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Precipitation Prediction

* Precipitation is important in our daily life
* may cause human damage and economic loss

* improving the accuracy of precipitation
prediction is critical

* Widely known conventional techniques
for precipitation prediction

 Numerical Weather Prediction (NWP) models,
Optical Flow (Bowler et al., 2004)

* require enormous computational resources
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Deep Learning Models for Precipitation Nowcasting

* Deep-learning techniques have been applied to precipitation nowcasting
* outperform state-of-the-art NWP models, at lead times up to 12 hours

« U-Net (Ronneberger et al., 2015)  ConvLSTM (Shi et al., 2015)
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. (Agrawal et al_’ 2019) * ConvLSTM (Shl et al., 2015)

* (Lebedev etal., 2019) « TrajGRU (Shi et al., 2017)

« DeepRaNE (Ko et al., 2022) « MetNet-2 (Espeholt et al., 2022)

Introduction 3/30




How about Ground Weather Station Data?

* However, deep learning methods have underutilized meteorological
observations from ground weather stations

* They are not naturally represented in a grid format since ground weather stations
are sparsely located
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How about Ground Weather Station Data? (Cont.)

* How can we utilize meteorological observations from ground weather stations?
* Interpolation techniques (e.g., Inverse Distance Weighting and Kriging) may be used
* but expensive both in time and memory, especially to obtain high-resolution data

* Our solution: Attentive Sparse Observation Combiner (ASOC)
* to capture temporal dynamics of the observations from the stations
* to capture contextual relationships between the observations
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Problem Definition

* We formulate the problem as a location-wise classification problem

* We consider three precipitation classes:
* HEAVY for precipitation at least 10mm/h
* LIGHT for precipitation at least 1mm/h but less than 10 mm/h
* OTHERS for precipitation less than 1 mm/h

e We consider lead times from 1 to 6 hours
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Problem Definition

* Given:
a. atargettime (in minutes) t’ € {t + 60,t + 120,t + 180, ..., t + 360}
b. Radar reflectivity images R(=60) R(t=50) ©  R(®)
c. Ground-based observations 0(—60) o(t=50) (®

* Find: a prediction function ®
* To Maximize: classification performance

0
{t + 60,t + 120,

..,t + 360} R®
(e.g., Deep

Learning Model)

Predicted distribution over
precipitation classes ¢®"

A Target Time Radar Reflectivity Ground-based
Images Observations
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Overview of ASOC and ASOC+
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Overview of ASOC (Cont.)
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* Temporal dynamics of observations: A sequence of ground-based
observations over time are given as inputs

* Contextual relationships between observations: Ground-based observations
collected from different weather stations are related to each other

* Contexts: lead times, overall weather conditions, distance between the stations, etc.
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Exploiting Temporal Dynamics

* We use a recurrent architecture, especially LSTM, for parameterization and
feed the inputs sequentially into the model

* Each LSTM cell processes inputs for one weather station at a time
* observations from one station do not directly affect the outputs for the other stations

Independent
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Exploiting Contextual Relationship

* We used self-attention, a state-of-the-art method for learning
contextual relationship

* We used an encoder layer of Transformer (Vaswani et al., 2017)
e consists of a multi-head attention layer and a feed-forward network
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Integration to Image-based Models

* Qutput pixel embeddings of image-
based precipitation nowcasting models
can also be used as an additional input
* We chose DeepRANE (Ko et al., 2022)
* The combined model is called ASOC+
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Integration to Image-based Models (Cont.)

* We additionally used 12-dimensional

vector containing auxiliary information

a. The location of each region (2D vector)
b. The observation date (2D vector)

c. The observation time (2D vector)
d

The lead time information (6D one-hot
vector)
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Computing the Final Outputs

* ASOC obtains the final output probability
distribution for each region through an
additional fully-connected layer from o

Attention

* The output of the LSTM part
* The final input vector of the LSTM part
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Computing the Final Outputs (Cont.)

