

Towards Deep Attention in GNNs: Problems and Remedies

Soo Yong Lee KAIST

Fanchen Bu KAIST

Jaemin Yoo

CMU

Kijung Shin KAIST

Sec. 1: Introduction

- Sec. 2: Analysis of Graph Attention
- Sec. 3: Proposed Method : AERO-GNN
- Sec. 4: Experiments and Empirical Evaluation
- Sec. 5: Discussion

Graphs

What are Graphs?

- Graphs are relational data
- Consists of nodes and edges

Graphs are everywhere!

 Can represent a wide range of real-world networks

Web Networks Node = Webpage Edge = Hyperlinks

Social Networks Node = User

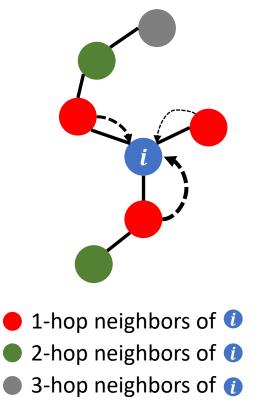
Node = User Edge = Follow

Transportation Networks

Node = Region Edge = Road Connection

Co-Purchase Networks Node = Product Edge = Often Co-Purchased

Graph Neural Networks (GNNs)


Graph Neural Networks (GNNs)

- Can solve various graph-related tasks
- Learn graph representation

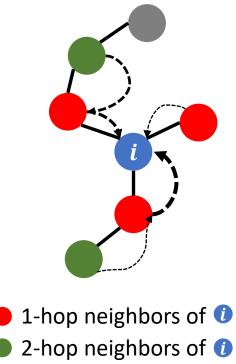
To enhance its expressiveness:

- Graph Attention
 - Learns the weight for feature propagation
- Deep GNN
 - Increases receptive fields
 - Stacks non-linearity

1-Layer Graph Attention: Receptive Field of Node *i*

↘ weight for feature propagation

Graph Neural Networks (GNNs)


Graph Neural Networks (GNNs)

- Can solve various graph-related tasks
- Learn graph representation

To enhance its expressiveness:

- Graph Attention
 - Learns the weight for feature propagation
- Deep GNN
 - Increases receptive fields
 - Stacks non-linearity

2-Layer Graph Attention: Receptive Field of Node *i*

- 3-hop neighbors of ()
- ↘ weight for feature propagation

Goal of the Present Study

Question of Interest

Can existing graph attention remain expressive over deep layers?

How to design an **expressive deep graph attention**?

Can it solve **node classification** problem?

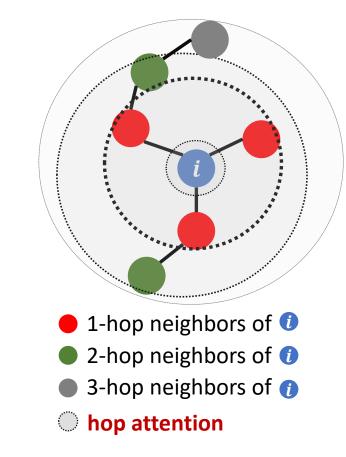
- Sec. 1: Introduction
- Sec. 2: Analysis of Graph Attention
- Sec. 3: Proposed Method : AERO-GNN
- Sec. 4: Experiments and Empirical Evaluation
- Sec. 5: Discussion

\square

Graph Attention for GNNs

Illustration of Hop Attention

Edge Attention A^(k)


- Intuition: learns importance within each hop
- Models: GAT[1], FAGCN[2]
- Hop Attention $\Gamma^{(k)}$
 - Intuition: learns importance of each hop
 - Models: GPRGNN[3], DAGNN[4]

1-hop neighbors of *(*) 2-hop neighbors of 🕧 3-hop neighbors of 🕧 edge attention

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. Graph attention networks. In ICLR, 2018.
Bo, D., Wang, X., Shi, C., and Shen, H. Beyond low frequency information in graph convolutional networks. In AAAI, 2021.
Liu, M., Gao, H., and Ji, S. Towards deeper graph neural networks. In KDD, 2020.
Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive universal generalized pagerank graph neural network. In ICLR, 2021.

