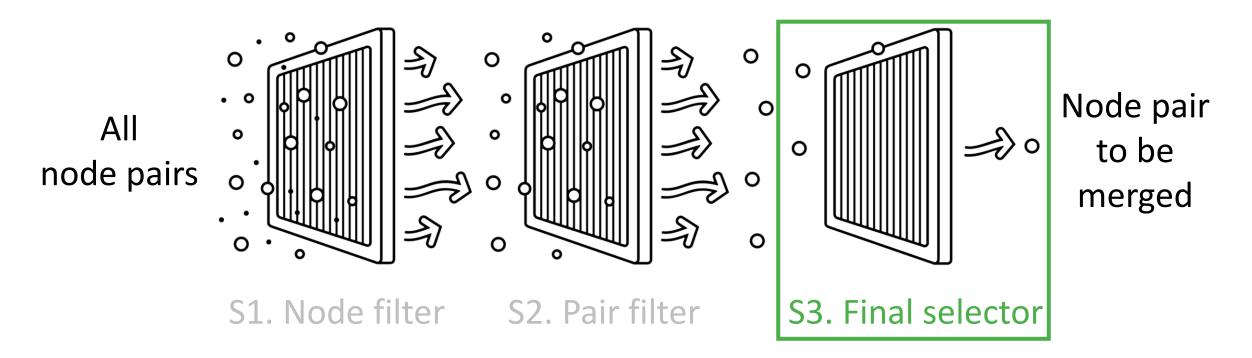
Step 2-1. Exclude Outside-Outside Node Pairs

- We exclude outside-outside node pairs
 - Theoretically, each edge incident to such merged nodes is not helpful
 - Empirically, there are too many such pairs
 - Thus, finding promising ones among them is costly

Step 2-2. Filter "Good" Pairs from the Remaining Ones

- Score the other pairs based on positive and negative factors
 - Inside-inside promising node pairs
 - Inside-outside promising node pairs
- Positive factors (+1 for each)
 - Support gains: edges in new triangles formed by merging the pair
- Negative factors (-1 for each)
 - Support losses: edges in triangles destroyed by merging the pair
 - Collisions: edges merged into one after merging the pair
- Choose the top-*n* pairs with the highest scores

- Repeat until the budget is exhausted
 - S1. Node filter: find promising nodes
 - S2. Pair filter: find promising pairs of promising nodes
 - S3. Final selector: among the promising pairs and merge the best <<

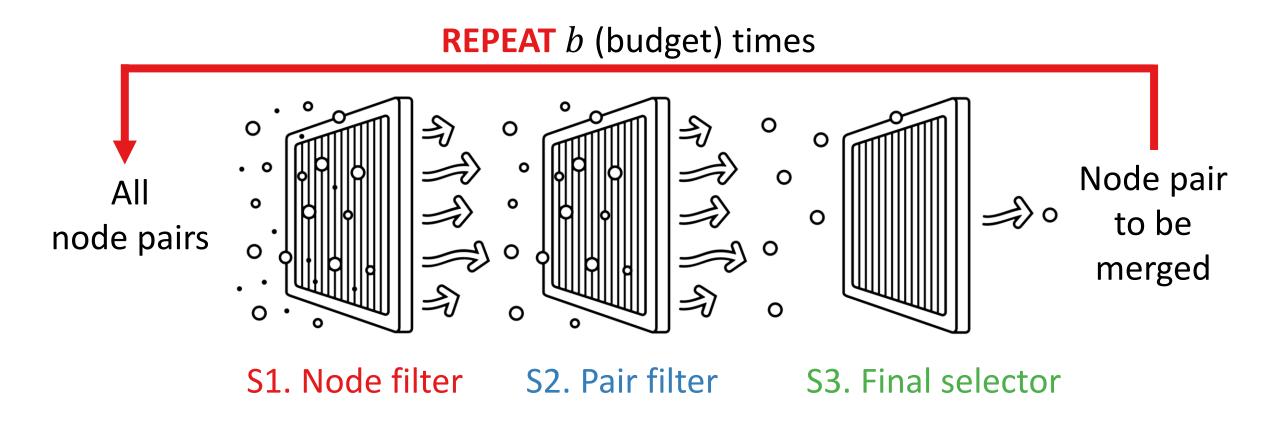


Step 3. Final Selector

- Finally choose a node pair and merge them
- Algorithm:
 - For each promising pair
 - Compute the exact gain in the objective after their merger
 - Merge the best pair with the largest gain
- This is the only step where exact trussness is computed in $O(|E|^{1.5})$

Final Algorithm: BATMAN

• **BATMAN**: Best-merger seArcher for Truss MAximizatioN



Theoretical Properties of BATMAN

- BATMAN takes $O(b|E|^{1.5} + |V|)$ time
 - Some user parameters are treated as constants
 - Recall that the naïve greedy algorithm takes $O(b|V|^2|E|^{1.5})$ time
- Unfortunately, no accuracy guarantee has been proven for BATMAN

