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Precipitation Prediction

• Precipitation is important in our daily life
• may cause human damage and economic loss

• improving the accuracy of precipitation 
prediction is critical

• Widely known conventional techniques 
for precipitation prediction
• Numerical Weather Prediction (NWP) models,   

Optical Flow (Bowler et al., 2004)

• require enormous computational resources
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Deep Learning Models for Precipitation Nowcasting

• Deep-learning techniques have been applied to precipitation nowcasting
• outperform state-of-the-art NWP models, at lead times up to 12 hours
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• U-Net (Ronneberger et al., 2015) • ConvLSTM (Shi et al., 2015)

• (Agrawal et al., 2019)
• (Lebedev et al., 2019)
• DeepRaNE (Ko et al., 2022)

• ConvLSTM (Shi et al., 2015)
• TrajGRU (Shi et al., 2017)
• MetNet-2 (Espeholt et al., 2022)
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How about Ground Weather Station Data?

• However, deep learning methods have underutilized meteorological 
observations from ground weather stations
• They are not naturally represented in a grid format since ground weather stations 

are sparsely located

Radar Images
(Grid Format)

Ground Weather Stations
(Sparsely Located)
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How about Ground Weather Station Data? (Cont.)

• How can we utilize meteorological observations from ground weather stations?
• Interpolation techniques (e.g., Inverse Distance Weighting and Kriging) may be used 

• but expensive both in time and memory, especially to obtain high-resolution data

• Our solution: Attentive Sparse Observation Combiner (ASOC)
• to capture temporal dynamics of the observations from the stations

• to capture contextual relationships between the observations
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Outline

• Problem Definition

• Proposed Method: ASOC and ASOC+

• Experimental Results
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Problem Definition

• We formulate the problem as a location-wise classification problem 

• We consider three precipitation classes:
• HEAVY for precipitation at least 10mm/h

• LIGHT for precipitation at least 1mm/h but less than 10 mm/h

• OTHERS for precipitation less than 1 mm/h 

• We consider lead times from 1 to 6 hours
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Problem Definition

• Given:
a. a target time (in minutes) 𝑡′ ∈ {𝑡 + 60, 𝑡 + 120, 𝑡 + 180,… , 𝑡 + 360}

b. Radar reflectivity images 𝑅(𝑡−60), 𝑅(𝑡−50), … , 𝑅(𝑡)

c. Ground-based observations 𝑂(𝑡−60), 𝑂(𝑡−50), … , 𝑂(𝑡)

• Find: a prediction function Φ

• To Maximize: classification performance

Φ

(e.g., Deep
Learning Model)
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Ground-based 
Observations
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Radar Reflectivity 
Images

A Target Time

𝑡′ ∈
{𝑡 + 60, 𝑡 + 120,

… , 𝑡 + 360}

Predicted distribution over 
precipitation classes 𝐶(𝑡′)
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Overview of ASOC and ASOC+
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ASOC

ASOC+
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Overview of ASOC (Cont.)

• Temporal dynamics of observations: A sequence of ground-based 
observations over time are given as inputs

• Contextual relationships between observations: Ground-based observations 
collected from different weather stations are related to each other
• Contexts: lead times, overall weather conditions, distance between the stations, etc.

ASOC
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Exploiting Temporal Dynamics

• We use a recurrent architecture, especially LSTM, for parameterization and 
feed the inputs sequentially into the model

• Each LSTM cell processes inputs for one weather station at a time
• observations from one station do not directly affect the outputs for the other stations

Introduction Problem Definition    Proposed Method Experimental Results    Conclusions

𝑥 𝑦

LSTM Cell
Independent
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Exploiting Contextual Relationship

• We used self-attention, a state-of-the-art method for learning 
contextual relationship

• We used an encoder layer of Transformer (Vaswani et al., 2017)
• consists of a multi-head attention layer and a feed-forward network

Introduction Problem Definition    Proposed Method Experimental Results    Conclusions
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Integration to Image-based Models

• Output pixel embeddings of image-
based precipitation nowcasting models 
can also be used as an additional input
• We chose DeepRANE (Ko et al., 2022) 

• The combined model is called ASOC+
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Integration to Image-based Models (Cont.)