Graph Attention for GNNs

Illustration of Hop Attention

Edge Attention A^(k)

- Intuition: learns importance within each hop
- Models: GAT[1], FAGCN[2]

• Hop Attention $\Gamma^{(k)}$

- Intuition: learns importance of each hop
- Models: GPRGNN[3], DAGNN[4]

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. Graph attention networks. In ICLR, 2018.
Bo, D., Wang, X., Shi, C., and Shen, H. Beyond low frequency information in graph convolutional networks. In AAAI, 2021.
Liu, M., Gao, H., and Ji, S. Towards deeper graph neural networks. In KDD, 2020.
Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive universal generalized pagerank graph neural network. In ICLR, 2021.

Theoretical Limitations to Deep Graph Attention

• All Graph Attention Models Suffer From Two Problems

- P1: Vulnerability of Node Feature Over-Smoothing
 - (Informal) The attention coefficients become identical for over-smoothed node features
- P2: Smooth Cumulative Attention
 - (Informal) Cumulative attention vectors become identical for all nodes at very deep layer
- Both problems are critically contrary to the goal of attention

- Sec. 1: Introduction
- Sec. 2: Analysis of Graph Attention
- Sec. 3: Proposed Method : AERO-GNN
- Sec. 4: Experiments and Empirical Evaluation
- Sec. 5: Discussion

AERO-GNN : Overview

We propose <u>Attentive</u> Deep Propagation GNN (AERO-GNN)

Model Overview

• At every propagation layer k, AERO-GNN learns $A^{(k)}$ and $\Gamma^{(k)}$

$$H^{(k)} = \begin{cases} MLP(X), & \text{if } k = 0, \\ \mathcal{A}^{(k)} H^{(k-1)}, & \text{if } 1 \le k \le k_{max}, \end{cases}$$
$$Z^{(k)} = \sum_{l=0}^{k} \Gamma^{(l)} H^{(l)}, \forall 1 \le k \le k_{max}, \\ Z^* = \sigma(Z^{(k_{max})}) W^*, \end{cases}$$

AERO-GNN : Attention Functions

Design Question :

• How do we design an expressive deep graph attention?

Key Properties :

- Key 1. Stacking non-linearity
- <u>Key 2</u>. Learn both $A^{(k)}$ and $\Gamma^{(k)}$ (edge and hop attention)
- <u>Key 3</u>. Use features from the previous layers Z
- <u>Key 4</u>. Use **negative** attention
- <u>Key 5</u>. Have **node-adaptive** hop attention $\Gamma^{(k)}$

AERO-GNN : Attention Functions

Bottom Line :

- Attention functions of AERO-GNN is flexible and expressive!
- They allow AERO-GNN to mitigate problems of deep graph attention.
 - Vulnerability to Over-Smoothing & Smooth Cumulative Attention

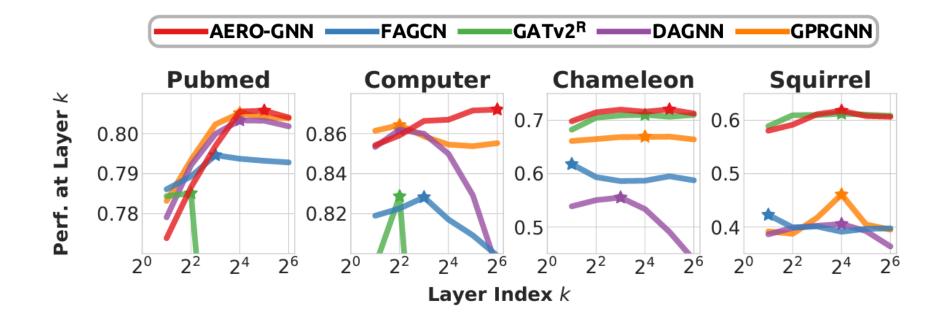
Properties of Attention Functions							
	Stacking Non-LinearityEdge & HopZ as InputNegative AttentionNode- Adaptive						
GATv2	0	X	X	X	X		
FAGCN	0	X	0	0	X		
GPRGNN	X	X	X	0	X		
DAGNN	X	X	X	X	0		
AERO-GNN	0	0	0	0	0		