Roadmap

Formulation

- Analysis & Algorithms
- Experiments <<
- Conclusions

F. Bu and K. Shin

[KDD'23] On Improving the Cohesiveness of Graphs by Merging Nodes

Experimental Settings

- Datasets: 14 real-worlds graphs
 - # nodes: 986 2.4M
 - # edges: 16k 4.7M
- Different *k* @ *k*-trusses: 5, 10, 15, 20
- Baseline methods: different heuristics
 - Most New Triangles (NT): choose the edge increasing the number of triangles among the nodes in the (k 1)-truss

Luitter WWW arXiv.org EPINION

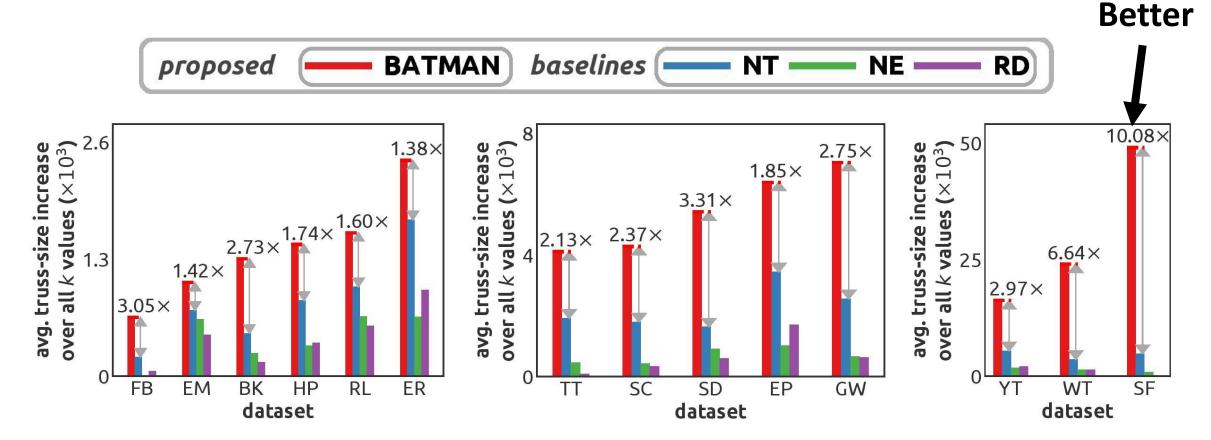
YouTube

facebook Gowalla

- Most New Edges (NE): choose the edge increasing the number of edges between the nodes in the (k 1)-truss
- RanDom (RD): uniform random sampling among all IIMs and IOMs
- The naïve greedy algorithm runs out of time in all the datasets!

Effectiveness: Different Datasets

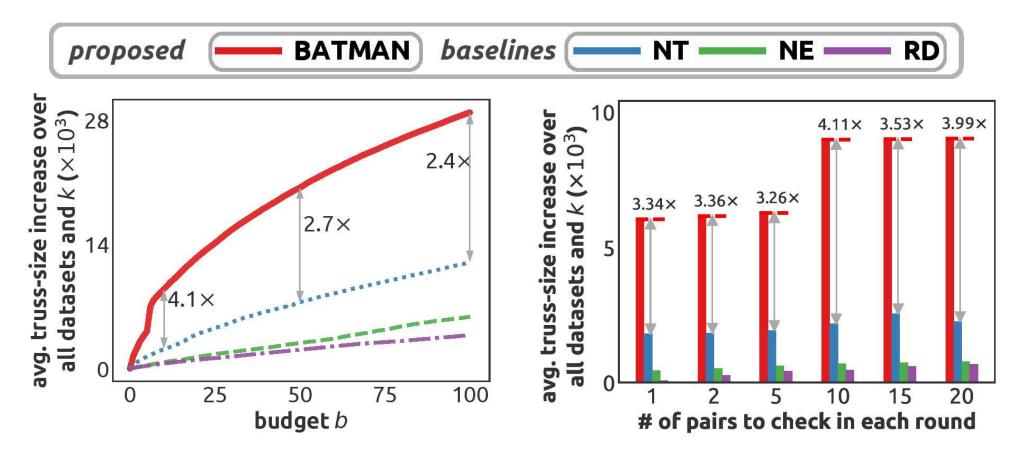
- **BATMAN** shows **consistent superiority** on different datasets
 - 1.4 10× better than the second-best one