Self-
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* We used a loss function designed for L
classification under class-imbalance —
- DeepRaNE (Ko et al., 2022) A
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Experimental

* Datasets:

Settings

* Radar reflectivity images around South Korea

* measured every ten minutes from 2014 to 2020
* 1468 x 1468 in size and has a 1km x 1km resolution

* Ground observations from Automated Weather Stations (AWS) in South Korea

* collected from 714 weather stations every ten minutes from 2014 to 2020

e containing wind direction and speed, temperature, cumulative precipitation,
humidity, and barometric pressure
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Experimental Settings (Cont.)

* Baseline Approaches:
* Radar Images Only
* DeepRaNE

* Ground-based Observations Only
* LSTM
* Persistence Model: use the current precipitation class in each region as prediction
* Ground-based Observations and Radar Images
* DeepRaNE+Kriging: interpolate ground observations using Kriging to be used as extra input channels
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Experimental Settings (Cont.)

e Evaluation Metrics:

* CSl and F1 scores for two precipitation classes at each lead time from 1 to 6 hours
* HEAVY for precipitation at least 10mm/h

* RAIN for precipitation at least 1Imm/h (= HEAVY + LIGHT)

Actual

Predicted
precipitation = ¢ Positive Negative
Positive FN,
Negative FP. TN,

TP,
I. = :
5 TP. + FP. + FN,.
2-TP,
Fl.

~ 2.TP, + EP, + FN,’
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Results: Effectiveness of ASOC+ and ASOC

* Among the approaches that use only ground-based observations as the input,
ASOC performed significantly better than the others

 Among all approaches, ASOC+ performed best overall, achieving the 5.7%
better CSI scores on average than the others

Input Data Ground-based Observations Only \ Ground-based Observations and Radar Images

Precipitation Lead G ASOC LSTM Perslstem.e ASOC+ DeepRaNE + Kriging | DeepRaNE only

level cadtime ¥ cs1 F Csl Fl CSl Csl Csl Fl CSl Fl
60 minutes 0.262 0415 § 0296 0457 | 0259 0412 0.444 0.615 0.316 0.480 0.390 0.562
120 minutes § 0.156  0.270 § 0.178 0.302 | 0.152 0.264 0.309  0.472 0.200 0.333 0.280 0.438
HEAVY 180 minutes § 0.120  0.215 § 0.127  0.225 | 0.102  0.185 0.218  0.357 0.158 0.273 0.210 0.348
(=10mm/h) | 240 minutes | 0.094  0.173 | 0.090 0.166 | 0.073  0.136 0.169  0.289 0.128 0.226 0.170 0.291
300 minutes § 0.079  0.147 | 0.064 0.121 | 0.057 0.108 0.141  0.247 0.108 0.195 0.135 0.238
360 minutes § 0.070  0.132 | 0.048 0.091 | 0.0d6  0.087 0.096  0.176 0.092 0.168 0.116 0.207
60 minutes 0.532  0.695 § 0527 0.690 | 0518  0.683 0.671  0.803 0.483 0.652 0.609 0.757
120 minutes § 0.430  0.602 § 0408 0.580 | 0.396  0.568 0.548 0.708 0.409 0.581 0.501 0.667
RAIN 180 minutes § 0.376  0.546 § 0347 0515 | 0.331 0498 0.468  0.638 0.375 0.546 0.449 0.620
(>1mm/h) 240 minutes § 0.334  0.501 | 0.306  0.468 | 0.288  0.447 0.428  0.599 0.339 0.507 0411 0.583
300 minutes § 0.299  0.460 | 0.275 0432 | 0256 0408 0.394  0.565 0.315 0.479 0.381 0.552
360 minutes § 0.270  0.425 | 0.250 0.401 | 0.231  0.375 0.359 0.529 0.294 0.454 0.354 0.523
Average 0.252 0382 | 0243 0371 | 0226  0.348 I 0.354  0.500 0.268 0.408 | 0.334 0.482
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Results: Ablation Study (Cont.)