- Sec. 1: Introduction
- Sec. 2: Analysis of Graph Attention
- Sec. 3: Proposed Method : AERO-GNN
- Sec. 4: Experiments and Empirical Evaluation
- Sec. 5: Discussion

Performance (Mean ± Std, 100 trials)

• AERO-GNN achieves the best overall performance (See high A.R.)!

Dataset	Chameleon	Squirrel	Actor	Texas	Cornell	Wisconsin	Computer	Photo	Wiki-CS	Pubmed	Citeseer	Cora	A.R.
Homophily	0.04	0.03	0.01	0.00	0.02	0.05	0.70	0.77	0.57	0.66	0.63	0.77	
GCN APPNP	67.97 ± 2.5 53.04 ± 2.2	53.33 ± 1.3 40.37 ± 1.5	30.57 ± 0.7 35.49 ± 1.0	65.65 ± 4.8 79.89 ± 4.2	58.41 ± 3.3 80.16 ± 5.9	62.02 ± 5.9 84.24 ± 4.6	81.27 ± 1.4 81.27 ± 1.4	90.24 ± 1.3 91.12 ± 1.2	79.08 ± 0.5 79.05 ± 0.5	79.54 ± 0.4 79.90 ± 0.3	72.50 ± 0.5 73.06 ± 0.3	83.15 ± 0.5 83.60 ± 1.3	
GCN-II	53.04 ± 2.2 60.38 ± 1.9	40.37 ± 1.3 48.76 ± 2.4	35.49 ± 1.0 35.77 ± 1.0	79.89 ± 4.2 78.59 ± 6.6	78.84 ± 6.6	83.20 ± 4.7	81.27 ± 1.4 84.24 ± 1.2	91.12 ± 1.2 91.81 ± 0.9	79.03 ± 0.3 79.28 ± 0.6	79.90 ± 0.3 80.14 ± 0.6	73.00 ± 0.3 73.20 ± 0.8		
A-DGN	69.63 ± 2.0	57.77 ± 1.9	36.41 ± 1.0	82.22 ± 4.8	$\textbf{83.14} \pm \textbf{6.7}$	$\textbf{85.84} \pm \textbf{4.0}$	83.70 ± 1.5	90.53 ± 1.3	79.11 ± 0.6	78.68 ± 0.6	70.16 ± 0.9	79.84 ± 0.9	6.4
GAT	68.01 ± 2.5	54.49 ± 1.7	30.36 ± 0.9	60.46 ± 6.2	58.22 ± 3.7	63.59 ± 6.1	84.46 ± 1.3	89.88 ± 1.1	79.44 ± 0.5	78.94 ± 0.4	71.89 ± 0.6	83.78 ± 0.5	8.5
GATv2	69.06 ± 2.2	57.67 ± 2.4	30.27 ± 0.8	60.32 ± 7.0	58.35 ± 3.8	61.94 ± 4.7	84.19 ± 1.2	89.87 ± 1.2	79.64 ± 0.5	79.12 ± 0.3	71.15 ± 1.2	83.88 ± 0.6	8.9
$\mathbf{GATv2}^{R}$	$\textbf{70.88} \pm \textbf{1.9}$	61.23 ± 1.5	33.73 ± 0.9	60.68 ± 6.6	57.32 ± 4.5	60.61 ± 5.1	81.73 ± 2.2	88.71 ± 1.7	79.75 ± 0.6	78.28 ± 0.4	71.00 ± 0.8	82.42 ± 0.6	9.3
GT	69.34 ± 1.2	55.04 ± 1.9	36.29 ± 1.0	$\textbf{84.08} \pm \textbf{5.6}$	80.00 ± 4.9	$\textbf{84.80} \pm \textbf{4.3}$	84.38 ± 1.3	91.28 ± 1.1	$\textbf{79.93} \pm \textbf{0.5}$	79.04 ± 0.5	70.16 ± 0.8	82.09 ± 0.7	5.6
FAGCN	60.98 ± 2.3	42.20 ± 1.8	35.67 ± 0.9	77.00 ± 7.7	78.32 ± 6.3	82.41 ± 3.8	82.79 ± 2.7	91.99 ± 1.0	79.27 ± 0.6	79.19 ± 0.4	71.55 ± 0.8	83.88 ± 0.5	7.5