 $\sim 10X$

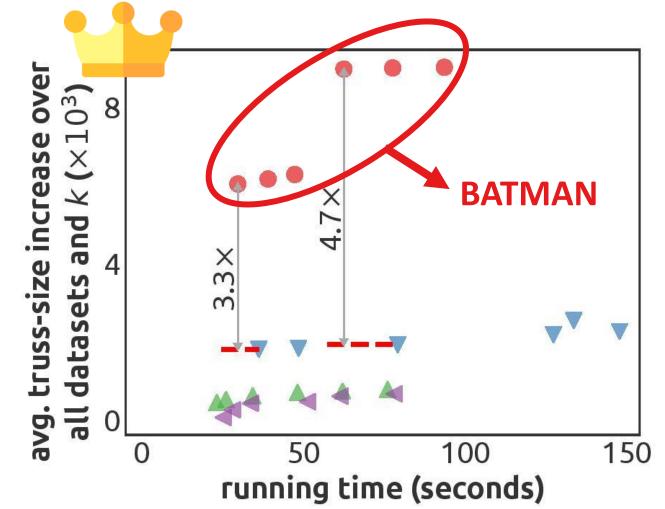
Effectiveness: Different Parameters

• **BATMAN** shows consistent superiority under various parameter settings



Efficiency: Speed & Performance Tradeoff

• **BATMAN** provides the best trade-off between speed & performance



Application: Merging Bus Stations

- Datasets: 21 bus station datasets in different cities
- Goal: Merging stations to improve the robustness of bus network
- Constraints: Only stations close enough can be merged
 - But there are still many possible choices!
- Baseline methods:
 - **BATMAN (BM):** Try to enlarge a k-truss
 - Core (CR): Try to enlarge a k-core
 - Constraints (CS): Randomly pick station pairs satisfying the constraints
 - **Closest (CL):** Pick the closest station pairs

Rome

Application: Merging Bus Stations

- Metrics: 8 robustness measures for transportation networks
 - VB: Average vertex betweenness
 - **EB:** Average edge betweenness
 - ER: Effective resistance
 - SG: Spectral gap
 - NC: Natural connectivity
 - AD: Average distance
 - TS: Transitivity

- LC: Average local clustering coefficient
- All these measures have been used in existing transportation network literature

Application: Merging Bus Stations

- BATMAN (BM) shows the largest improvement in robustness overall
 - Each robustness metric is computed after merging the stations
 - For each metric, the Z-score and the average ranking are computed

metric	BM	CR	CS	CL	metric	BM	CR	CS	CL
VB	2.0952	2.0476	2.0952	3.7619	VB	2.0952	2.0476	2.0952	3.7619
EB	2.0476	2.0000	2.1429	3.8095	EB	2.0476	2.0000	2.1429	3.8095
ER	3.2857	1.6190	1.8095	3.2857	ER	3.2857	1.6190	1.8095	3.2857
SG	1.7619	2.5238	2.3810	2.6667	SG	1.7619	2.5238	2.3810	2.6667
NC	1.0000	2.3333	2.7619	2.9048	NC	1.0000	2.3333	2.7619	2.9048
AD	2.6190	2.2381	1.2381	3.9048	AD	2.6190	2.2381	1.2381	3.9048
TS	1.0000	3.3810	2.2381	3.3810	TS	1.0000	3.3810	2.2381	3.3810
LC	1.5714	3.2381	1.6190	3.5238	LC	1.5714	3.2381	1.6190	3.5238
average	1.9226	2.4226	2.0357	3.4048	average	1.9226	2.4226	2.0357	3.4048

Z-scores (higher = better)

Ranking (lower = better)

Roadmap

Formulation

Analysis & Algorithms

Experiments

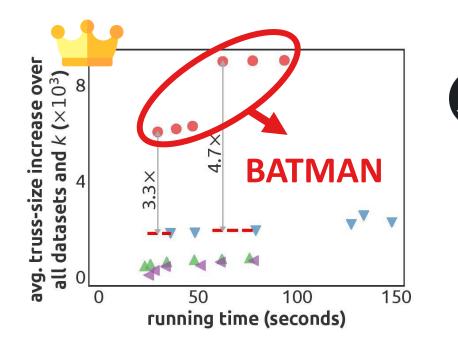
Conclusions <<

F. Bu and K. Shin

[KDD'23] On Improving the Cohesiveness of Graphs by Merging Nodes

Conclusions

- Novel Problem of improving graph cohesiveness by merging nodes
- Theoretical Analysis including the NP-hardness of the problem
- Fast and Effective Algorithm based on the analysis
- Empirical Validation including an application to real-world scenarios



Code: <u>bit.ly/truss_merge_code</u>

Image attribution: SEOULMETRO, Freepik, R Diepenheim, Oleksandr Panasovesky, macrovector, rawpixel.com, Sentavio, Harryarts, Cornecoba, pch.vector, brgfx, Webtechops LLP