• Output pixel embeddings of image-
based precipitation nowcasting models 
can also be used as an additional input
• We chose DeepRANE (Ko et al., 2022) 

• The combined model is called ASOC+

• We additionally used 12-dimensional 
vector containing auxiliary information

a. The location of each region (2D vector)

b. The observation date (2D vector)

c. The observation time (2D vector)

d. The lead time information (6D one-hot 
vector)
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Computing the Final Outputs

• ASOC obtains the final output probability 
distribution for each region through an 
additional fully-connected layer from
• The output of the LSTM part

• The final input vector of the LSTM part
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Computing the Final Outputs (Cont.)

• ASOC obtains the final output probability 
distribution for each region through an 
additional fully-connected layer from
• The output of the LSTM part

• The final input vector of the LSTM part

• We used a loss function designed for 
classification under class-imbalance
• DeepRaNE (Ko et al., 2022)
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Experimental Settings

• Datasets:
• Radar reflectivity images around South Korea

• measured every ten minutes from 2014 to 2020

• 1468 x 1468 in size and has a 1km x 1km resolution

• Ground observations from Automated Weather Stations (AWS) in South Korea
• collected from 714 weather stations every ten minutes from 2014 to 2020

• containing wind direction and speed, temperature, cumulative precipitation,                             
humidity, and barometric pressure
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Experimental Settings (Cont.)

• Baseline Approaches:
• Radar Images Only

• DeepRaNE

• Ground-based Observations Only
• LSTM

• Persistence Model: use the current precipitation class in each region as prediction

• Ground-based Observations and Radar Images
• DeepRaNE+Kriging: interpolate ground observations using Kriging to be used as extra input channels
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Experimental Settings (Cont.)

• Evaluation Metrics:
• CSI and F1 scores for two precipitation classes at each lead time from 1 to 6 hours

• HEAVY for precipitation at least 10mm/h

• RAIN for precipitation at least 1mm/h (= HEAVY + LIGHT)

precipitation ≥ 𝑐 Positive Negative

Positive 𝑇𝑃𝑐 𝐹𝑁𝑐

Negative 𝐹𝑃𝑐 𝑇𝑁𝑐
Actual

Predicted
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Results: Effectiveness of ASOC+ and ASOC

• Among the approaches that use only ground-based observations as the input, 
ASOC performed significantly better than the others

• Among all approaches, ASOC+ performed best overall, achieving the 5.7% 
better CSI scores on average than the others
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Results: Ablation Study (Cont.)

• For HEAVY, ASOC+ achieved the best CSI and F1 scores on average
• followed by ASOC-A (without self-attention blocks) and ASOC-P (uses only cumulative 

precipitation related features among the ground-based features)

• The ground-based features for cumulative precipitation contributed most to 
the performance of ASOC+
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w/o self-
attention

with specific features only
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Results: Further Analysis in Heavy Rainfall Cases

• Focused on 425 cases in the test set where a precipitation intensity 
rate is 30+ mm/hr at one or more regions

• ASOC+ achieved 18.7% better CSI scores and 19.6% better F1 
scores on average for HEAVY than DeepRaNE
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Red Points: 
HEAVY

Blue Points: 
RAIN
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Results: Further Analysis in Heavy Rainfall Cases

• DeepRaNE fails to predict the locations of HEAVY cases when the lead time 
is greater than 2 hours
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Results: Further Analysis in Heavy Rainfall Cases

• ASOC+ predicts the locations quite accurately even when the lead time 
is greater than 2 hours
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Conclusions

• We proposed ASOC, a novel attentive and recurrent model for 
precipitation nowcasting using ground-based observations

☑ Effectively utilized meteorological observations by considering   

temporal dynamics and the attentive relationships

☑ Easily combined with state-of-the-art radar image-based models

☑ improved the CSI score for predicting HEAVY and RAIN at 1-6 hr   

lead times by 5.7%
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The implementation used in the paper are available at 
https://github.com/jihoonko/ASOC
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