DMP	63.79 ± 4.1	34.19 ± 7.6	28.30 ± 2.7	66.08 ± 7.0	56.41 ± 5.5	62.73 ± 4.5	70.58 ± 11.3	82.63 ± 4.1	56.41 ± 7.8	70.07 ± 4.1	59.12 ± 4.4	75.05 ± 3.8	12.8
MixHop	60.30 ± 2.1	41.05 ± 2.0	$\textbf{36.48} \pm \textbf{1.2}$	77.73 ± 7.3	75.95 ± 5.7	82.12 ± 4.5	79.52 ± 2.1	89.45 ± 1.5	78.59 ± 0.7	80.10 ± 0.4	71.42 ± 0.9	81.61 ± 0.8	9.3
GPRGNN	66.92 ± 1.7	46.32 ± 1.5	35.58 ± 0.9	81.51 ± 6.6	76.86 ± 7.1	84.06 ± 5.2	85.82 ± 0.9	$\textbf{92.41} \pm \textbf{0.7}$	79.67 ± 0.5	80.28 ± 0.4	71.59 ± 0.8	84.20 ± 0.5	5.2
DAGNN	54.99 ± 2.0	40.03 ± 1.4	33.69 ± 1.0	61.35 ± 6.1	63.89 ± 7.0	62.27 ± 4.2	$\textbf{85.83} \pm \textbf{0.8}$	92.30 ± 0.7	79.31 ± 0.6	$\textbf{80.44} \pm \textbf{0.5}$	73.16 ± 0.6	$\textbf{84.43} \pm \textbf{0.5}$	7.2
AERO-GNN	$\textbf{71.58} \pm \textbf{2.4}$	61.76 ± 2.4	$\textbf{36.57} \pm \textbf{1.1}$	$\textbf{84.35} \pm \textbf{5.2}$	$\textbf{81.24} \pm \textbf{6.8}$	84.80 ± 3.3	$\textbf{86.69} \pm \textbf{1.4}$	$\textbf{92.50} \pm \textbf{0.7}$	$\textbf{79.95} \pm \textbf{0.5}$	$\textbf{80.59} \pm \textbf{0.5}$	$\textbf{73.20} \pm \textbf{0.6}$	83.90 ± 0.5	1.4


Table 3: Node Classification Performance on Real-World Graphs

• In each column, indicates ranking the first, and indicates ranking the second. A.R. denotes average ranking.

Performance Over Layers

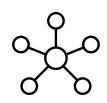
AERO-GNN has

- Highest best performance across model depth (see * in the Figure)
- Better performance over layers k (see trend in the Figure)

- Sec. 1: Introduction
- Sec. 2: Analysis of Graph Attention
- Sec. 3: Proposed Method : AERO-GNN
- Sec. 4: Experiments and Empirical Evaluation
- Sec. 5: Discussion

Summary

Problem


Two Limitations to Deep Graph Attention

Solution: AERO-GNN

Theoretically and Empirically Mitigates the Problems

Implications for Graph Learning

Attention-Based GNNs

A larger focus has been placed on designing **a more expressive layer**

- with new designs
- with new loss terms
- with more features

Deep GNNs

Making deeper GNNs have been an important **setback to GNN research**

- over-smoothing
- over-squashing
- over-correlation

We Bridge the Two

The two are complementary

Thank You