* For HEAVY, ASOC+ achieved the best CSl and F1 scores on average

 followed by ASOC-A (without self-attention blocks) and ASOC-P (uses only cumulative
precipitation related features among the ground-based features)

* The ground-based features for cumulative precipitation contributed most to
the performance of ASOC+

w/o self- with specific features only
attention
— \
Precipitation Lead time ASOC+ ASOC-A ASOC-P ASOC-W ASOC-T ASOC-D ASOC-H ASOC-B
level CSI F1 CSI F1 CSI Fl1 CSI Fl CSI Fl CSI F1 CSI F1 CSI F1

60 minutes J 0.444 0.615 § 0.464 0.634 | 0.399 0.571 | 0406 0578 | 0.317 0481 | 0.297 0.458 | 0.380 0.550 | 0.408 0.579
120 minutes § 0.309 0.472 § 0.285 0.443 | 0292 0452 | 0.243 0392 | 0.259 0412 | 0.240 0.387 | 0277 0434 | 0.270 0.425

HEAVY 180 minutes § 0.218 0.357 § 0.218 0.358 | 0.207 0343 | 0.186 0.313 | 0.205 0.340 | 0.202 0.336 | 0.213 0.351 | 0.196  0.328
(=10mm/h) | 240 minutes § 0.169 0.289 § 0.154 0.267 | 0.162 0.279 | 0.153 0.266 | 0.160 0.276 | 0.161 0.277 | 0.171 0.291 | 0.131 0.232
300 minutes § 0.141 0.247 § 0.125 0.222 | 0.124 0.221 | 0.120 0.214 | 0.131 0.231 | 0.138 0.242 | 0.132 0.233 | 0.136  0.239
360 minutes § 0.096 0.176 § 0.094 0.172 | 0.094 0.173 | 0.109 0.197 | 0.103 0.187 | 0.124 0.221 | 0.117 0.209 | 0.115 0.206

60 minutes § 0.671 0.803 § 0.670 0.802 | 0.657 0.793 | 0.623 0.768 | 0.588 0.740 | 0.645 0.784 | 0.609 0.757 | 0.630 0.773
120 minutes § 0.548 0.708 § 0.550 0.710 | 0.549 0.709 | 0.516 0.681 | 0.517 0.682 | 0.520 0.684 | 0.523 0.687 | 0.526 0.690

RAIN 180 minutes § 0.468 0.638 § 0.477 0.646 | 0.488 0.656 | 0.451 0.622 | 0.466 0.635 | 0460 0.630 | 0.468 0.637 | 0.463 0.633
(ZImm/h) | 240 minutes § 0.428 0.599 § 0.425 0.596 | 0.440 0.611 | 0.413 0585 | 0421 0593 | 0414 0585 | 0426 0.598 | 0.391 0.562
300 minutes § 0.394 0.565 § 0.390 0.561 | 0.404 0.576 | 0.366 0.535 | 0.390 0.561 | 0.380 0.550 | 0.390 0.561 | 0.393 0.564
360 minutes § 0.359 0.529 § 0.365 0.535 | 0.371 0.541 | 0.336  0.503 | 0.361 0.530 | 0.356 0.525 | 0.362 0.531 | 0.364 0.533

Average 0.354  0.500 § 0351 0.496 | 0.349 0494 | 0.327 0471 | 0326 0472

0.328 0.473 | 0339 0.487 | 0.335 0.480
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Results: Further Analysis in Heavy Rainfall Cases

* Focused on 425 cases in the test set where a precipitation intensity
rate is 30+ mm/hr at one or more regions

* ASOC+ achieved 18.7% better CSl scores and 19.6% better F1
scores on average for HEAVY than DeepRaNE
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Results: Further Analysis in Heavy Rainfall Cases

* DeepRaNE fails to predict the locations of HEAVY cases when the lead time

is greater than 2 hours prediction by DeepRaNE
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Results: Further Analysis in Heavy Rainfall Cases

* ASOC+ predicts the locations quite accurately even when the lead time

is greater than 2 hours Prediction by ASOC+
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Conclusions

* We proposed ASOC, a novel attentive and recurrent model for
precipitation nowcasting using ground-based observations

v

AN

Effectively utilized meteorological observations by considering
temporal dynamics and the attentive relationships

Easily combined with state-of-the-art radar image-based models
improved the CSl score for predicting HEAVY and RAIN at 1-6 hr
lead times by 5.7%

The implementation used in the paper are available at
https://github.com/jihoonko/ASOC
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